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Abstract

Real-time systems must adapt their behaviour when the
timing assumptions they are based on change at run time.
A viable approach leading to effective adaptations consists
of exploiting application-specific knowledge, but limitations
of ordinary schedulers constrain its applicability. In this
paper this problem is tackled using a reflective scheduler,
which enables a computing system to perform temporal re-

flection, that is to fully observe and control its own tempo-
ral behaviour. The scheduler is implemented for the L4 mi-
crokernel, and validated by solving a real-time image anal-
ysis problem. Compared with other approaches the reflec-
tive scheduler is orders of magnitude more precise, achiev-
ing microsecond-level accuracy, while its implementation is
entirely at user-level, and it does not require any changes to
be made to the microkernel itself.

1. Introduction
The scheduling of a real-time system relies on assump-

tions about the temporal behaviour of its components. These

assumptions span the application, the programming lan-

guage, the operating system, the hardware architecture, and

the external environment. In simpler cases timing variations

can be bounded, but each of these components, and their in-

teractions, are far too complex for such assumptions to hold

in all situations, making schedules brittle. Therefore, practi-

cal real-time systems should incorporate a robust scheduling

framework capable of mantaining the correct temporal be-

haviour even in situations where the underlying assumptions

fail.

An approach dealing with scheduling faults is to use adap-

tive scheduling. A typical solution in soft real-time systems
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is to adjust the CPU share of a thread based on the frequency

of deadline violations. However, such generic adaptation

does not work well for all applications. For example, in a

real-time video-streaming server, the deadline misses caused

by a congested network channel will not be reduced by a

larger CPU share, and possibly they would increase. Of-

ten more effective adaptations can take place by means of

exploiting application-specific knowledge. For example the

video-streaming server can react to reduced network band-

width by increasing the level of frame compression.

Optimal application-driven adaptive scheduling requires

two-way communication between the application and the

operating-system scheduler. The application imparts its

scheduling decisions to the scheduler; the scheduler actu-

ates them to the best of its ability, collects data on the ac-

tual scheduling, in particular violations that might have hap-

pened, and makes this data available to the application as a

base for future scheduling. This is the basic functioning of

an adaptive control loop where the application plays both the

roles of the controlling and the controlled entity at the same

time, and the operating system scheduler is both an actua-

tor of the controlling variable (the tunable system parameter)

and a sensor measuring the controlled variable.

However, ordinary kernel-level schedulers cannot per-

form either of these control functions in a satisfactory way.

Complex temporal requirements that combine task impor-

tance, dependence, urgency and deadlines require cumber-

some and fragile encodings to map to priorities and coarse-

grained threads. More importantly, there is no guarantee

that scheduling decisions made by the application can be en-

forced by the in-kernel scheduler. For example high priority

threads may block on locks held by lower priority threads,

leading to priority inversion, a problem difficult to solve in all

but the simplest cases [22,32]. Moreover, schedulers often do

not keep accurate, easy to access accounts of task execution

time and past behaviour which applications can observe sys-

tematically, and end-to-end measurement performed within

the task itself cannot take into account preemptions.



Therefore, applications need new abstractions and new

mechanisms that allow a better level of observation and con-

trol of scheduling. These requirements can be met by a re-
flective scheduler, a time-driven scheduler based on reflective

abstractions and mechanisms that allow a system to perform

temporal reflection, that is to explicitly model and control its

temporal behaviour as an object of the system itself [23].

In our previous work [16] we developed a proof of con-

cept implementation of the reflective scheduler in Java. This

paper aims to demonstrate that the reflective approach to

scheduling can be applied to provide a high-accuracy adap-

tive real-time scheduling framework for realistic resource-

bounded systems. A common example is a mobile sys-

tem, where meeting real-time constraints with severely lim-

ited CPU, memory and energy resources mandates continous

fine-grained tradeoffs and adaptation.

We describe our implementation of the reflective sched-

uler on top of the L4-embedded microkernel [18]. In gen-

eral microkernels such as GreenHills Integrity and QNX [5]

have long been popular for real-time and embedded operat-

ing systems. L4-embedded is a version of L4 designed for

use in resource-constrained real-time systems such as mo-

bile phones, security cameras and so on. While being a

production-quality kernel used in a number of industrial sys-

tems, it is also a research vehicle for a growing community

of researchers in systems.

Here we give a detailed account of how we mapped the

reflective-scheduler design onto the L4-embedded API. This

included both issues of functional nature (e.g., implementing

interaction and synchronisation between different parts of the

scheduler), and temporal nature — achieving microsecond-

level accuracy at user level on top of a microkernel like L4,

which trades off predictability for performance [24], without

changing its internal implementation.

Our implementation of the reflective scheduler relies only

on the standard L4-embedded API and a high-resolution

hardware timer. Unlike other approaches to reflective

scheduling [21], it does not require the development of a new

kernel, and unlike other real-time frameworks for the L4 mi-

crokernel [6], it does not require any changes to be made to

the microkernel itself.

The reflective scheduler does not interfere with standard

L4 scheduling: best-effort threads run in the free time be-

tween time-critical operations. It takes advantage of the fact

that IPC is the most optimised primitive of the L4 microker-

nel; the critical path between the release of a time-critical

operation and its execution is mostly composed by the deliv-

ery of an IRQ, via IPC.

The core of the resulting implementation is less than 100

lines of C code (presented in Section 4), while the complete

framework is about 1000 loc. The scheduler is fully portable

across L4 microkernels that implement the L4::N1 API spec-

ification. Moreover, since the entire implementation relies on

simple and general scheduling and notification mechanisms,

we believe that the results obtained are not tied to the L4

microkernel, and should be considered valid for other micro-

kernels and RTOSes.

We validate our implementation showing an adaptive

scheduling strategy that solves a real-time image analysis

problem. The solution also demonstrates that the reflec-

tive scheduler can perform time-critical operations with mi-

crosecond accuracy (on a 400 MHz XScale), an accuracy or-

ders of magnitude beyond what the standard L4 kernel pro-

vides, and one order of magnitude beyond a different ap-

proach to reflective scheduling [21].

These results show that reflective approaches, generally

considered too slow to the point of being impractical even

for normal application programming, if properly applied and

implemented are instead a viable approach to design and im-

plement adaptive real-time systems, and worthy of further

research.

