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Abstract. Assume that a symmetric encryption scheme has been de-
ployed and used with a secret key. We later must change the encryp-
tion scheme in a way that preserves the ability to decrypt (a subset of)
previously encrypted plaintexts. Frequent real-world examples are mi-
grating from a token-based encryption system for credit-card numbers
to a format-preserving encryption (FPE) scheme, or extending the mes-
sage space of an already deployed FPE. The ciphertexts may be stored
in systems for which it is not easy or not efficient to retrieve them (to
re-encrypt the plaintext under the new scheme).

We introduce methods for functionality-preserving modifications to en-
cryption, focusing particularly on deterministic, length-preserving ci-
phers such as those used to perform format-preserving encryption. We
provide a new technique, that we refer to as the Zig-Zag construction,
that allows one to combine two ciphers using different domains in a way
that results in a secure cipher on one domain. We explore its use in the
two settings above, replacing token-based systems and extending mes-
sage spaces. We develop appropriate security goals and prove security
relative to them assuming the underlying ciphers are themselves secure
as strong pseudorandom permutations.

1 Introduction

We explore the ability to modify a deployed symmetric encryption scheme in a
way that preserves some of its previous input-output mappings. This may prove
useful in a variety of settings, but we are motivated and will focus on addressing
two specific ones that arise in the increasing deployment of format-preserving
encryption (FPE) schemes.

Modifying deployed FPE schemes. In a variety of settings conventional
symmetric encryption is difficult or impossible to utilize, due to unfortunate
constraints imposed by legacy software systems. A common problem is that en-
cryption produces ciphertexts whose format are ruled out by restrictive applica-
tion programming interfaces (APIs) and/or pre-existing database schema. This
problem prevented, for example, encryption of credit-card numbers (CCNs) in a
variety of settings. Format-preserving encryption (hereafter FPE) is a technique
aimed at such problems, allowing one to encrypt a plaintext item of some format
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to a ciphertext of the same format (16 digit CCN). It has seen wide academic
study [4, 6, 11,16,17,20] as well as widespread use in industry [12,18,23,25].

Before the advent of strong FPE schemes, companies often instead used what
are called tokenization systems to solve the format-constrained ciphertext prob-
lem. One generates a random token using generic techniques for creating ran-
dom strings with a certain format, i.e., sampling a token C uniformly from some
set M that defines the set of strings matching the format. A token table con-
taining plaintext-to-token mappings is stored in a database, and applications
which need access to data in the clear ask the database to do a lookup in this
table for the plaintext corresponding to a particular token. Often applications
reside in other organizations that have outsourced CCN management to a pay-
ments service. This technique can be viewed as a particularly inefficient FPE
implementing a permutation FKo : M → M for a “key” Ko that is a lazily
constructed map of plaintexts to random ciphertexts (tokens).

Now that we have better approaches to FPE, a common problem faced by
companies is upgrading from tokenization to an FPE scheme. This can be chal-
lenging when tokens have been distributed to various systems and users; there
may be no way to recall the old tokens. The challenge here is therefore to build
a new cipher that “completes” the domain of the cipher partially defined by the
token table thus far.

A second example arises in the use of FPE for encryption of data before
submission to restrictive cloud computing APIs. An instance of this arises with
Salesforce, a cloud provider that performs customer relations management —
at core they maintain on behalf of other companies databases of information
about the companies’ customers. As such, companies using Salesforce and desir-
ing encryption of data before uploading have a large number of data fields with
various format restrictions: email addresses, physical addresses, CCNs, names,
phone numbers, etc. While we now have in-use solutions for defining formats via
easy-to-use regular expressions [4, 11, 16], it is often the case that formats must
change later. As a simple example: one may have thought only 16-digit CCNs
were required, but later realized that 15-digit cards will need to be handled as
well. Here we would like to, as easily as possible, modify an FPE FKo : D → D
to one that works for an extended message space M ⊃ D. As with tokens and
for similar reasons, it would be useful to maintain some old mappings under F
in the new cipher.

Functionality-preserving modifications to encryption. The core chal-
lenge underneath both examples above is to take an existing cipher FKo op-
erating on some domain and, using knowledge of Ko, build a new cipher EK
such that EK(M) = FKo(M) for M ∈ T ⊂ M. We refer to T as the preser-
vation set. In the tokenization example T could be the full set of messages for
which entries in the table exist, and in the format-extension example T could
be a subset of D.

We note that trivial solutions don’t seem to work. As already explained, the
simplest solution of replacing old ciphertexts with new ones won’t work when
the old ciphertexts are unavailable (e.g., because other organizations have stored
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Setting Description Achievable security Construction

Domain completion Preserve partially defined cipher
T →M in new cipher M→M

SPRP Zig-Zag

Domain extension
Extend cipher D → D to M→M SEPRP Zig-Zag
Extend cipher D → D to M→M SPRP (unknown T ) Recursive Zig-Zag

Fig. 1. Summary of different settings, security goals, and constructions. The set M is
the new cipher’s domain, the set T is the set of preserved points, and D ⊂ M is the
original domain in the extension setting.

them locally). Furthermore, even when old ciphertexts can be revoked, the cost
of decrypting and re-encrypting the whole database may be prohibitive.

Alternatively, consider encrypting a new point M in the following way. First
check if M ∈ T and if so use the old cipher FKo(M). Otherwise use a fresh key K
for a new cipher E and apply EK(M). But this doesn’t define a correct cipher,
because different messages may encrypt to the same ciphertext: there will exist
M /∈ T and M ′ ∈ T for which EK(M) = FKo(M

′).

Our contributions. We explore for the first time functionality-preserving mod-
ifications to deployed ciphers. A summary of the settings and our constructions
is given in Figure 1. Our main technical contribution is a scheme that we call
the Zig-Zag construction. It can be used both in the tokenization setting and,
with simple modifications, in the expanded format setting. It uses a new kind
of cycle walking to define the new cipher on M using the old cipher FKo and a
helper cipher EK : M→M. The old mappings on points in T are preserved.

We analyze security of Zig-Zag in two cases, corresponding to the two situ-
ations discussed: (1) in domain completion, F has ciphertexts in the range M
and (2) in domain extension, F works on a smaller domain D ⊂M. For the first
case, we show that the Zig-Zag construction is provably a strong pseudoran-
dom permutation (SPRP) assuming that F and E both are themselves SPRPs.
Extending to deal with tweaks [13] is straightforward.

The second case is more nuanced. We first observe that no scheme can achieve
SPRP security when adversaries know T . The attack is straightforward: query
a point from T and see if the returned ciphertext is in D or not. Because it is
functionality preserving, the construction must always have a ciphertext in D,
whereas a random permutation will do so only with probability |D|/|M|. Since
we expect this ratio to usually be small, the attack will distinguish with high
probability.

This begs the question of what security level is possible in this context.
Investigating the attack ruling out SPRP security, we realize that the main issue
is that ciphers that preserve points will necessarily leak to adversaries that the
underlying plaintext is in T . We formalize a slightly weaker security goal, called
strong extended pseudorandom permutation (SEPRP) security in which a cipher
must be indistinguishable from an ideal extended random permutation. Roughly
this formalizes the idea that attackers should learn nothing but the fact that the
distribution of points in T is slightly different from those in M \ T . We show
that the Zig-Zag construction meets this new notion.
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SEPRP security does leak more information to adversaries than does tra-
ditional SPRP security, and so we investigate the implications of this for ap-
plications. We formally relate SEPRP security to two security notions for FPE
schemes from Bellare, Ristenpart, Rogaway, and Stegers [4], message recovery
(MR) and message privacy (MP). We highlight the main results regarding MR
here, and leave MP to the body. MR requires that an adversary, given the encryp-
tion of some challenge message as well as a chosen-plaintext encryption oracle,
cannot recover the message with probability better than a simulator can, given
no ciphertext and instead a test oracle that only returns one if the queried mes-
sage equals the challenge. We show that there exist settings for which SEPRP
security does not imply MR security, by way of an adversary whose success prob-
ability is 1, but any simulator succeeds with probability at most 1/2. The reason
is that the adversary can exploit knowledge of membership in T , whereas the
simulator cannot.

