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The von Neumann Architecture
is due for Retirement
Aleksander Budzynowski, Gernot Heiser
NICTA and UNSW
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The von Neumann Bottleneck

Fundamental problem:

• Conceptual model that all data goes 
to/from memory

• Random-access memory leads to 
uncontrolled communication
– expert coding needed to avoid this

• Hardware provides shortcuts (cache-
cache transfer, message passing)

• Expert coding or expensive re-
discovery of parallelism by HW
– ILP easy to discover, TLP hard

• The model hides the parallelism
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A Better Bridging Model

Desired Properties:

1. Expose parallelism

2. No global addresses/communication

3. Support CS-type abstractions

How about dataflow?

4.  ✔ excellent match
– used a lot inside the hardware

5. ✔ for pure dataflow

6. ✖ traditional dataflow is static
– doesn’t support CS-like data structures
– no function calls
– past dynamic attempts lose (1), (2)
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About Dataflow Computing

• Instructions have inputs and outputs
• Instruction “fires” when all inputs available
• Outputs feed into inputs
• High level of (logical) concurrency

– instructions fire independent of each other
– natural pipelining
– self-synchronising (but needs ack cycles)
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Dataflow 

• Map instructions (DF graph 
nodes) to compute elements
– multiple instructions may be 

on same node
– only nearest-neighbour 

communication (with 
forwarding)

• Tolerates heterogeneous CEs!

Problem: All static
• data structures, algorithms

Solution: graph manipulation 
instructions

 ☛ self-modifying dataflow 
graph (SMDG)
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Self-Modifying Dataflow Graph
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Self-Modifying Dataflow Graph
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SMDG List Insertion
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SMDG List Insertion
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SMDG List Insertion
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SMDG List Insertion

gate

d0

gate

d1

Template

gate



write
edge

dup

send

gate

gate done

input

gate

d2

list 
ptr

HotOS'13



©2013 Gernot Heiser NICTA 12

Challenges

• Mapping graph to CE array dynamically
– multi-graphing and self-modification requires resource management
– maybe something like simulated annealing will work?
– Note: graph nodes can be moved between CEs transparently

• Expressing more conventional algorithms in DF
– we *think* we can compile Haskell:

• STG (Haskell intermediate) to simple bytecode translation
• design for bytecode interpreter written in SMDG assembler

– with argument and continuation stacks, heap, closures

• Garbage collection for completed computations
– some vague ideas on how to do this…
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Opportunities

• Pointers are capabilities
– SMDG code is typesafe: clear distinction between pointers and data
– pointers can be converted to data, possibly resulting in garbage
– creation of pointers only by duplicate instructions

• Idea: resource management by controlling pointer consumption
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Summary

• It’s time to move to a computing paradigm that liberates parallelism
• Self-modifying dataflow graphs have the right properties

– … as long as we can solve the challenges

We’re hiring! Systems or formal methods

HotOS'13

Boolean, not lawyers’ “or”!


	Slide 1
	The von Neumann Bottleneck
	A Better Bridging Model
	About Dataflow Computing
	Dataflow
	Self-Modifying Dataflow Graph
	Self-Modifying Dataflow Graph
	SMDG List Insertion
	SMDG List Insertion
	SMDG List Insertion
	SMDG List Insertion
	Challenges
	Opportunities
	Summary