The rest of the paper is structured as follows. Section 2

introduces temporal reflection and the reflective scheduler.

Section 3 introduces the L4-embedded microkernel features

we used to implement the scheduler. Section 4 presents the

design and implementation of the reflective scheduler. Sec-

tion 5 validates it by solving a real-time image analysis prob-

lem. Section 6 discusses related work in the areas of real-

time reflective and adaptive scheduling. Finally Section 7

hints at future work and concludes the paper.

2. Reflective scheduler
The reflective scheduler stems from previous research in

the application of computational reflection to the design and

implementation of software architectures for real-time and,

more generally, time-sensitive systems [16]. After a brief in-

troduction to computational reflection, we describe the archi-

tecture of the reflective scheduler and its functioning, which

finally leads to the definition of temporal reflection.

2.1. Computational reflection

Reflection in computing systems was originally intro-

duced by Smith in his fundamental work [25,26]. Smith [26]

defines

“. . . ‘reflection’ in its most general sense . . . the

ability of an agent to reason not only introspec-

tively, about its self and internal thought processes,

but also externally, about its behaviour and situa-

tion in the world. Ordinary reasoning is external

in a simple sense; the point of reflection is to give

an agent a more sophisticated stance from which

to consider its own presence in that embedding

world.”

and a reflective system as “a computer system able to reason

about itself”. Smith’s definitions owe to the fact that he in-

troduced reflection in computing through the field of artificial



intelligence, and the actual roots of reflection are in philoso-

phy and logic: Demers [1] provides an accurate overview of

the field. Maes [15] gives a less esoteric definition of com-

putational reflection as “the activity performed by a compu-

tational system when doing computation about (and by that

possibily affecting) its own state and computations”.

2.2. Reflection at language and system level

Most research on reflection focuses on procedural reflec-

tion, that is “self-referential behaviour in programming lan-

guages” (see [26] and [25], p. 41). As a consequence, most

reflective approaches to real-time scheduling (see Section 6)

blindly use techniques and mechanisms developed for pro-

cedural reflection, furthering the “tendency to mix reflection

and the use of these techniques. In a sense, the tools [are]

taken for the concept” [1], resulting in unsound designs and

inefficient implementations.

A fertile area of research for applications of reflection

develops when the focus of programming shifts from the

level of language statements and features, or programming-

in-the-small, up to the systemic level of the run-time struc-

ture and behaviour of a computational system as a whole,

or programming-in-the-large [2]. By applying computational

reflection at system level it is possible to deal with systemic

aspects of computation that are relevant for real-time and,

more generally, time-sensitive systems. The key aspect of

interest in a time-sensitive system is its overall temporal be-

haviour: it is both complementary and orthogonal to its soft-

ware architecture [4, 31], and, like its architecture, it is not a

static property that can be localised in one of its components.

Rather, it is an emergent property of the system that results

from their execution and interaction at run-time [17].

2.3. Reflective scheduler

Classic real-time schedulers run tasks according to their

priorities or deadlines as determined by the application de-

signer. The resulting behaviour is correct as long as the as-

sumptions made during the scheduling analysis hold. How-

ever, as soon as the assumptions change such that the current

schedule fails, the application must recover quickly from the

failure and bring the system to a safe state to avoid serious

consequences.

One way to deal with scheduling failures is adaptive

scheduling. A control-based approach to real-time adap-

tive scheduling is to have a modified scheduler notifying a

controller module of failures like missed deadlines or jobs1

dropped because of overload (the controlled variable). Based

on this information the controller adapts the probability of

that failure to repeat in the future by changing a controlling
variable; in [14] such a variable is the estimated utilisation

of the processor. The controller can trade scheduling fail-

ures with another system parameter, like energy consump-

tion [33].

1A job is the instance of task released at a certain time.

However, schedulers do not keep track of and report on

the concatenation of transient temporal interdependencies

among jobs that led to a scheduling failure. The job α of

a task A can violate its deadline either because A’s worst

case execution time (WCET) was miscomputed, or it was

blocked waiting for a lower priority job β (or preempted by a

higher priority job γ) that overran its WCET but still met its

deadline; in turn, β and γ may have been waiting for other

jobs, and so on. As a consequence, the controller does not

have sufficient information to determine exactly which as-

sumptions were violated and led to the scheduling failure.

The adaptations it can possibly perform are only ex-post and

coarse-grained. For finer-grained adaptations new abstrac-

tions and new mechanisms that allow a better level of obser-

vation and control of scheduling become necessary.

These requirements can be addressed by a reflective
scheduler, a time-driven scheduler based on reflective ab-

stractions and mechanisms, centred on the idea of represent-

ing and controlling the system temporal behaviour as a timed

succession of actions. Listing 1 and Figure 1 depict the ab-

stractions and components the scheduler is based on, which

we describe in the following paragraphs (adapted and ex-

tended from [16]).

class T ime In te rva l {
i n t plannedBegin , plannedEnd ;
i n t actualBegin , actualEnd ;
T ime In te rva l ( i n t pBegin , i n t pEnd ) ;

}
abstract Act ion {

T ime In te rva l t i m e I n t e r v a l ;
abstract void perform ( ) ;
Ac t ion ( T ime In te rva l t I n t ) {

t i m e I n t e r v a l = t i n t ;
}

}
class RealTimeLine {

void addAction ( Act ion ) ;
i n t now ( ) ;

}

Listing 1. Architectural abstractions

TimeInterval models the planned time interval and the

actual time interval for the execution of an operation brack-

eting them with two [begin, end] pairs of time instants.

Action models the temporal aspects of a computation

binding a perform() operation with a TimeInterval.

RealTimeLine models the “real” time, i.e., a mono-

tonic sequence of time instants characterised by the non-

decreasing now() value of the current time.

The current time splits the timeline into a past and a future

timeline; the two real-time lines decorated by actions repre-

sent the past and the future temporal behaviour of the system,

respectively. Actions can be inserted into the future time-

line and the planned instants of their TimeIntervals can

be specified. This allows the global temporal behaviour of

the system to be controlled by planning actions on the future

timeline in the proper sequence and with proper timing to

suit the application’s functional and temporal requirements.