This result may lead us to pessimistically conclude that SEPRP provides very
weak security, but intuition states otherwise: an SEPRP-secure cipher should not
leak more than one bit of information about a plaintext (whether or not it is
in T ). The best MR attack one can come up with should therefore only have a
factor of two speedup over attacking an SPRP-secure cipher. The gap between
intuition and formalism lies in the strict way MR security was defined in [4]:
simulators can only make as many queries as adversaries make and simulators
receive nothing to aid in their attack. We therefore introduce a more general MR
security notion that we uncreatively call generalized MR (gMR) security. The
definition is now parameterized by both an auxiliary information function on
the challenge plaintext as well as a query budget for simulators. We show that
SEPRP security implies gMR security when the auxiliary information indicates
whether the challenge is in T or not. We then show a general result that gMR
security with this auxiliary information implies gMR security without any auxil-
iary information, as long as the simulator can make twice as many queries as the
adversary. This makes precise the security gap between SEPRP and SPRP, and
the interpretation is simply that adversaries get at most a factor of two speedup
in message recovery attacks.

Security and side-channel attacks. The Zig-Zag construction is not inher-
ently constant time, which suggests it may be vulnerable to timing or other
side-channel attacks. We prove in the body that timing leaks only whether a
message is in T or not, and nothing further. We also discuss possible implemen-
tation approaches that avoid even this timing attack.

The Recursive Zig-Zag construction. Above we argued that in the domain
extension setting SPRP security is unachievable should the adversary know (at
least one) point in T . In some scenarios, the attacker may be unable to learn
which points are in T , but is able to learn some information on T such as its size.
This might arise, for example, should an attacker learn the size of a database but
not have direct access to its contents. In this context the attack discussed above
showing SPRP insecurity for all schemes no longer applies. We therefore explore
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feasibility of SPRP security in the domain extension setting when attackers know
|T | but do not know T .

First we show that SPRP security is still ruled out if the gap between the
size of the old domain and the target domain is smaller than the number of new
points by which the domain was extended, namely |D|− |T | < |M\D|. To gain
some intuition, consider the minimum number of points from D that map back
to points in D for both an extended cipher and for a random permutation. For
an extended cipher, at least |T | points are necessarily preserved, and so map to
points in D. For a random permutation, if the number of added points is large
enough there is a probability that no point in D is mapped back to D. Con-
sequently, for a large enough T or when we add many points, the distribution
of the number of points in D that map back to D differs sufficiently between
extended ciphers and random permutations to give an adversary distinguishing
advantage. For other ranges of parameters, however, with overwhelming proba-
bility a random permutation will have a subset of inputs that maps back to D.

Unfortunately, the Zig-Zag construction does not meet SPRP security in this
unknown T setting. Intuitively, the reason is that the construction biases the
number of sets of size |T | that map to D, with this bias growing as |T | grows.

We therefore provide a domain extension construction in the unknown T
setting. It starts with a helper cipher E on M, and utilizes the basic structure
of the Zig-Zag to patch it in order preserve the points of T . The patching occurs
by replacing mappings for a t-size subset of M that E maps to T . By patching
those points in that set, as opposed to arbitrary points as in done in Zig-Zag, we
preserve the distribution of sets of size |T | that are mapped to D. To make this
efficient we perform the patching recursively, handling the points in T one at
a time, hence the name Recursive Zig-Zag for the construction. We prove that
the construction works in expected time and space proportional (with a small
constant) to |T |, making it feasible for an application where T would need to be
stored anyway, and analyze its SPRP security.

A ranking-based approach. An anonymous reviewer pointed out a potential
alternative to our Zig-Zag construction that takes advantage of ranking func-
tions, which are efficiently computable and invertible bijections from a domain
M to Z|M|. Ranking underlies many FPE constructions, and in some ways the
reviewer’s construction is simpler than Zig-Zag. The reviewer gave us permission
to present the idea and discuss it in comparison to Zig-Zag. See Section 4.

Limitations and open problems. The approach we explore, of modifying a
scheme after deployment, has several limitations. First, it requires the ability to
perform membership tests against T and requires the old key Ko for the lifetime
of the updated cipher. These must both be protected (in the former case, since
it may leak some information about how people were using the cipher). In the
case that T is an explicit list, one could cryptographically hash each point to
provide some partial protection of plaintext data in case of key compromise, but
this would only provide marginal benefit in case of exposure since dictionary
attacks would be possible.
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Second, as points in T are submitted it would be convenient to gracefully
remove points from it and “refresh” them with new mappings. This would be
useful in the tokenization scenario should the client be able to update its token
after a query. But there is no way to make “local” modifications to a cipher
as any changed mapping necessarily affects at least one other domain point. We
leave how to modify schemes gradually over time as an interesting open problem.

Our work only considered updating ciphers, but it could be that other crypto-
graphic primitives might benefit from functionality-preserving updates. Future
work could determine whether compelling scenarios exist, and what solutions
could be brought to bear.

Full version. Due to space constraints, we had to omit a number of proofs.
These will be available in the full version, which will be available from the
authors’ websites.

2 Preliminaries

LetM be a set, called the domain, and K be a set called the key space. Later we
abuse notation and use sets to also denote efficient representations of them. A
cipher is a family of permutations E : K ×M→M. This means that EK(·) =
E(K, ·) is a permutation for all K ∈ K. Both EK and its inverse E−1

K must
be efficient to compute. Block ciphers are a special case in which M = {0, 1}n
for some integer n, and format-preserving encryption [4] is a generalization of
ciphers that allows multiple lengths as well as tweaks [13]. Our results translate
to that more general setting as well, but for the sake of simple exposition we
focus on only a single domain, and use the term cipher instead of FPE.

For a function f and set X that is a subset of its domain, we write Imgf (X )
to denote the image of X under f , i.e., the set {f(x) | x ∈ X}.

main SPRP1AE
K←$K
b′ ← AEnc,Dec

return b′

proc Enc(M)

return EK(M)

proc Dec(C)

return

E−1
K (C)

main SPRP0AE
π←$ Perm(D)

b′ ← AEnc,Dec

return b′

proc Enc(M)

return π(M)

proc Dec(C)

return

π−1(C)

Fig. 2. SPRP security games
for a cipher E.

SPRP security. Ciphers are considered se-
cure if they behave like strong pseudorandom
permutations (SPRPs). Let Perm(M) be the
set of all permutations on any set M. Con-
sider a cipher E : K × M → M. We de-
fine the advantage of an adversary A in dis-
tinguishing E and its inverse from a random
permutation and its inverse as Advsprp

E (A) =∣∣Pr
[

SPRP1AE ⇒ 1
]
− Pr

[
SPRP0AE ⇒ 1

]∣∣. The
two games SPRP1 and SPRP0 are defined in
Figure 2 and the probabilities are taken over the
random coins used in the games. We will give
a concrete security treatment, meaning we will
explicitly relay the running time (in some RAM
model of computation) and number of queries
made by adversaries.
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Fig. 3. Tokenization system after choosing random values C1, C2, C3 for plaintexts
T = {M1,M2,M3}.

We assume that adversaries do not repeat any
oracle queries and do not ask queries to which they already knows the answer,
like querying a decryption oracle with the result of a previous encryption oracle
query.

The hypergeometric distribution A hypergeometrically distributed random
variable X has probability mass function

Pr [X = k ] =

(
K
k

)(
N−K
n−k

)(
N
n

)
where N is the total number of samples, K is the number of marked samples, n
is the number of samples drawn, and k is the number of marked samples of the
n total samples.

The hypergeometric distribution has very strong tail bounds. We formalize
this as the following lemma. A full proof of this lemma can be found in [8, 22]
but is omitted here.

Lemma 1. Let X be a hypergeometrically distributed random variable and n be
the number of samples. Then for any real number t, Pr[E[X]+tn ≤ X] ≤ e−2t2n,
where e is the base of the natural logarithm.

3 Extending Partially Used Message Spaces

We start by considering how to replace an existing cipher F : K×M→M with
a new one E : K ×M → M, while maintaining backwards compatibility with
the subset of the message space T ⊂ M for which messages have already been
encrypted. Our motivation for this originates with the following situation that
arises in practice.

