
©2013 Gernot Heiser NICTA 1

The von Neumann Architecture
is due for Retirement
Aleksander Budzynowski, Gernot Heiser
NICTA and UNSW

HotOS'13

©2013 Gernot Heiser NICTA 2

The von Neumann Bottleneck

Fundamental problem:

• Conceptual model that all data goes
to/from memory

• Random-access memory leads to
uncontrolled communication
– expert coding needed to avoid this

• Hardware provides shortcuts (cache-
cache transfer, message passing)

• Expert coding or expensive re-
discovery of parallelism by HW
– ILP easy to discover, TLP hard

• The model hides the parallelism

Natural
Parallelism

Parallel
Hardware

von Neumann
architecture

The von Neumann
architecture is a poor
bridging model for modern
hardware

Bridging
model

HotOS'13

©2013 Gernot Heiser NICTA 3

A Better Bridging Model

Desired Properties:

1. Expose parallelism

2. No global addresses/communication

3. Support CS-type abstractions

How about dataflow?

4. ✔ excellent match
– used a lot inside the hardware

5. ✔ for pure dataflow

6. ✖ traditional dataflow is static
– doesn’t support CS-like data structures
– no function calls
– past dynamic attempts lose (1), (2)

Natural
Parallelism

Parallel
Hardware

Bridging
Model

HotOS'13

©2013 Gernot Heiser NICTA 4

About Dataflow Computing

• Instructions have inputs and outputs
• Instruction “fires” when all inputs available
• Outputs feed into inputs
• High level of (logical) concurrency

– instructions fire independent of each other
– natural pipelining
– self-synchronising (but needs ack cycles)

HotOS'13

div
22

3

7

1

n

d

/

%

mul

add

neg≥0
steer

data

ctrl F

T

z

y

x

xy+|z|

©2013 Gernot Heiser NICTA 5

Dataflow

• Map instructions (DF graph
nodes) to compute elements
– multiple instructions may be

on same node
– only nearest-neighbour

communication (with
forwarding)

• Tolerates heterogeneous CEs!

Problem: All static
• data structures, algorithms

Solution: graph manipulation
instructions

 ☛ self-modifying dataflow
graph (SMDG)

mul

add

neg≥0
steer

data

ctrl F

T

z

y

x

xy+|z|

HotOS'13

©2013 Gernot Heiser NICTA 6

Self-Modifying Dataflow Graph

gate

d0

gate

d1

Template

gate



write
edge

dup

send

gate

gate

“Data structure”
list/stack

Pointer
token Data

token

“Control structure”

HotOS'13

©2013 Gernot Heiser NICTA 7

Self-Modifying Dataflow Graph

gate

d0

gate

d1

Template

gate



write
edge

dup

send

gate

gate

Forwards
bottom input

Duplicates target
node (pointer)

Retargets outgoing
edge of top input (ptr)
by bottom input (ptr)

Sends top input to
node designated by
second

HotOS'13

©2013 Gernot Heiser NICTA 8

SMDG List Insertion

gate

d0

gate

d1

Template

gate



write
edge

dup

send

gate

gate done

input

d2

list
ptr

HotOS'13

©2013 Gernot Heiser NICTA 9

SMDG List Insertion

gate

d0

gate

d1

Template

gate



write
edge

dup

send

gate

gate done

input d2

gate

list
ptr

HotOS'13

©2013 Gernot Heiser NICTA 10

SMDG List Insertion

gate

d0

gate

d1

Template

gate



write
edge

dup

send

gate

gate done

input

gate

d2

list
ptr

HotOS'13

©2013 Gernot Heiser NICTA 11

SMDG List Insertion

gate

d0

gate

d1

Template

gate



write
edge

dup

send

gate

gate done

input

gate

d2

list
ptr

HotOS'13

©2013 Gernot Heiser NICTA 12

Challenges

• Mapping graph to CE array dynamically
– multi-graphing and self-modification requires resource management
– maybe something like simulated annealing will work?
– Note: graph nodes can be moved between CEs transparently

• Expressing more conventional algorithms in DF
– we *think* we can compile Haskell:

• STG (Haskell intermediate) to simple bytecode translation
• design for bytecode interpreter written in SMDG assembler

– with argument and continuation stacks, heap, closures

• Garbage collection for completed computations
– some vague ideas on how to do this…

HotOS'13

©2013 Gernot Heiser NICTA 13

Opportunities

• Pointers are capabilities
– SMDG code is typesafe: clear distinction between pointers and data
– pointers can be converted to data, possibly resulting in garbage
– creation of pointers only by duplicate instructions

• Idea: resource management by controlling pointer consumption

HotOS'13

©2013 Gernot Heiser NICTA 14

Summary

• It’s time to move to a computing paradigm that liberates parallelism
• Self-modifying dataflow graphs have the right properties

– … as long as we can solve the challenges

We’re hiring! Systems or formal methods

HotOS'13

Boolean, not lawyers’ “or”!

	Slide 1
	The von Neumann Bottleneck
	A Better Bridging Model
	About Dataflow Computing
	Dataflow
	Self-Modifying Dataflow Graph
	Self-Modifying Dataflow Graph
	SMDG List Insertion
	SMDG List Insertion
	SMDG List Insertion
	SMDG List Insertion
	Challenges
	Opportunities
	Summary