Actual instants of a TimeInterval make sense for the past

timeline only. They are used to record and observe the past

temporal behaviour of the system. Both actual and planned

instants are immutable for the past timeline.

Figure 1. Reflective scheduler and timeline

Along with these abstractions we introduce two architec-

tural components of the system, the strategist and the execu-
tion engine. Their purpose is to control and actuate the tem-

poral behaviour, respectively. By separating the two roles,

we achieve separation of policy and mechanism [9].

The execution engine triggers the execution of a com-

putational operation whenever the corresponding action is

enabled, i.e., the current time falls inside its planned inter-

val. It also sets the actualBegin and actualEnd of the

TimeInterval whenever a computational operation is ac-

tually started and completed, respectively. The execution en-

gine provides the required reflective causal connection be-

tween the actual system temporal behaviour and the archi-

tectural abstractions that represents it, i.e. the actions, their

time intervals and the real-time line.

The strategist is in charge of observing the past behaviour

of the system and planning its future behaviour, respectively,

by observing actions in the past timeline, and by inserting

actions in the future timeline according to the application

goal(s) and requirements. The strategist is an integral part

of the application, namely the part in charge of time-related

decisions.

In classic priority-based real-time software the equivalent

of the strategist is the scheduling logic that statically or dy-

namically sets the tasks’ priorities based on their deadlines

and durations according to a given scheduling algorithm like

rate-monotonic analysis. The equivalent of the execution en-

gine is the dispatcher within the kernel.

The reflective scheduler has a number of advantages over

other approaches: (i) it clearly identifies and localises in
separate components the policy and the mechanism that de-
termine the overall system behaviour, while traditional ap-

proaches leave implicit scheduling control rules scattered in

different places and at various levels of abstractions, dis-

persed among application code, kernel scheduler, locks and

low-level interprocess communication mechanisms (all pos-

sibly with priority-inversion avoidance algorithms), and so

on; (ii) since it knows what scheduling information is rel-

evant for the application, it can record only the bare mini-

mum and abstract it in the most suitable form. This is pos-

sible because all the timing data is collected at the decision-

making point (a consequence of the policy-mechanism sepa-

ration); (iii) it is based on abstractions and components that

represent and control time and behaviour more explicitly and

accurately than ordinary schedulers, threads, priorities, and

deadlines; (iv) it allows an application to keep abreast of

the current state of scheduling with sufficient detail to spot

scheduling faults that anticipate a failure, and possibly take

preventive steps to avoid it.

Temporal Reflection The reflective scheduler, however,

does not simply separate policy and mechanism. First, it

models a time-sensitive system as a system “amenable to

dynamic, feedback-based control” [8]. Second, and more

importantly, it explicitly represents the system temporal be-

haviour as an object upon which the strategist can make arbi-

trary computations. It is then possibile for a computing sys-

tem to reason about temporal aspects of its own computation.

Accordingly, we define temporal reflection as “the ability of

a system to self-represent (reify), observe and control its own

temporal behaviour” as an object of the system itself [23].

3. The L4 microkernel
L4 is a family of second-generation microkernels that

aims at high flexibility and maximum performance, but with-

out compromising security. In order to be fast, L4 strives

to be small by design [11], and thus provides only the

least set of fundamental abstractions and the mechanisms

to control them: address spaces with memory mapping op-

erations, threads with basic scheduling and synchronous

IPC. We based the reflective scheduler on NICTA::Pistachio-

embedded (L4-embedded), an implementation of the N1 API

specification [18].

Scheduler L4 contains a 256-level, fixed-priority, round-

robin (RR) scheduler. The RR scheduling policy runs threads

in priority order until they block in the kernel, are preempted

by a higher priority thread that becomes runnable, or exhaust

their timeslice. The standard length of a timeslice is 10 ms

but can be set between ε (the shortest possible timeslice, cur-

rently 2–10 ms depending on the platform) and ∞ with the

Schedule() system call. Once a thread exhausts its times-

lice, the scheduler enqueues it at the end of the list of the

running threads of the same priority, to give other threads a

chance to run. RR achieves a simple form of fairness and,

more importantly, guarantees progress.

Synchronous IPC L4 threads can exchange messages

via L4’s synchronous IPC using a number of convenience

functions implemented in terms of the basic Ipc() syscall.

Besides the classic Send() and Receive(), for example,

there is Call(), used by clients to perform a simple RPC to

servers, composed by a Send(), followed by a Receive()

from the same thread. Once the request is performed, servers



can reply and then block waiting for the next message us-

ing ReplyWait(), a Send() to a thread followed by a

Receive() from any thread. To wait for an incoming mes-

sage one can use Wait(), that is a Receive() from any

thread, and so on. The complete list of IPC convenience

functions is defined in the L4-embedded specification [18].

User-level interrupt handlers L4 delivers an interrupt as

a synchronous IPC message to a normal user-level thread

which registered with the kernel as the handler thread for

that interrupt. The handler runs in user-mode with its inter-

rupt disabled, but with the other interrupts enabled, and thus

it can be preempted by higher-priority threads, which possi-

bly, but not necessarily, are associated with other interrupts.

Asynchronous notification Asynchronous notification is

used by a sender thread to notify a receiver thread of an

event. While implemented via the IPC syscall, notification

is neither blocking for the sender, nor requires the receiver to

block waiting for the notification to happen. A sender noti-

fies with AsynchIPC(tid,bits_to_notify). A receiver

first specifies with Set_AsynchMask(bit_mask) the bits

it is interested in, then can poll the current state of its notifi-

cation word with Get_NotifyBits(), or block waiting for

the notification of any event or a normal, synchronous IPC

message using WaitAsynch(&recv_bits,&src_tid).

4. User-level reflective scheduler for L4
This section gives a detailed account of the implementa-

tion of the reflective scheduler for L4-based systems. First

we list the various requirements and desiderata it should

meet, then we show how we designed and implemented its

components to meet them, and finally we analyse in detail

the code of the execution engine and how it uses the sched-

uler and L4-embedded APIs.

4.1. Requirements

The reflective scheduler shall meet these requirements:

Timeliness of execution actions shall run at the planned

time with minimal jitter. Scheduling accuracy is critical,

for example, for applications such as multimedia, software-

defined radios and time-sensitive communication protocols.