Updating tokenization deployments. Tokenization [27] is a set of techniques
whose purpose is to provide confidentiality for relatively small data values (e.g.,
government ID numbers or credit card numbers). Usually tokenization is em-
ployed to meet regulatory requirements imposed by governments or industry
standards bodies like PCI [10].

A tokenization system usually consists of a few parts: a server front-end which
accepts tokenize/detokenize requests from authenticated clients, a cryptographic
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module that produces tokens for plaintext values, and a database backend that
stores the plaintext/token mapping table. Each time a new tokenize request
occurs for a plaintext M , a randomly generated value from M is chosen to
be FKo(M). Here Ko is just an explicitly stored table of message, token pairs.
The token FKo(M) is given back to the requester and stored for later use. Let
T ⊆M be the set of all points for which tokens have been distributed. A diagram
is shown in Figure 3.

Such tokenization systems are a bit clumsy. Primarily they do not scale very
well, requiring protected storage linear in the number of plaintexts encrypted
compared to FPE schemes that achieve this with just a small 128 bit key. (One
cannot just store a key for a pseudorandom number generator and recreate val-
ues; this doesn’t allow efficient decryption.) Companies therefore often want to
move from tokenization to a modern solution using an FPE E.

One could choose a new key for E but the problem is then that the previously
returned tokens will be invalidated, and this may cause problems down the road
when clients make use of these tokens. Hence the desire to perform what we
call domain completion: define EK(M) such that EK(M) = FKo(M) for all
M ∈ T . This ensures that previously distributed tokens are still valid even
under the new functionality. In deployment, any method for domain completion
would most likely retain the token table, but the crucial difference in terms of
performance is the immutability of the table. After switching to the keyed cipher,
the table can be made read-only and distributed with the FPE software as a file
with no expensive and complicated database needed to ensure consistency and
availability. In most contexts, one will want to keep the file secret since it may
leak information about previous use of F .

Domain completion, formally. A domain completion setting is defined to be
a tuple (F,M, T ) consisting of a cipher with domainM and the preservation set
T ⊆M. Relative to some fixed domain completion setting (that later will always
be made clear from context), a domain-completed cipher DCC = (KT,E) con-
sists of an algorithm and a cipher. The algorithm is called a domain-completion
key transform. It is randomized, takes as input a key Ko for F and the preserva-
tion set T , and outputs a key for the cipher E. The cipher is assumed to have a
key space compatible with the output of KT . For some preservation set T , the
induced key generation algorithm for E consists of choosing a random key Ko

for F , running KT (Ko, T ) and returning the result.

A domain-completed cipher DCC preserves a point M if EK(M) = FKo(M)
with probability one over the experiment defined by running the induced key
generation for E. We say that KT preserves a set T if it preserves each M ∈ T .
The ability of a key transformation to achieve preservation implies that K must
somehow include (an encoding of) Ko. In the case where F is a tokenization
system, then Ko is a table of at least t = |T | points.

We measure security for a domain-completed cipher via the SPRP advantage
of the cipher E using its induced key generation algorithm. We will quantify over
all preservation sets or that security should hold even if the adversary knows T .
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4 Domain Completion via Rank-Encipher-Unrank

An anonymous reviewer pointed out an approach to domain completion for
schemes constructed using the rank-encipher-unrank approach of [4]. With per-
mission we reproduce it here. Recall that a rank-encipher-unrank construction
uses a ranking function rank : M → Zm, which is a bijection with inverse
unrank : Zm →M. Both must be efficiently computable. One additionally uses
cipher E that operates on domain Zm. (This is referred to as an integer FPE
in [4].) Then one enciphers a point X ∈ M via unrank(EK(rank(X))) and
decrypts a point Y via unrank(DK(rank(Y ))).

Now consider a domain completion setting (F,M, T ). Let D = M \ T be
the set of domain points not in the preservation set. Let R = M\ ImgFKo

(T ),
where ImgFKo

(T ) = {FKo(X) | X ∈ T }, be the set of range points not in

the image of FKo on T . The construction uses a cipher E : Zd → Zd and a
ranking function rank : M→ Zm with inverse unrank . The construction builds
from rank rankings rankD : D → Zd and rankR : R → Zd. It then encrypts
by checking if a point X is in T and, if so, outputting FKo(X) and otherwise
outputting unrankR(EK(rankD(X))).

In detail, the domain-completed cipher RTE = (KT rte, Erte) is defined as
follows. The domain-completion key transform KT rte(Ko, T ) first computes the
set ImgFKo

(T ). Then it computes the set {rank(X) | X ∈ T } and sorts it to

obtain a list x = (x1, . . . ,xt) ∈ Ztm. Similarly it computes {rank(Y ) | Y ∈
ImgFKo

(T )} and sorts it to obtain a list y = (y1, . . . ,yt) ∈ Ztm. It also chooses

a new key K for a helper cipher E on Zd and outputs K = (Ko,K,x,y).

Enciphering is performed via ErteK (X) = unrankR(EK(rankD(X))) for rank-
ings defined as follows. The first ranking, rankD(X), works forX ∈ D by comput-
ing x← rank(X), then determining, via a binary search, the largest index i such
that xi < x, and finally outputting x−i. The inverse of rankD is unrankD(x′). It
works for x′ ∈ Zd by using a binary search to determine the largest index j such
that xj− j+1 ≤ x′, and then outputting X ← unrank(x′+ j). The construction
of rankR is similar, using y instead of x.

This domain-completed cipher can be shown to be SPRP secure and, looking
ahead, one can simply adapt it to the domain extension case to achieve SEPRP
security (as defined in Section 6). This approach relies on having a ranking for
M. While not all languages have efficient rankings [4], efficient rankings can be
built for most formats of practical interest [4,11,16,17]. The additional overhead
of removing the T (resp. ImgFKo

(T )) points requires time proportional to log t
and space equal to 2t multiplied by some representation-specific constant.

Our construction, to be presented in the next section, avoids the extra space
requirements and the binary search. It only requires the ability to determine
membership in T , which affords various flexibilities such as using an API to check
membership or representing T via a compact Bloom filter. It also allows, via
precomputation, a constant-time implementation using table look-up (assuming
constant time implementations of F , E).
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We note that the straightforward implementation of both approaches leaks,
via timing side-channels, whether a domain point is in T . The ranking-based
approach may leak more with a naive implementation of binary search. Ranking
itself may be in some cases tricky to implement without side-channels, if one
uses the table-based constructions for ranking regular languages [4, 11, 16] or
context-free grammars [17].

5 The Zig-Zag Construction for Domain Completion

In this section we will introduce an algorithm that achieves SPRP security in the
domain completion setting. Fix a domain completion setting (F,M, T ). Then the
Zig-Zag domain-completed cipher ZZ = (KT zz, Ezz) is defined as follows. The
key transform KT zz takes inputs Ko and T and outputs the tuple (T ,Ko,K)
where K is a randomly chosen key for a cipher E on domain M. We refer to
E as the helper cipher. The triple (T ,Ko,K) define a key for the enciphering
algorithm Ezz and deciphering algorithm Dzz, detailed in Figure 4.

Ezz
T ,Ko,K

(M):

if (M ∈ T ):

return FKo (M)

else

i← 1

M0 ←M

while ( Mi−1 ∈ T )

Yi ← EK(Mi−1)

Mi ← F−1
Ko

(Yi)

i← i+ 1

return Yi−1

Dzz
T ,Ko,K

(C):

if ( F−1
Ko

(C) ∈ T ):

return F−1
Ko

(C)

else

i← 1

Mi ← DK(C)

while ( Mi ∈ T or i = 1 ):

Yi+1 ← FKo (Mi)

Mi+1 ← DK(Yi+1)

i← i+ 1

return Mi

Fig. 4. Zig-Zag encryption and decryption algorithms.

