NICTA

Qe

NICTA

The von Neumann Architecture
IS due for Retirement

Aleksander Budzynowski, Gernot Heis
NICTA and UNSW

©2013 Gernot Heiser NICTA 1 HotOS'13

The von Neumann Bottleneck (] ®

NICTA
Fundamental problem:

Natural

. * Conceptual model that all data goes
Parallelism

to/from memory

* Random-access memory leads to
uncontrolled communication

— expert coding needed to avoid this

von Neumann ¢ Hardware provides shortcuts (cache-
architecture cache transfer, message passing)

* EXxpert coding or expensive re-

discovery of parallelism by HW
— ILP easy to discover, TLP hard

* The model hides the parallelism

The von Neumann

architecture is a poor

bridging model for modern

hardware

Bridging
model

Parallel
Hardware

©2013 Gernot Heiser NICTA 2

A Better Bridging Model (JO

_ _ NICTA
Desired Properties:
Natural :
parallelism 1. EXxpose parallelism o
2. No global addresses/communication
3. Support CS-type abstractions
Bridging How about dataflow?
Model
4. v excellent match
— used a lot inside the hardware
Parallel 5. v for pure dataflow

Hardware 6. % traditional dataflow Is static
— doesn’t support CS-like data structures
— no function calls
— past dynamic attempts lose (1), (2)

©2013 Gernot Heiser NICTA 3

About Dataflow Computing o

* Instructions have inputs and outputs
n

* Instruction “fires” when all inputs available 22g S div pl-@-
* Outputs feed into inputs R T

* High level of (logical) concurrency d 7
— Instructions fire independent of each other
— natural pipelining
— self-synchronising (but needs ack cycles)

:I, add ‘Xy+IZI
| 2

©2013 Gernot Heiser NICTA 4 HotOS'13

Dataflow [1@

. : NICTA
* Map instructions (DF graph
nodes) to compute elements Problem: All static
— multiple instructions may be * data structures, algorithms

on same node

— only nearest-neighbour
communication (with
forwarding)

* Tolerates heterogeneous CEs!

Solution: graph manipulation
Instructions

¥ self-modifying dataflow
graph (SMDG)

y4 >0 ctrl
——’ID 5 steer P 5 neg 4
data’ T

:I, add ‘Xy+|2|
| 2

©2013 Gernot Heiser NICTA 5

Self-Modifying Dataflow Graph (1@
— NICTA

> send » gate ‘

D write “Control structure”

5 edge
dup
2
e 5 gate 5 gate
”*‘ 2
do
\ ﬂ Data
) o gate token
>

“Data structure”
list/stack

amplate

©2013 Gernot Heiser NICTA 6

Self-Modifying Dataflow Graph (1@

Sends top input to NICTA

node designated by
second

Forwards
bottom input

Retargets outgoing
edge of top input (ptr)
by bottom input (ptr)

gate gate
2 2

Duplicates target
node (pointer)

Template

©2013 Gernot Heiser NICTA 7

SMDG List Insertion [1@

5> send 5 gate done
> I ‘

Template

©2013 Gernot Heiser NICTA 8

SMDG List Insertion [1@

5 gate done
2 . ‘

input

Template

©2013 Gernot Heiser NICTA 9

SMDG List Insertion [1@

5 gate done
2 . ‘

input

Template

©2013 Gernot Heiser NICTA 10

SMDG List Insertion [1@

5 gate done
2 . ‘ o

input

dup

Template

©2013 Gernot Heiser NICTA 11

Challenges e

* Mapping graph to CE array dynamically NICTA

— multi-graphing and self-modification requires resource management
— maybe something like simulated annealing will work?
— Note: graph nodes can be moved between CEs transparently

* Expressing more conventional algorithms in DF
— we *think* we can compile Haskell:
* STG (Haskell intermediate) to simple bytecode translation
* design for bytecode interpreter written in SMDG assembler
— with argument and continuation stacks, heap, closures

* Garbage collection for completed computations
— some vague ideas on how to do this...

©2013 Gernot Heiser NICTA 12 HotOS'13

Opportunities e

* Pointers are capabilities NICTA

— SMDG code is typesafe: clear distinction between pointers and data
— pointers can be converted to data, possibly resulting in garbage
— creation of pointers only by duplicate instructions

* ldea: resource management by controlling pointer consumption

©2013 Gernot Heiser NICTA 13 HotOS'13

Summary (Jo

NICTA

* It's time to move to a computing paradigm that liberates parallelism

* Self-modifying dataflow graphs have the right properties
— ... as long as we can solve the challenges

We’re hiring! Systems or formal methods

/7

Boolean, not lawyers’ “or”!

©2013 Gernot Heiser NICTA 14 HotOS'13

	Slide 1
	The von Neumann Bottleneck
	A Better Bridging Model
	About Dataflow Computing
	Dataflow
	Self-Modifying Dataflow Graph
	Self-Modifying Dataflow Graph
	SMDG List Insertion
	SMDG List Insertion
	SMDG List Insertion
	SMDG List Insertion
	Challenges
	Opportunities
	Summary