Accuracy of measurements the actual duration of actions

shall be precisely measured, as the well functioning of adap-

tive strategies depends on the accuracy of the measurements.

Reactivity to changes both the strategist and execution

engine shall react promptly to any change on the real time-

line, to keep aligned the actual and the desidered temporal

behaviour of the system.

Additionally, the reflective scheduler shall properly inte-

grate in L4-based systems. First, real-time applications shall

seamlessly run along with non-real-time ones without any

consequence, besides the use of processor time spent execut-

ing time-critical actions. Second, the reflective scheduler will

neither replace nor interfere with the standard L4 scheduler,

but rather it will coexist with it. Finally, its implementation

will not require any change to the microkernel itself. The

latter requirement entails a user-level implementation, in line

with the microkernel philosophy [12].

4.2. Design and implementation

We analysed the L4 microkernel API and the aspects of

its implementation that affect the temporal behaviour of user-

level software [24]. Based on this analysis we designed the

reflective scheduler components, its API, and a supporting

timer driver in terms of C language structures and the L4-

embedded API so as to meet the requirements and desiderata

discussed above. The results are described in the following

paragraphs and summarised in Listings 2 and 3.

Low-level timer driver The timely execution of ac-

tions and the accurate measurement of their duration hinges

on lltimer, a user-level device driver which defines some ab-

stractions and primitives as C structures and macros to use a

hardware timer in a platform-independent, yet very efficient

way. The hardware timer and time measurements are mod-

elled by lltimer and lltimepoint, respectively.

struct l l t i m e p o i n t {
union {

u i n t 3 2 t raw32 ; / / 32 b i t t imers
u i n t 6 4 t raw64 ; / / 64 b i t t imers

} raw ; / / the value read from the hw t imer
usec t ime t usec ; / / from raw v ia C macros

} ;
struct t i m e i n t e r v a l {

struct l l t i m e p o i n t s t a r t ;
struct l l t i m e p o i n t end ;

} ;
struct Act ion {

i n t c lass ;
struct t i m e i n t e r v a l planned ;
struct t i m e i n t e r v a l ac tua l ;
void (∗ perform ) ( void ) ;
i n t c lobber ;

} ;
struct RealTimeLine {

struct l l t i m e r ∗ re fC lock ;
struct mutex p a s t t l m u t e x ;
struct Act ion ∗ pastHead ;
struct Act ion ∗ p a s t T a i l ;
L4 ThreadId t pastObserverThread ;
i n t pastObserverBi t ;
struct mutex f u t u r e t l m u t e x ;
struct Act ion ∗ futureHead ;
struct Act ion ∗ f u t u r e T a i l ;
L4 ThreadId t futureObserverThread ;
i n t f u tu reObserve rB i t ;

} ;
void f u tu re enqueue ac t ion ( struct Act ion ∗ ) ;
void past enqueue act ion ( struct Act ion ∗ ) ;
void f u tu re add observe r ( L4 ThreadId t , i n t ) ;
void past add observer ( L4 ThreadId t , i n t ) ;
struct Act ion ∗ f u t u r e g e t f i r s t a c t i o n ( void ) ;
struct Act ion ∗ f u t u r e p e e k f i r s t a c t i o n ( void ) ;
struct Act ion ∗ f u tu re dequeue ac t ion ( struct Act ion ∗ ) ;
struct Act ion ∗ p a s t g e t l a t e s t a c t i o n ( void ) ;
struct Act ion ∗ Action new ( i n t /∗ c lass ∗ / ,

void (∗ /∗ perform∗ / ) ( void ) , struct t i m e i n t e r v a l ∗ ) ;
void Ac t i on de le te ( struct Act ion ∗ ) ;

Listing 2. R. Scheduler abstractions and API

The current implementation of lltimer is 500 loc, half

of which is the driver for the XScale OSTMR, a 32 bit timer

clocked at 3.640 MHz.

Actions C functions play the role of time-critical oper-

ations, and are referenced via function pointers in Action



structures, allocated by Action_new() and disposed by

Action_delete(). The strategist uses the class field

to quickly identify actions; the execution engine uses the

clobber field to flag that the execution of this action was

delayed by the late termination of the previous one.

Timeline The real timeline is split into a past

and a future timeline, each one implemented by a

linked list protected from concurrent access by a mu-

tex. The strategist enqueues actions in the future

timeline with future_enqueue_action() and with

past_get_latest_action() fetches them from the past

timeline as soon as they have been executed. With

future_peek_first_action() the execution engine

peeks at the first (earliest) action on the future timeline,

with future_get_first_action() removes it, and with

past_enqueue_action() enqueues an executed action in

the past timeline. The execution engine peeks but does not

remove the first action because the strategist can replace it

any time before execution.

The requirement of reactivity is fulfilled by informing

the interested parties of changes to the real timeline via

the observer-observable design pattern (described as ‘model-

view’ [3]). After the strategist and execution engine regis-

tered themselves as observers of the past and future time-

line using, respectively, future_add_observer() and

past_add_observer(), they will be informed of rel-

evant changes of the timelines via L4’s asynchronous

notification. At the bottom of Listing 3 is the frag-

ment of function future_enqueue_action() that noti-

fies the observer if the first action changed. Similarly,

past_enqueue_action() notifies the observer when it

changes the past timeline.

Execution engine At the top of Listing 3 is the source

code of the execution engine. Lines 12–14 register the exe-

cution engine as an observer of the future timeline and en-

able L4 IPC to deliver asynchronous notification in addition

to ordinary synchronous messages. After this initialisation

the execution engine performs its task in an infinite loop.

Line 18 peeks the first (earliest) action on the future time-

line. If an action was present, line 20 clears the notification

mask so that only new additions will result in notifications.

Lines 22–25 use lltimer primitives to set up an interrupt

for the planned start time of the peeked action. In case the

interrupt setup at line 25 succeeds, or the peek of line 18 re-

vealed that an action is not present, control passes to line 35

where it blocks waiting for an IPC message.

The IPC can be either an interrupt from the timer, or

a notification that the head of the future timeline changed.