Towards building intuition about the Zig-Zag construction, we start by dis-
cussing why traditional cycle walking will not work for our context. Cycle walking
is a generic method for achieving format-preserving encryption on a set by re-
encrypting an input point until it falls in a desired subset of the domain of the ci-
pher [6]. Cycle-walking could ostensibly be used instead of zig-zagging as follows.
Consider an input pointX ∈M\T , and suppose that Y = EK(X) ∈ ImgFKo

(T ).
Then since Y is already a point required for the preservation set, we can’t map
it to X, and instead cycle walk by computing Y ′ = EK(Y ), Y ′′ = EK(Y ′) and
so on, stopping the first time we find a point not in the image of T and having
X map to that final value. But the problem is that, unlike with traditional cycle
walking, the intermediate points Y, Y ′, Y ′′ are themselves valid inputs to the
cipher, and using them for the cycle walk obviates using the obvious mapping
of, e.g., EK(Y ).
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Fig. 5. Graphical depiction of a zig-zag. The domain (first row) has a target set T =
{3, 4}. We encrypt 1 to 3, which collides with the ciphertext in the image of T . We
then decrypt to get 4 ∈ T and re-encrypt 4 to get 2.

The Zig-Zag avoids this problem by only trying a different point of T each
time E returns a point in ImgF (T ). This ensures that as we do our search for
a point to which we will map the input X, we are only using E on points
Y, Y ′, Y ′′ ∈ T . A diagram depicting this process appears in the diagram of
Figure 5. There M = {1, 2, 3, 4} and T = {3, 4}. The solid red lines signify
encryption by EK and the dashed black line represents F−1

Ko
. We start by calling

EK(1), which (say) gives us the image of a point in T . We call F−1 and find that
the preimage of this point is 4. We then call EK(4), which gives us Ezz

K
(1) =

EK(4) = 2.

5.1 Running time of the Zig-Zag construction

The Zig-Zag construction, in the worst-case, requires |T | iterations of the while
loop. First, we note that if the algorithm enters the while loop, it must exit —
otherwise permutivity of EK would be violated. In the worst case, then, the
while loop will hit every point in T . In the full version we provide a formal proof
of this. We also show that, when encrypting the entire domainM under EzzK , E
is executed at most once per point inM. Roughly speaking, the aggregate cost of
enciphering the entire domain under Zig-Zag is almost the same as enciphering
with E (assuming |T | � |M|, otherwise it’s at most twice the cost).

This doesn’t mean that for individual points the running time is not signifi-
cantly delayed (in the worst case, requiring 2·|T | underlying cipher calls). But in
fact the expected running time for an arbitrary point is small, as captured by the
next theorem, and assuming the underlying ciphers are random permutations.

Theorem 1. Let Ezz be implemented as in Figure 4 except with F replaced
with Π1 and E replaced with Π2, where Π1 and Π2 are random permutations
over M. Let I be a random variable denoting the number of iterations of the
inner ‘while’ loop of Ezz with domain M and preservation set T taken when
enciphering an arbitrary point in M \ T . Let |T | = t. Then, if t ≤ |M|/2, it
holds that E [ I ] ≤ 2.

Proof. Consider an arbitrary M ∈ M. First if M ∈ T then the number of
iterations of the while loop is zero. Consider otherwise, and let the transcript of
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points defined in the while loop be P = {M0, Y1,M1, Y2,M2, . . . , Yi,Mi}. Then
the size of this transcript is a random variable, over the coins used to choose
Π1, Π2, and we denote it by I. We have that Pr[I > t] = 0 by our arguments of
correctness discussed above. Then for any 1 ≤ j ≤ t, because Π1, Π2 are random
permutations independent of M , we have that

Pr [ I = j ] =

[
j−1∏
i=1

(t− i+ 1)

(m− i+ 1)

]
·
(

1− t− j + 1

m− j + 1

)
.

Letting Pj =
∏j−1
i=1

t−i+1
m−i+1 , we can plug into the definition of expectation to get

that

E [ I ] =

t∑
j=1

j

[
Pj − Pj ·

t− j + 1

m− j + 1

]
=

t∑
j=1

jPj −
t∑

j=1

jPj+1

where we’ve used the fact Pj · t−j+1
m−j+1 = Pj+1. Investigating the right-hand side of

the equation, we have that the left summand is one factor of Pj larger than the
right summand when the index of summation on the left is one greater than on
the right. Thus, for every Pj there will be a jPj term in the overall summation
and a −(j − 1)Pj term, so every term of the right summation is cancelled by a
term of the left summation except for the final one, tPt+1. Thus we can rewrite
the equation to get

E [ I ] =

t∑
j=1

Pj − tPt+1 ≤ 1 +

t∑
j=2

1

2j−1
.

To justify the final inequality, observe that the first term of the summation is
the empty product, which is by definition equal to 1. For the second summation,
noticing that for 2 ≤ j ≤ t, plugging t = m

2 into Pj gives us a summand which is
upper-bounded by 1

2j−1 . The rightmost term is bounded above by 1 so E [ I ] ≤ 2
for t ≤ m

2 .

For simplicity in the above we restricted to t ≤ m/2. For larger t, i.e. m
2 ≤

t ≤ m − 1, a similar analysis can be done using the sum of a geometric series
with ratio 1

2 ≤
t
m < 1 in the final step instead of 1

2 . Finally, a similar analysis
can be done for the run time of Dzz.

Security of the Zig-Zag construction. In the domain completion setting,
our Zig-Zag construction achieves SPRP security. We prove the following the-
orem in the full version. The proof proceeds via standard reductions to move
to an information-theoretic setting in which F and E are replaced by random
permutations. Then one performs an analysis to show that the Zig-Zag domain-
completed cipher, when using random permutations, exactly defines a random
permutation.

Theorem 2. Fix a domain completion setting (F,M, T ) and let ZZ = (KT zz, Ezz)
be the Zig-Zag domain-completed cipher using helper cipher E. Let A be an SPRP
adversary making at most q queries to its oracles. Then the proof gives explicit
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adversaries B and C such that

Advsprp
Ezz (A) ≤ Advsprp

E
(B) + Advsprp

F (C) .
Adversaries B and C each run in time that of A plus negligible overhead and
each make at most q + |T | queries.

6 Domain Extenders for Deployed Ciphers

We now look at a distinct but related setting in which we want to extend the
message space of a cipher after it has been deployed. Suppose we have an FPE
FKo for some message space D that has already been used to encrypt a number
of plaintexts. We later learn that we need to be able to encrypt as well plaintexts
from a larger format M = N ∪D.

Practical motivations for domain extension. While perhaps odd at first,
message space extension arises frequently in deployment. An example is the use
of encryption schemes in settings with constrained formatting on ciphertexts,
such as the traditional credit card number example. Say we have deployed an
FPE scheme for 16-digit credit card numbers only to later realize we must handle
15-digit credit card numbers as well. In this case it might be that |D| = 1015,
|N | = 1014 and |M| = 1015 + 1014. (Recall that the last digit of a credit card
number is a checksum, so a 15 digit CCN is only 14 digits of information.)

In deployment, such a format change is often precipitated by one of two
things: a change in customer requirements or a change in application behavior.
Changes in customer requirements often occur when businesses adopt FPE incre-
mentally, rather than all at once. For example, a business might deploy FPE for
users in the United States first, then later deploy it for users in China as well.
If the format of the FPE was English-only initially, the inclusion of Chinese
users will necessitate a change to this format. Sometimes customer requirements
change because of external changes in their industries. When computerized gift
cards gained widespread adoption, the credit card industry had to modify its
standard for assigning credit card numbers to include a reserved range for num-
bers corresponding to temporary gift cards.

Changes in application behavior are problematic for businesses that use FPE
in conjunction with cloud-hosted software. When FPE is deployed in such a set-
ting (in which, it is important to note, the users have no control over application
behavior) the formats are chosen to hew as closely as possible to the format val-
idation used by the application. If the software vendor changes the way formats
are validated, the FPE format must change as well or leave businesses with an
unusable application.

We can achieve the desired security trivially by using an FPE on M with a
fresh key. But this requires retrieving, decrypting, and re-encrypting all cipher-
texts already stored under the old format and key. In many contexts this is rather
expensive, and may not even be feasible should the ciphertexts be unavailable
for update (e.g., because they’ve been handed back to some client’s systems as
a token and no API exists for recalling them).