If the IPC is an interrupt, line 38 cleans up the fired in-

terrupt, line 39 fetches the first action on the future time-

line, and control proceeds to line 43 that, if an action

was on the timeline and thus a is not NULL, exits the

loop to execute it. If the IPC was not an IRQ, it can

be only a notification: line 42 disarms the interrupt and,

since a stayed NULL, restarts from the beginning at line 16.

In case the interrupt setup at line 25 fails, it means that

the current time is already past the planned start time (i.e.,

the action is late), and the interrupt will fire only when the

timer counter reaches the same value after rolling over. Thus

1 void execu t ion eng ine th read ( void )
2 {
3 L4 Word t r e t b i t s ;
4 L4 ThreadId t s rc ;
5 L4 MsgTag t tag = L4 N i l t ag ;
6 struct l l t i m e r ∗ c lock ;
7 struct l l t i m e p o i n t delay ;
8 struct Act ion ∗ a = NULL ;
9 struct Act ion ∗ pa = NULL ;

10 struct t i m e i n t e r v a l l a s t a c t i o n i n t e r v a l ;
11

12 f u tu re add observe r ( L4 Mysel f ( ) ) ; / / observe f u t u r e t i m e l i n e
13 L4 Set AsynchMask ( ( 1 << FTL OBSERVE BIT ) ) ;
14 L4 Accept ( L4 AsynchItemsAcceptor ) ;
15 while ( 1 ) {
16 do {
17 / / peek ( not f e t ch ) the ac t i on to perform
18 pa = f u t u r e p e e k f i r s t a c t i o n ( ) ;
19 i f ( pa ) {
20 L4 Set AsynchBi ts ( 0 ) ; / / no n o t i f i c a t i o n s f o r t h i s ac t i on
21 / / compute when t h i s ac t i on should s t a r t
22 l l t i m e p o i n t z e r o ( c lock , &delay ) ; / / zero the delay
23 LLT US TO RAW( clock , &pa−>planned . s t a r t ) ;
24 LLT ADD RAW(& delay , &pa−>planned . s t a r t , &clock−>s t a r t ) ; / / o f f s e t
25 i f (LLT SLEEP SETUP( clock , &delay , L4 Mysel f ( ) ) ) {
26 / / t imer i r q setup f a i l e d because ” delay ” i s <= 0
27 / / cleanup i n t e r r u p t we r e g i s t e r e d f o r
28 LLT SLEEP CLEANUP( clock , &delay , L4 Mysel f ( ) ) ;
29 a = f u t u r e g e t f i r s t a c t i o n ( ) ; / / ac t i on to run ( assumes a==pa )
30 continue ; / / w i l l e x i t the loop i f ” a ” i s not NULL
31 }
32 / / t imer i r q setup was successfu l , f a l l t h r o u g h to wa i t f o r IRQ IPC
33 }
34 / / wa i t f o r t imer i r q or asynchronous n o t i f y IPC
35 tag = L4 WaitAsynch (& r e t b i t s , &src ) ;
36 i f ( tag .X . l a b e l == IRQ LABEL ) {
37 / / cleanup i n t e r r u p t we j u s t rece ived
38 LLT SLEEP CLEANUP IRQ( src , c lock , &delay , L4 Mysel f ( ) ) ;
39 a = f u t u r e g e t f i r s t a c t i o n ( ) ; / / ac t i on to run ( assumes a==pa )
40 }
41 else / / cleanup i n t e r r u p t we r e g i s t e r e d f o r
42 LLT SLEEP CLEANUP( clock , &delay , L4 Mysel f ( ) ) ;
43 } while ( ( a == NULL) ) ;
44 / / the loop ex i ted wi th ” a ” con ta in ing the ac t i on to execute now
45 LLT READ TIMEPOINT ( clock , &a−>ac tua l . s t a r t ) ; / / t ime ac t i on s t a r t
46 a−>perform ( a ) ; / / execute the ac t i on
47 LLT READ TIMEPOINT ( clock , &a−>ac tua l . end ) ; / / t ime ac t i on end
48 / / make the delay r e l a t i v e to the t imer s t a r t
49 LLT SUB RAW(&a−>ac tua l . s t a r t , &a−>ac tua l . s t a r t , &clock−>s t a r t ) ;
50 LLT SUB RAW(&a−>ac tua l . end , &a−>ac tua l . end , &clock−>s t a r t ) ;
51 LLT RAW TO US( clock , &a−>ac tua l . s t a r t ) ;
52 LLT RAW TO US( clock , &a−>ac tua l . end ) ;
53 / / was the execut ion o f t h i s ac t i on delayed by the prev ious one?
54 i f ( l a s t a c t i o n i n t e r v a l . end . usec > a−>planned . s t a r t . usec )
55 a−>c lobber = 1 ;
56 l a s t a c t i o n i n t e r v a l = a−>ac tua l ;
57 past enqueue act ion ( a ) ; / / s to re i n past t i m e l i n e
58 a = NULL ; / / de le te re ference to ” a ”
59 } / / wh i le
60 }
61

62 void f u tu re enqueue ac t ion
63 ( struct RealTimeLine ∗ r t l , struct Act ion ∗ a ) {
64 i n t f i r s t = 0 ;
65 i f ( ( t i m e l i n e i s empty ) | | ( ” a ” i s the e a r l i e s t ac t i on ) ) {
66 / / enqueue ” a ” a t the head of the l i s t
67 f i r s t = 1 ; / / se t the f i r s t ac t i on f l a g
68 } else { /∗ add ” a ” l a t e r i n queue ∗ / }
69 i f ( f i r s t == 1) / / f u t u r e t i m e l i n e head changed , n o t i f y the observer
70 L4 AsynchIpc ( r t l −>futureObserverThread ,(1<< r t l −>f u tu reObserve rB i t ) ) ;
71 }

Listing 3. E. engine & future enqueue action()



lines 28–30 disarm the interrupt, fetch the action and proceed

to execute it immediately via the perform function pointer.

Policy/mechanism Executing actions unconditionally,

even when they are late, avoids hardwiring arbitrary policies

in the execution engine mechanism. Appropriate policies to

handle the consequences of actions executed late, just like

any other scheduling fault, are left to the strategist.