14 Paul Grubbs, Thomas Ristenpart, and Yuval Yarom

One way to handle this extension would be to use a separate FPE for 16-
digit credit card numbers and for 15-digit credit card numbers. The security of
this kind of solution is, a priori, unclear, as such a ciphertext later accessible
to adversaries will trivially leak which portion of the message space a plaintext
sits. We will analyze the security of this formally below.

We might also be able to do better in the case that we have only used the
old FPE on a small portion T ⊂ D of the old message space. Ideally we’d like to
preserve the decryptability of the points in T while otherwise picking mappings
that are indistinguishable from a random permutation. We will formalize this
goal below.

It may seem odd to assume that a list of already-encrypted points T is
obtainable. After all, if we can extract a list of previously encrypted values, why
can’t we simply download and re-encrypt them? As discussed above, it is often
difficult to authoritatively change any value in a complex software system after it
has been created. It’s also possible a description of T (like a regular expression)
may be stored in a concise form in some application metadata that is stored on
the encryption server.

Domain extension, formally. A domain extension setting is defined as a tu-
ple (F,D, T ,M) consisting of a cipher F on domain D, an extended domain
M, and a preservation set T ⊆ D. A domain extended cipher DEC = (KT,E)
is an algorithm and a cipher. The randomized algorithm KT , called a domain
extension key transformation, takes as input a key Ko for F , the preservation set
T , and outputs a key K for the cipher E whose domain is M. The cipher E is
assumed to have a key space compatible with the output of KT . For some preser-
vation set T , the induced key generation algorithm for E consists of choosing a
random key Ko for F , running KT (Ko, T ) and returning the result.

A domain-extended cipher DEC preserves a point M if EK(M) = FKo(M)
with probability one over the experiment defined by running the induced key
generation for E. We say that DEC preserves a set T if it preserves each M ∈ T .

Impossibility of SPRP security. We can measure security for a domain-
completed cipher DEC = (KT,E) via the SPRP advantage of the cipher E using
its induced key generation algorithm. As before, we quantify over all preservation
sets, meaning that security must hold even if the adversary knows T .

This definition proves too strong for most domain extension settings of in-
terest. Roughly speaking, unless m is very close to d, the |T | is small, and d is
large, one can give simple SPRP adversaries successful against any construction.
The following theorem captures the negative result.

Theorem 3. Fix a domain extension setting (F,D, T ,M). Let DEC = (KT,E)
be a domain-extended cipher that preserves T . Let d = |D| and m = |M| and
t = |T |. Then we give a fast, specific SPRP adversary A that makes q ≤ t queries
for which

Advsprp
E (A) = 1− d! · (m− q)!

m! · (d− q)!
.
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Proof. Our adversary picks any size q subset of T and queries each point in
the subset to its encryption oracle. If any of the resulting ciphertexts are in
N = M \ D it outputs 0, because this violates the definition of preserving T .
The adversary thus knows its oracle is a random permutation. If all q queries
are in D it outputs 1.

In the real world, it is obvious the adversary outputs 1 with probability 1. In
the case where the adversary’s oracle is a random permutation, we have to treat
the possibility of all the queries to the encryption oracle landing in D by chance.
If this happens, the adversary is fooled into thinking its oracle is an extended
FPE even though it’s actually a random permutation.

The probability that the first query’s ciphertext is in D is d
m . The probability

that the next one is also in D is d(d−1)
m(m−1) , because there are d−1 remaining points

in D and m− 1 points left in m. We multiply the probability of the first query
also being in D because this probability is conditioned on that also happening.
If we carry out this argument to q queries, we’ll get

d(d− 1) · · · (d− q)
m(m− 1) · · · (m− q)

=
d! · (m− q)!
m! · (d− q)!

.

main SEPRP1ADEC,T

Ko←$K
K←$KT (Ko, T )

b′ ← AEnc,Dec(T )

return b′

proc Enc(M)

return EK(M)

proc Dec(C)

return E−1
K (C)

main SEPRP0ADEC,T

π←$ Perm(D)

π̃←$ ExtPerm(D, T , π)

b′ ← AEnc,Dec(T )

return b′

proc Enc(M)

return π̃(M)

proc Dec(C)

return π̃−1(C)

Fig. 6. Games defining SEPRP security.

SEPRP security. Given the nega-
tive result about SPRP security, we
turn to weaker, but still meaningful,
security notions. The first is a relax-
ation of SPRP in which we do not seek
to hide from an adversary that an ex-
tension has taken place. For an domain
extension setting (F,D, T ,M), an ad-
versary A and domain-extended cipher
DEC = (KT,E), the SEPRP0ADEC and
SEPRP1ADEC games in Figure 6 cap-
ture what we call “indistinguishabil-
ity from an extended random permu-
tation”. (The games are implicitly pa-
rameterized by the domain extension
setting.) There ExtPerm(D, T , π) is the set of all possible permutations π̃ such
that for all X ∈ T it is the case that π̃(X) = π(X). An adversary A’s SEPRP
advantage against DEC is defined as

Advseprp
DEC (A) =

∣∣Pr
[

SEPRP1ADEC ⇒ 1
]
− Pr

[
SEPRP0ADEC ⇒ 1

]∣∣ .
Zig-Zag for domain extension. We now consider the security of the Zig-Zag
construction in the domain extension setting. Fixing a setting (F,D, T ,M), ob-
serve that the construction ZZ = (KT zz, Ezz) from Section 5 provides a domain-
extended cipher. The next theorem captures its SEPRP security. The proof ap-
pears in the full version of the paper.



16 Paul Grubbs, Thomas Ristenpart, and Yuval Yarom

Theorem 4. Fix a domain-extension setting (F,D, T ,M) and let ZZ = (KT zz, Ezz)
be the Zig-Zag domain-extended cipher using helper cipher E. Let A be an
SEPRP adversary making at most q queries to its oracles. Then the proof gives
explicit adversaries B and C for which

Advseprp
Ezz (A) ≤ Advsprp

F (B) + Advsprp

E
(C) .

The adversaries B, C each run in time at most that of A plus a negligible overhead
and each make at most q + |T | queries.

7 Understanding SEPRP Security

In this section we study SEPRP security in more detail, in particular understand-
ing its relationship with prior security definitions. In particular we’ll explore the
relationship between SEPRP and the notions of message recovery and message
privacy security for ciphers introduced by Bellare et al. [4]. Throughout this
section we fix a domain extension setting (F,D, T ,M), which is known to the
adversary.

7.1 Message Recovery Security

The weakest definition from [4] is message-recovery security. At a high level it
states that an attacker, given the encryption of some unknown message, should
not be able to recover that message with probability better than that achieved
by a simulator given no ciphertext. The adversary is additionally given an en-
cryption oracle to which it can submit queries; the simulator is given access to an
equality oracle that checks if the submitted message equals the target one. This
latter reflects the fact that chosen-message attacks against an FPE scheme can
always rule out messages one at a time by obtaining encryptions and comparing
it to the challenge ciphertext.

We’ll present a generalization of the standard message recovery definition
called “generalized message recovery”. We use the games gMR and gMRI to
specify a simulation-style security target. The “real” game gMR tasks an adver-
sary A = (A1,A2) with recovering a message chosen by A1 given its encryption
under the domain-extended cipher DEC. We emphasize that A1 and A2 do not
share any state (otherwise the definition would be vacuous). The adversary A2

has the ability to obtain encryptions on messages of its choosing. The “ideal”
game gMRI tasks a simulator S to recover an identically distributed message
X∗ given some leakage aux(X∗) about it and the ability to query an equality
oracle Eq that returns whether or not the submitted message equals X∗.

The generalized MR-advantage of an adversary A = (A1,A2) against a
domain-extended cipher DEC is defined as

Advgmr
DEC(A, q′, aux) = Pr

[
gMRADEC ⇒ true

]
− max
S∈Sq′

Pr
[

gMRIS,aux ⇒ true
]

where the rightmost term is defined over Sq′ , the set of all simulators making at
most q′ queries to their Eq oracles. In what follows, the simulator can depend
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main gMRDEC

Ko←$K
K←$KT (Ko, T )

X∗←$A1(T )

Y ∗ ← EK(X∗)

X ← AEnc
2 (T , Y ∗)

return (X = X∗)

Enc(X)

return EK(X)

main gMRI

X∗←$A1(T )

X ← SEq(T , aux(X∗))

return (X = X∗)

Eq(X)

return (X = X∗)

main gMPDEC

Ko←$K
K←$KT (Ko, T )

X∗←$A1(T )

Y ∗ ← EK(X∗)

Z ← AEnc
2 (T , Y ∗)

return (Z = A3(X∗))

Enc(X)

return EK(X)

main gMPI

X∗←$A1(T )

X ← SEq(T , aux(X∗))

return (X = A3(X∗))

Eq(X)

return (X = X∗)

Fig. 7. Generalized Message-recovery and message privacy games.

on an adversary A. The string aux is the description of a function which takes
a point of M and outputs either some information about it or ⊥.

The value q′ is a function of q, the number of queries the adversary makes
in its experiment. Below, q′ will be some small constant like 1 or 2 times q. 3

When q′ > q, it means that the security provided is weaker because the simulator
needs more queries to its ideal functionality to achieve the same probability of
success in its game. Intuitively, this means that the real oracle Enc leaks more
information than the ideal oracle. All reductions below are tight up to some
small constant factors.

Since MR security is shown not to imply SPRP security in [4], we expect
that it does not imply SEPRP security. To demonstrate this, imagine we take an
MR-secure cipher E over a size-d domain and add one bit to its domain, making
it d+1 bits. Define a new cipher E′(X) on this domain by calling E on the first d
bits of X and concatenating the d+ 1st bit (in the clear) to make the ciphertext
of X under E′. The MR-security of E′ is reducible to the MR-security of E by
a simple argument. However, this new cipher E′ does not meet SEPRP security,
because (with M and E′(M) interpreted as integers) the quantity |M −E′(M)|
is the same whether the top bit of M is 1 or 0.

We can also show that SEPRP does not imply MR security. Take a similar
setting in which the new domain M has |M| = m = 2 · d where |D| = d and
every point inD is preserved. We claim that for an SEPRP E, Advgmr

E (A, q,B) ≥
1
2 , where B is the function that always outputs ⊥ (meaning no information is
leaked). To see this, take A = (A1,A2) and have A2 first check if the point it
was given is in D. If so, it queries every point in D until it finds the right one.
Likewise for N . A wins the gMR game with probability 1, but any simulator
wins the gMRI game with probability at most 1

2 because it doesn’t receive any
information about the hidden point and only has q queries.

This is troubling, because we seem to have a separation in two directions
when q = q′: generalized MR does not imply SEPRP, and SEPRP does not imply
generalized MR. However, we can prove that SEPRP does imply generalized MR

3 Note that when q′ = q and aux is the function that always outputs ⊥, this definition
corresponds exactly to the message recovery definition from [4].
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when the simulator is given some auxiliary information about the hidden point,
namely whether or not it is in T .

Theorem 5. Fix a domain-extension setting (F,D, T ,M). For any domain-
extended cipher DEC and adversary A making q oracle queries, we give in the
proof an adversary B making q oracle queries such that

Advgmr
DEC(A, q, aux) ≤ Advseprp

DEC (B)

where aux(X) returns 1 if X ∈ T and 0 otherwise, for all X ∈M.

Proof. Our adversary B is given the description of A = (A1,A2). It runs A1(T )
and gets a point X∗, then runs A2(T ,Enc(X∗)), simulating A2’s Enc oracle
using its own encryption oracle for the SEPRP game. When A2 outputs its
guess X, B returns 1 if (X = X∗) and 0 otherwise. By construction

Pr
[

gMRADEC ⇒ True
]

= Pr
[

SEPRP1BDEC = 1
]

To complete the proof we must show that

max
S∈Sq

Pr
[

gMRIS,aux ⇒ true
]
≥ Pr

[
SEPRP0BDEC = 1

]
Construct a simulator S by giving it the target set T and the leakage bit that
indicates whether the hidden point is in T . S runs A2(T , X ′), where X ′ is a
random point of D if its leakage bit indicates that the hidden point is preserved,
and a random point ofM otherwise. S simulatesA’s Enc oracle by taking each of
A2’s queries and checking it against its own Eq oracle. If the Eq oracle returns
true, S returns X ′. Otherwise, S returns a random (subject to permutivity)
point of D if A2’s query is in T , and a random point ofM otherwise. S returns
whatever A2 does. By inspection, S is simulating the same environment for A2

as B does in the ideal SEPRP game, because in either case the environment is
lazy-sampling a random ideal extended permutation. Thus, the probability of S
winning is exactly the probability of B guessing 1 in the SEPRP0 game. The max
value of the left-hand side is at least the success probability of this simulator, so
the inequality holds.

We can also prove the following relationship between different parameteriza-
tions of the generalized MR games. Intuitively, this theorem says that leaking
whether the hidden point is in T is roughly equivalent to speeding up a guessing
attack by a factor of two.

Theorem 6. Fix a domain-extension setting (F,D, T ,M). For any domain-
extended cipher DEC and adversary A making q queries,

Advgmr
DEC(A, 2(q + 1),B) ≤ Advgmr

DEC(A, q, aux)

where aux and B are as above.

Proof. First, observe that

Pr
[

gMRADEC ⇒ true
]

= Pr
[

gMRADEC ⇒ true
]

This is tautological because the gMR game is the same in either case; only the
gMRI game changes.
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To complete the proof we need to show that

max
S∈ S2q+2

Pr
[

gMRIS,B ⇒ true
]
≥ max
S′∈ Sq

Pr
[

gMRIS
′,aux ⇒ true

]
The simulator S is given a description of the S ′ that maximizes the right-hand
side and runs it twice — once with the leakage bit set to 0 and once with the bit
set to 1. S answers S ′’s Eq queries with its own Eq oracle. If one of S ′’s guesses
is correct, S returns that as its guess. Since S runs S ′ with the leakage bit set to
both possible values, if S ′ wins in either case, S wins as well. Thus, the success
probability of S is at least the success probability of S ′.

7.2 Message Privacy

In [4] a (strictly stronger) definition than message recovery is proposed. They
refer to this definition as message privacy. It says, roughly, that no adversary
can compute any function of the message given only its ciphertext. Message-
recovery security is a special case of message privacy where the function the
adversary wants to compute is the equality function. We define the generalized
MP-advantage of an adversary A as

Advgmp
E (A, q′, aux) = Pr

[
gMPADEC ⇒ true

]
− max
S∈Sq′

Pr
[

gMPIS,aux ⇒ true
]

We will use this generalized definition instead of the one used in [4] because ex-
tended permutations leak more information to adversaries than standard SPRPs.
To demonstrate the necessity of this generalized definition, we’ll prove that
SEPRP security does not imply the standard message privacy definition from [4],
which corresponds to our generalized definition when q = q′ and aux = ⊥.

Theorem 7. Fix a domain-extension setting (F,D, T ,M) for which T = D,
i.e., every point is preserved. For any domain-extended cipher DEC, the proof
gives a specific adversary A = (A1,A2,A3) in the message privacy game such
that

Advgmp
DEC(A, 0,⊥) = 1−max(

d

m
,
n

m
)

Proof. The algorithm A1 samples uniformly from its input space. The function
represented by A3 is

A3(m) =

{
1 The message is in D
0 The message is in M\D

A wins with probability 1 by checking whether the point Y ∗ it is given
is in D or M \ D. Because every point is preserved, A always computes the
function correctly. The simulator S does not get any Eq queries because A
used no encryption queries, and its auxiliary function always outputs ⊥, so the
simulator’s optimal strategy is to output 1 if d > n and 0 otherwise. A point from
the larger of the two sets is more likely, so the simulator wins with probability
max( dm ,

n
m ).
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We can, however, prove that SEPRP does imply generalized message privacy
when an oracle for membership in T is given to the simulator.