Simplification The execution engine in listing 3 has been

simplified for clarity and space reasons. For example, a race

condition can occur because for a notification to be received

and acted upon, the execution engine must be waiting at line

35, but in some corner cases (e.g, SMP) a strategist can

change the first action between the peek at line 18 and the

fetch at line 29 or 39, and cause the execution engine to oper-

ate on an invalid action. There are simple workarounds (e.g.,

copy the peeked action and, if after the fetch a!=pa, reen-

queue a in the future timeline and restart from beginning),

but they are not included for the above-mentioned reasons.

L4 integration Since actions are atomic they should not

be preempted, so the execution engine thread is the only one

at its priority level (set to 240, lower than kernel interrupt

threads at 255, but higher than standard applications, typi-

cally 100), and its timeslice is set to ∞. With this arrange-

ment L4 schedules applications composed by lower-priority

threads in the free time between time-critical actions.

Protected scheduling Actions run in the same protection

domain as the strategist and execution engine. While we ex-

pect real-time adaptive strategies to require domain-specific

information available only from within an application, pro-

tected scheduling can be performed by encapsulating in an

action a synchronous Call() IPC to threads in other protec-

tion domains (but possibly increasing the activation jitter).

Scheduling latency Since the execution engine is always

ready to receive the timer IPC, and has higher priority than

normal applications, L4 can receive the interrupt and perform

a direct process switch [10] from kernel mode to the execu-

tion engine at user level without running the kernel sched-

uler [24]. As a consequence, the latency of the reflective

scheduler is low and roughly constant, and can be compen-

sated by the strategist as shown in Section 5.5.

5. Experimental evaluation
We evaluate the performance of the reflective scheduler

by implementing and benchmarking a real-time application

that exploits the ability of the scheduler to adapt the future

application behaviour based on the observation of its recent

past.

5.1. The problem

We choose an adaptive real-time image analysis problem

that occurs in real-world security monitoring systems. It in-

volves a digital video signal encoded in MPEG that must

be monitored for anomalous behaviour. In our case this

behaviour is the presence of sparks or lightning. A sce-

nario where this might be required is an industrial plant that

utilises flammable gas and where a spark or lightning might

cause an explosion. The application decodes the encoded

video stream and applies the image analysis algorithm to the

stream. Upon finding a spark or lightning, it reports its posi-

tion to the operator. The analysis must occur in real-time.

Time-adaptive image-analysis algorithm We selected an

algorithm to find lightning and sparks which scales with re-

spect to the spatial resolution of image analysis. The algo-

rithm takes RGB frames and looks for pixels with luma (Y)

exceeding a given threshold. It outputs a bounding rectangle

that marks the area of interest so that it can be further pro-

cessed. An example of the resulting frame is shown in Fig-

ure 2. The scalability is achieved by varying the horizontal

and vertical step at which the image is scanned.

Figure 2. The analysis locates a lightning

5.2. Real-time requirements

The application described above has the following real-

time requirement: it must process all video frames without

skipping or delaying any of them. In fact, a spark or a light-

ning strike is a phenomenon with high temporal resolution:

skipping a single frame can lead to missing it. Delayed pro-

cessing of video frames would result in late alarms. There-

fore, unlike conventional soft real-time media-processing ap-

plications that can skip or buffer frames, our scheduler should

satisfy a firm real-time constraint.

The timely analysis of a frame poses the following prob-

lems. First, the time available before the deadline is known

only at run time; it depends on video rate, I/O speed

(platform-, network-, and device-dependent), decoding times

(CPU-dependent) and so on. While variations in frame

rate and decoding times could in principle be managed, I/O

makes things extremely unpredictable. Benchmarks we per-

formed show that, even from a RAM-based filesystem, read

times varies with a factor of 3. Second, the duration of im-

age analysis itself can be difficult to estimate in advance. It

has a complex dependency on the algorithm and the image



Figure 3. Read-parse-analyze-display real-time plan

size, but also on CPU and memory performance, which can

change at run-time for many reasons (e.g., power manage-

ment and DMA traffic). Static methods like WCET are pes-

simistic, and would lead to too many frames skipped and un-

derutilised available time. Therefore we want to use adaptive

scheduling.

5.3. Adaptive strategy

To meet the requirements it is necessary to plan the timing

of both the MPEG video decoding and the analysis of each

frame. Figure 3 shows the typical read-parse-analyse-display

cycle as it appears on the timeline.

Strategist The core strategist logic schedules four types

of actions on the timeline, read, parse, analyse and

display, and handles four types of events corresponding

to completion of these actions. Listing 4 shows the main ap-

plication actions planned by the strategist. Listing 5 shows

the “action handlers”, the functions called by the strategist

when it receives the notification that an action has been exe-

cuted. An action handler plans future action(s) according to

the action just executed, its actual duration, the current time,

and the system state. In other words, while actions are ap-

plication operations, action handlers are subroutines of the

strategist, called right after the action has been executed.

Adaptation tactic We achieved the required adaptivity to

the unpredictable available time and analysis duration by ex-

ploiting our knowledge of the algorithm. As the analysis

duration has a positive (although unknown) correlation with

the resolution, this information is collected and recorded at

run-time in an adaptation table (Table 1). Each line contains

the longest execution time of the analysis algorithm observed

so far at the given quality setting, and the last frame where

it was observed. The table is used by lookup() to select

the best quality level given the available time as follows.

If, for example, the available time is 9000 µs, lookup()

will select the pair (1,2); if the available time is 18000 µs,

the pair (1,1) will be selected. If, instead, the available

time is only 5000 µs, lookup() will return the (1,3) qual-

ity setting, in the hope that the resulting speedup will be

enough. The quality of the adaptation improves over time, as

update_adaptive_table() refines the longest observed

duration at a given quality setting with the actual execution

time of the analyse action provided by the execution en-

gine. Algorithms with more complex timing behavior can be

accommodated with correspondingly sophisticated tactics.

frame analysis length (µs) dx dy quality (1/dxdy)

16 15211 1 1 1

18 7373 1 2 1/2

0 (no data) 1 3 1/3

0 (no data) 2 2 1/4

0 (no data) 2 3 1/6

Table 1. The adaptive table after 50 frames

Actions and actions handlers The actions are found

in Listing 4 and perform the following operations:

mpeg2_read_action() reads the raw bitstream from a file

and stores it in the parser buffer; mpeg2_parse_action()

feeds data from the IO buffer into the MPEG2 decoder;

analyze_action() analyses the frame for sparks and

lightning, subsampling the image along the x and y axes by

dy and dy pixel, respectively (both global variables for con-

venience of exposition); finally, display_action() dis-

plays a frame.