Theorem 8. Fix a domain-extension setting (F,D, T ,M). For any domain-
extended cipher DEC and adversary A making q oracle queries, we give in the
proof an adversary B making q queries such that

Advgmp
DEC(A, q, aux) ≤ Advseprp

DEC (B)

where aux returns 1 if its input is in T and 0 otherwise.

Proof. Our adversary B is given the description of A = (A1,A2,A3). It runs
A1(T ) and gets a point X∗, then runs A2(Enc(X∗)), simulating A2’s Enc oracle
using its own encryption oracle for the SEPRP game. When A2 outputs its guess
Z, B returns 1 if (Z = A3(X∗)) and 0 otherwise. By construction

Pr
[

gMPADEC ⇒ True
]

= Pr
[

SEPRP1BDEC = 1
]

It suffices to show that

max
S∈Sq

Pr
[

gMPIS,aux ⇒ true
]
≥ Pr

[
SEPRP0BDEC = 1

]
Define a simulator S that takes T and the value of aux(X∗). The simulator S
runs A2(X ′) where X ′ is a random point of D if the simulator’s leakage from aux
indicates the hidden point is in T and X ′ is a random point of M otherwise.
The simulator simulates A2’s Enc oracle by first using its own Eq oracle to
check if A2’s guess is equal to the hidden point. If S’s oracle returns true, S
returns X ′ in response to A2’s query. If it returns false, S checks if the queried
point is in T . If it is, S returns a random point of D, else S returns a random
point ofM. The simulator makes both choices subject to permutivity. When A2

returns its guess for A3(X∗), S outputs the same guess. Since S is simulating
the same environment for A2 as B does in the case where B’s oracle is an ideal
extended permutation, the probability of this simulator S winning is exactly the
probability of B guessing 1 in the SEPRP0 game. The true max of the left-hand
side is at least the probability that this S we’ve constructed wins the gMPI
game, so the inequality holds.

8 The Zig-Zag Construction and Side-Channel Resistance

One important question when designing any encryption scheme that contains
branches on secret data or has variable timing for different points (e.g. the Zig-
Zag construction) is whether this gives rise to any kind of side-channel attack.
Timing side-channels have proven particularly dangerous in applications [5,7] so
we would like to prove the Zig-Zag construction does not give rise to a timing
side-channel. In this section, we will prove that the time taken to encrypt or
decrypt with the Zig-Zag construction does not leak useful information to an
adversary about the encrypted message. �PaulG 8.1: If we get a chance to
make some changes to camera-ready, fix the references to domain extension below. It
should be domain completion.� Fix some domain extension setting (F,D, T ,M)
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main RealZZ

Ko←$K
(T , Ko, K)←$KT (Ko, T )

b← AEnc

proc Enc(M)

c← 0

If M ∈ T then

return (FKo (M), c)

else

X ← EK(M)

while F−1
Ko

(X) ∈ T :

X ← EK(F−1
Ko

(X))

c← c+ 1

return (X, c)

Main Ideal

z ← 0

q ← 0

π ← GetPerm(T )

b← AEnc(T )

proc Sample(M, T )

If (M ∈ T ) then return 0

c← 0

b←$ B(t− z − c,m− q − z − c)
while b 6= 0:

b←$ B(t− z − c,m− q − z − c)
c← c+ 1

z ← z + c

q ← q + 1

return c

proc Enc(M)

c←$ Sample(M, T )

return (π(M), c)

Fig. 8. Games defining SPRP-with-timing advantage for Zig-Zag.

and let ZZ = (KT zz, Ezz) be the Zig-Zag construction for it. We define two
games, detailed in Figure 8. The first, RealAZZ, gives the adversary A access to
a Zig-Zag enciphering oracle that additionally reveals the number of iterations
of the inner loop of Zig-Zag. The second, IdealA gives the adversary A access
to an oracle that returns random permutation applied to the message as well
as a simulated while-loop count that only uses whether M ∈ T . Define the
SPRP-with-timing advantage of an adversary A against an ZZ as

Advsprp+t
ZZ (A) =

∣∣∣Pr
[

RealAZZ ⇒ 1
]
− Pr

[
IdealA ⇒ 1

]∣∣∣
The interpretation is that efficient adversaries should not be able to distinguish
Ezz from a random permutation, even with this additional information. In the
Sample procedures, the function B(x, y) generates a random bit that is 1 with
probability x

y .
The following theorem captures Zig-Zag’s security in this new model.

Theorem 9. Fix a domain extension setting (F,D, T ,M) and let ZZ = (KT zz, Ezz)
be the Zig-Zag domain-extended cipher for it built using an underlying helper
cipher E. Then for any A making at most q queries the proof gives specific
adversaries B and C such that

Advsprp+t
ZZ (A) ≤ Advsprp

E
(B) + Advsprp

F (C)
Adversaries B, C each run in time at most that of A plus a negligible overhead
and each make at most q + |T | queries.

We defer the proof to the full version. This theorem lets us say with that
information on how long encryption of a particular point takes leaks only whether
it is in T or not. Since in a chosen-plaintext attack the adversary already knows



22 Paul Grubbs, Thomas Ristenpart, and Yuval Yarom

whether M ∈ T , this means the adversary learns nothing. Intuitively this is
because, for every point M /∈ T the distribution of M ’s zig-zag lengths is the
same.

8.1 Other sources of side information

Now that we have shown formally that the timing side-channel of the Zig-Zag
construction’s inner loop does not leak information to an adversary other than
whether or not a point is in T , we will discuss more coarse-grained side channels.
We first look at remote timing attacks, where the adversary learns how long it
takes to perform the encryption or decryption and from that deduces secret
information. For convenience, we only discuss leaks in the encryption algorithm.
Similar leaks exist in the decryption algorithm.

The main source of secret-dependent timing variations is the zig-zag opera-
tion. Each time the algorithm iterates through the while loop it performs two
more encryptions. Thus, timing information discloses the number of times the
algorithm iterates. Knowing that the algorithm iterates through the while loop
is an indication that M 6∈ T . We prove above that this is the only information
about M leaked to an adversary by this timing information.

Other sources of timing variations that may leak secret information include:
the different code path taken for M ∈ T , the test for M ∈ T and potential
timing variations in the implementations of F and E.

A common technique for protecting against timing channels is to pad the
computation time. The implementation is modified to ensure that the time be-
tween the start of the computation and the delivery of the result is fixed [3, 9].
To avoid any side-channel information, this fixed time must be long enough to
accommodate any possible length of computation. Askarov et al. [3] suggest an
adaptive approach that ensures that only a small amount of information leaks
while adapting to the execution time of the computation.

As discussed in Section 5.1, the Zig-Zag construct iterates, on average, less
than one time per encryption. The worst-case scenario, however, is that it iterates
t times. Padding to the worst-case scenario incurs a significant performance loss.
Yet, failure to pad to the worst-case scenario may result in information leaks.
To avoid both excessive padding and information leaks, we can pre-compute the
value of the new cipher Ezz on all the points that require zig-zagging. That is,
on the points of the set:{

DK(FKo(M))|M ∈ T ∧DK(FKo(M) 6∈ T
}

Informally, these are the points not in T whose encryptions under E are in
ImFKo

(T ).

Storing the precomputed values takes a space linear in t. However, as the
Zig-Zag construction needs to store T , the pre-computation only increases the
space requirements by a constant factor and, at the same time, guarantees that
the computation of Ezz requires at most a single application of either F or of
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E. With the pre-computation, padding can provide an efficient countermeasure
for remote timing attacks.

Padding is not an efficient countermeasure for local side-channel attacks. Lo-
cal adversaries can monitor traces that software execution leaves in the cache or
in other microarchitectural components [1,2,15,19]. Constant-time implementa-
tions that perform no secret-dependent branches or memory accesses can provide
protection for ciphers against local side channel attacks [5, 19]. However, such
implementations need to access every table element when performing a table
access. Thus, for the Zig-Zag construction, the check whether M ∈ T would re-
quire a time linear in t. Rather than using a constant-time implementation of the
cipher, implementer can rely on hardware or operating system based measure to
provide protection against local side-channel attacks [14,21,24,26].