void mpeg2 read act ion ( ) {
s ize = f read ( bu f fe r , 1 , BUFFER SIZE , mpgf i le ) ;
mpeg2 buffer ( decoder , bu f fe r , b u f f e r + s ize ) ;

}
void mpeg2 parse act ion ( ) {

mpeg2 parse state = mpeg2 parse ( decoder ) ;
}
void ana lyze ac t ion ( ) {
#define BRIGHTNESS TRESHOLD 120 / / dx . dy are g loba l

r ec tang le rgb ( i n fo−>sequence−>width , i n fo−>sequence−>height ,
i n fo−>d i s p l a y f b u f−>buf [ 0 ] , BRIGHTNESS TRESHOLD, dx , dy ) ;

}
void d i s p l a y a c t i o n ( ) {

/ / d i sp lay the frame
}

Listing 4. Actions

The action handlers are found in Listing 5 and perform

the following operations: handle_read() if some data was

read, schedules a new parse action; handle_parse() is

the core function of the strategist. If the MPEG decoder

status code indicates that a new frame has just been de-

coded, handle_parse() schedules two actions. First, it

calls plan_display() (line 37) to plan the display ac-

tion, which constitutes the final step of processing of the

video frame. Second, if there is some time remaining be-

fore the display of the frame, it schedules the analysis ac-

tion (line 38–43). The lookup() function (line 41) selects



the quality of the analysis algorithm based on available time

by performing lookup into the adaptation table, as described

above; handle_analyse() updates the quality adaptation

table based on the actual execution time of the image anal-

ysis algorithm on the current frame; handle_display()

restarts the read-parse-analyze-display cycle with a parse.

1 i n t handle analyse ( struct Act ion ∗ a ) {
2 upda te adap t i ve tab le ( adap t i ve tab le ,
3 a−>ac tua l . end . usec − a−>ac tua l . s t a r t . usec , dx , dy , a−>frameno ) ;
4 Ac t i on de le te ( a ) ;
5 return (ST STEADY ) ;
6 }
7 i n t handle read ( struct Act ion ∗ a ) {
8 usec t ime t now ;
9 i n t newstate = ST STEADY;

10 Ac t i on de le te ( a ) ; / / dispose executed ac t i on
11 i f ( s i ze ) {
12 now = l l t ime r now usec ( c lock ) ;
13 plan parse (now , now + PARSE LEN ) ;
14 }
15 else
16 newstate = ST END ; / / EOF
17 return ( newstate ) ;
18 }
19 i n t handle parse ( struct Act ion ∗ a ) {
20 struct Act ion ∗ newa ;
21 usec t ime t now , when ;
22 s t a t i c usec t ime t f i r s t f r a m e t i m e ;
23 switch ( mpeg2 parse state )
24 {
25 case STATE FRAME READY: {
26 u s e c r e l t i m e t a v a i l t i m e ; / / can be negat ive
27 framenum++;
28 / / compute when the d i sp lay o f t h i s frame should happen
29 now = l l t ime r now usec ( c lock ) ;
30 i f ( framenum == 1) { / / the 1 s t frame s t a r t s a t round second
31 f i r s t f r a m e t i m e = SEC TO USEC ( ( now / 1000000))+SEC TO USEC ( 2 ) ;
32 when = f i r s t f r a m e t i m e ;
33 } else
34 when = f i r s t f r a m e t i m e + ( framenum−1) ∗ f r a m e i n t e r v a l [ f ramerate ] ;
35 / / f r a m e i n t e r v a l i s d i sp lay per iod
36 / / p lan d i sp lay even i f ’when ’ i s past ’now ’ ( i . e . , missed deadl ine ! )
37 i f ( ( newa = p l a n d i s p l a y (when , when + DISPLAY LEN ) ) ) {
38 now = l l t ime r now usec ( c lock ) ; / / r e f r esh ’now ’
39 a v a i l t i m e = when − now ; / / a v a i l . t ime f o r image ana lys i s
40 i f ( ( a v a i l t i m e > 0) &&
41 ( lookup ( adapt tab le , ADAPT TABLE SIZE , a v a i l t i m e ,&dx ,&dy ) ) ) {
42 / / se ts ana lys i s q u a l i t y i n dx / dy , based on the a v a i l a b l e t ime
43 newa = plan ana lyze (now , now + ANALYZE LEN ) ;
44 }
45 }
46 Ac t i on de le te ( a ) ; / / parse ac t i on i s not necessary anymore
47 break ;
48 }
49 case STATE BUFFER: {
50 now = l l t ime r now usec ( c lock ) ;
51 newa = plan read (now , now + READ LEN ) ;
52 Ac t i on de le te ( a ) ; / / d iscard o ld parse
53 break ;
54 }
55 }
56 return (ST STEADY ) ;
57 }
58 i n t hand le d isp lay ( struct Act ion ∗ a ) {
59 now = l l t ime r now usec ( c lock ) ;
60 new cycle = plan parse (now , now + PARSE LEN ) ;
61 Ac t i on de le te ( a ) ; / / d iscard o ld d i sp lay
62 return (ST STEADY ) ;
63 }

Listing 5. Actions handlers of the Strategist

5.4. Experimental results

We run the resulting system on PLEB2 [19], an embedded

platform based on an Intel XScale PXA 255 CPU clocked at

400 MHz and running the L4-embedded microkernel. The

results of the execution are shown in Figure 4. It shows the

accuracy with which the scheduler executes the display after

the frame analysis at a given quality level. More precisely, it

shows the amount of jitter (in µs) between the planned and

the actual start time of the display action caused by the pre-

vious frame analysis action performed at a quality level se-

lected in the adaptation table. In the first five frames the table

is empty, and the analysis action overruns or is skipped. After

the fifth frame, however, the table is filled, and the scheduler

meets the display deadline within 52–57 µs.

5.5. Closed-loop feedback calibration of the scheduler

The reflective scheduler allows a system-wide tuning of

execution timing by applying a correction factor at a sin-
gle place in the system. In Figure 4, even after the adaptive

scheduling started to operate correctly, there is still a visi-

ble delay of 52–57 µs in the execution of a display ac-

tion. It is probably caused by a combination of the latency of

user-level interrupt handling and the overhead of the reflec-

tive scheduler, but we have not characterised them further

at the moment. Listing 6 shows a fragment of the strategist

that attempts to reduce this delay and thus improve schedul-

ing accuracy by using an adaptation tactic based on closed-

loop feedback calibration. A simple algorithm measures the

error, and corrects the anticipation of the timer interrupt in

the lltimer driver. The function bases its computation on

the raw timer ticks, less practical but typically more accurate

than microseconds used for actions planning. It considers

only actions whose execution was not delayed (clobbered)

by previous actions. As the source indicates the calibration

is applied after the 25th frame for illustration purposes. The

results are visible in Figure 5. Just three frames after frame

number 25, the feedback-calibrated scheduler meets display

deadlines with an accuracy oscillating between -4 and +3 µs,

which is an improvement of an order of magnitude. It also
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hand le d isp lay ( struct Act ion ∗ a ) {
/ / . . . prologue of hand le d isp lay ( ) . . .
i f ( ( a−>c lobber == 0) && ( framenum > 25) ) {

i n t er ro r , newcal , o l d c a l ;
e r r o r = a−>ac tua l . s t a r t . raw . raw32 − a−>planned . s t a r t . raw . raw32 ;
switch ( abs ( e r r o r ) ) {

case 0: / / t i m e l y : no c o r r e c t i o n necessary
break ;

case 1:
e r r o r = e r r o r ∗ 2; / / i n t e n t i o n a l f a l l−through

defaul t : {
o l d c a l = l l t i m e r g e t c a l i b r a t i o n ( c lock ) ;
newcal = − ( e r r o r ) / 2 + o l d c a l ; / / feedback c o r r e c t i o n
l l t i m e r s e t c a l i b r a t i o n ( c lock , newcal ) ;

}}}
/ / . . . ep i logue of hand le d isp lay ( ) . . .

}

Listing 6. Timer feedback calibration
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improves by an order of magnitude over a different approach

to reflective scheduling, in which a reaction of the scheduler

(on a Cyrix 233 MHz processor) takes “...on an average not

more than 30 µs in the worst case...” [21]. Note that this tac-

tic dynamically self-adapts to changes in operating system

overhead or hardware performance. Of course, investigating

the actual reasons of the delay could lead to a better tactic.

5.6. Discussion

Some closing comments: (i) the reflective scheduler

achieves a clean separation of functional and timing con-

cerns both at conceptual and implementation level [13]: writ-

ing and testing different scheduling policies, then, simply

amounts to writing and testing the strategist’s functions,

which can be easily evolved independently from functional

code, and even replaced at run-time; (ii) for the example

at hand the reflective scheduler allowed well-localised so-

lutions for both coarse-grained and fine-grained adaptivity

problems: the code dealing with changes in the speeds of

algorithm, platform and I/O is not only entirely contained in

the strategist, but also very localised within it, and if nec-

essary it can be replaced by more sophisticated heuristics to

cope with more complex actions’ timing behaviour with very

little or no changes to the rest of the system; (iii) to the extent

that strategies can be made adaptive to the speed of the exe-

cution platform, they are (in principle) portable across archi-

tectures with different performance characteristics; (iv) the

decomposition of the application code into actions does not

require anything new or special: in most cases the actions’

code is the tasks’ code of traditional tasks-based schedulers;

(v) the atomicity of actions is what makes the real-time line

a correct model of system behaviour: if inconvenient it may

be relaxed by introducing preemption in the model (but com-

plicating it), or addressed refining a coarse action into a se-

quence of finer-grained actions; (vi) the purely reactive de-

sign of this paper’s strategist is not prescriptive, but simply

convenient for illustration purposes and the specific example

at hand: the design of strategists is a new area of real-time

and time-sensitive systems research.

6. Related Work

We presented a proof-of-concept implementation of the

reflective scheduler in [16]. Its main disadvantage is the Java

implementation, which introduces jitter in the order of 10s of

milliseconds.

Reflective scheduling is a recent and active branch of real-

time research [7,20,21,27–29]. In general other reflective ap-

proaches to real-time scheduling leverage techniques devel-

oped for procedural reflection (see Section 2.2). In the same

manner as our reflective scheduler, they allow the designer to

disentangle and cleanly separate the application code deal-

ing with functional computations (base-level) from the code

dealing with temporal behaviour (meta-level). However, un-

like our reflective scheduler, their implementations typically

involve an interpreted language [7], require changes to exist-

ing systems, or even a new ad-hoc operating system [20,21],

with a major impact on complexity and performance. More

importantly, their meta-level controls the base-level tempo-

ral behaviour with ordinary threads and priority-based sched-

ulers, shown in this paper to be both less expressive and less

accurate than their reflective counterparts.

Fiasco [6] is a real-time variant of L4 that sports sophis-

ticated kernel-level support for periodic real-time tasks [30].

The reflective scheduler achieves flexible real-time schedul-

ing both for periodic and non-periodic tasks without modifi-

cations to the L4-embedded microkernel.

Finally, other approaches to adaptive real-time scheduling

exist. The framework presented in [14], for example, aims at

regulating real-time scheduling using as controlled variable

the miss ratio, which is “the number of deadline misses di-

vided by the total number of completed and aborted task”,

while the controlling (manipulated) variable is the “total es-

timated CPU utilisation”. The level of control achieved with

this approach is more coarse-grained than what achieved via

reflective scheduling.



7. Conclusions
In this paper we presented the design and the implementa-

tion of a reflective real-time scheduler for the L4-embedded

microkernel. We demonstrated that it is possibile to do

fine-grained, microsecond-level accurate real-time adaptive

scheduling on top of a standard, general-purpose microkernel

without changing its implementation. We also showed that a

reflective scheduler models a time-sensitive system as a sys-

tem amenable to dynamic, feedback-based control. Future

work includes tackling more complex real-time system de-

signs, research on the design of strategists and their proofs of

correctness, analysis of scheduler performance with CPU and

IO bound tasks and under interrupt overload, application to

power management and extensions for SMT/SMP systems.
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