9 Domain Extension when Adversaries Do Not Know T

In a previous section we demonstrated that we cannot achieve SPRP security
while preserving a subset of the original domain if the adversary knows which
subset is preserved. One can naturally ask, then, if there are weaker adversarial
settings in which SPRP security can be attained. In particular, we may want to
know what the strongest “weaker” adversary is — namely, how much information
can we reveal about T before SPRP becomes provably impossible. In this section
we provide a constructive partial answer to this question by building an SPRP-
secure scheme in the setting where the adversary only knows |T | = t, the size of
the preserved set, but does not know which elements it contains. This weakening
of the adversary is motivated not only by theoretical questions, but by practical
settings in which the attacker, through application logs or other non-sensitive
information, is able to infer the number of ciphertexts in the database before an
extension has occurred.

In terms of security goal, we target SPRP security in a setting where the
adversary knows D but the preserved set is chosen uniformly from the subsets
of size t of the original domain D, and the random coins used to make this
choice are hidden from the adversary. (We leave treating other cases as an open
question.)

Observe that if t > d−n, a random permutation has a nonzero probability of
having fewer than t elements of D mapped into D. When a permutation maps a
point of D back to D, we say that it “domain-preserves” that point. Since one of
our goals for domain extension is to preserve mappings for points in T (which are
domain-preserved mappings) there must be at least t domain-preserved points
in our permutation. To make this more intuitive, consider how few points can
possibly be domain-preserved in any permutation. This occurs when (for d > n)
as many points as possible are mapped from D to N . Since this is a permutation,
only n points can have ciphertexts in N . The rest have to be domain-preserved.
If this happens, n points of D are not domain-preserved, so d− n points are. If
t is indeed greater than this strict lower bound, we are excluding some nonzero
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Erzz
Emap,K

(M):

if ( Emap[M ] 6=⊥ ):

return Emap[M ]

else

return EK(M)

Drzz
Emap,K

(M):

if ( Emap
−1

[M ] 6=⊥ ):

return Emap
−1

[M ]

else

return E
−1

K
(M)

Fig. 9. Recursive Zig-Zag encryption and decryption algorithms

number of possible permutations (i.e., the ones that domain-preserve between
t−1 and d−n points). This will give a distinguishing advantage to an adversary.

The Recursive Zig-Zag. For the case that t ≤ d− n, any permutation onM
domain-preserves at least t elements of D. We will use this fact to construct a Zig-
Zag algorithm that achieves SPRP security for domain extension. Since the key
transformation acts in a recursive fashion on its state, we will call the algorithm
the “Recursive Zig-Zag” (RZZ). The key transformation works by selecting a set
of points that are domain-preserved under the helper cipher and, for each point
τ in T , “swapping” the image of one of these points with the image of τ if τ is
not domain-preserved. This is done so the number of domain-preserved points
in the resulting permutation is unchanged. Points that are swapped are stored
in a lookup table Emap. Below, we will prove SPRP security of the RZZ and
demonstrate that the expected amortized cost of the KT rzz is constant for each
point of T .

To motivate the RZZ, it may be useful to give a concrete example of why
the previous Zig-Zag construction cannot be SPRP-secure for domain extension
when only t is known. Take d = 99, t = 98 and n = 1. In this case, Zig Zag will
have a 50% probability that the newly added element maps to itself. However, the
probability of that happening in a random permutation is 1%. The main cause
of the problem is that standard Zig-Zag may change the size of the domain-
preserved set. In KT rzz we guarantee that does not happen.

The construction. Figure 9 shows the encryption and decryption algorithms.
They consult the lookup table Emap for the existence of the value, returning
it if found. Otherwise they return the value of the helper cipher E. The new
key K = 〈Emap,K〉 output by KT rzz contains the lookup table Emap which
is pre-calculated by the key transformation algorithm in Figure 10. We use the
notation Emap[x] to refer to the mapping of the element x under Emap. The
notation Emap

−1
[y] returns the value X such that Emap[X] = y. If Emap does

not provide a mapping for x, the value of Emap[x] is ⊥. If there is no point
mapped to y in Emap, Emap

−1
[y] will likewise output ⊥.

The KT rzz algorithm. The key transformation algorithm records all the val-
ues modified during the t iterations. At the start of the ith iteration of KT rzz,
Emap contains the values changed in all previous iterations. We begin the iter-
ation by computing τold ← Erzz

Emap,K
(τi) where Erzz

Emap,K
is computed as in Fig-
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KT rzz(Ko, T )

K←$K
for i from 0 to t:

τold ← Erzz
Emap,K

(τi)

if ( τold = FKo (τi)) :

// Case 1: Do nothing

if ( τold ∈ D) :

// Case 2: set mapping for preimage of FKo (τi))

τm ← Drzz
Emap,K

(FKo (τi))

Emap[τm]← τold
else:

// Case 3: chose a pi and swap through it

τm ← Drzz
Emap,K

(FKo (τi))

//Select a random pi
//that is domain-preserved under Erzz

Emap,K

do:

pi←$D \ {τ1, . . . , τi−1}
poldi ← Erzz

Emap,K
(pi)

while (poldi ∈ N )

Emap[pi]← τold
Emap[τm]← poldi

endif

// Always record τi
Emap[τi]← FKo (τi)

endfor

return (Emap, K)

Fig. 10. The Recursive Zig-Zag key transformation. The original cipher is F . The
helper cipher is E.

ure 9. There are then three cases. We will explain each in turn, referring to the
case numbers given in Figure 10.

Case 1 (τold = FKo(τi)): This occurs if Erzz already contains the correct map-
ping for τi. That would happen if the helper cipher EK maps τi to FKo(τi).
We simply update Emap and continue.

Case 2 (τold ∈ D): This occurs if Erzz domain-preserves τi. Here we do not
need to worry about biasing the number of domain-preserved points by pre-
serving τi’s mapping to FKo(τi) because both FKo(τi) and τold are in D. In
this case we can do a zig-zag as above, assigning τold to the decryption of
FKo(τi) under Drzz and τi to FKo(τi), as desired.

Case 3 (τold ∈ N ): This occurs if Erzz does not domain-preserve τi. This is
the case that requires special handling, since if we patch Erzz to map τi to
FKo(τi) we may increase the number of domain-preserved points of Erzz and
give a distinguishing advantage to an adversary. We use rejection sampling on
points of D\{τ1, . . . , τi−1} to find a point not in T that is domain-preserved
under Erzz. Such a point is guaranteed to exist by our assumption that
t ≤ d−n. When we find such a point pi, we record it with its new image τold

in Emap. Finally, we assign its old image under Erzz, pold
i , to be the image

of Drzz
Emap,K

(FKo(τi)) to preserve permutivity. Once we select pi it cannot be
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selected in a subsequent iteration, since it will no longer be domain-preserved
under Erzz.

Note that we do not need special handling of the case that on the ith iteration
of KT rzz we assign Erzz

Emap,K
(τi) = τj for some j > i. We will change the value

of Erzz
Emap,K

(τj) on the ith iteration, but we will fix it in the jth iteration.

The number of points changed in each of the t transformations is at most 3.
Consequently, the number of points we need to pre-calculate is at most 3t and
with the result of precalculation we need to encode at most 6t values—6 times
as much as we need to encode to remember T .

9.1 Security of the construction

To analyze the construction, we will assume tables for the adjusted points have
not been created, for ease of exposition. To begin, let E : M → M be a uni-
formly random permutation. For a preserved domain set T = {τ1, . . . , τt} and a
uniformly random permutation F : D → D we construct a sequence of permu-
tations R0, . . . ,Rt, such that R0 = E, Ri(τj) = F (τj) for all 1 ≤ j ≤ i ≤ t.
Each Ri corresponds to the lookup table Emap for Erzz after the ith iteration
of KT rzz. Note that we will abuse the notation slightly below, since if E and F
are random permutations there will be no keys generated in KT rzz; we refer to
the straightforward modification of KT rzz with random permutations.

We will now state the theorems showing Rt, the cipher Erzz
Emap,K

obtained

after the t iterations of KT rzz, is an SPRP. We defer their proofs to the full
version. First, we state the information-theoretic step. Intuitively, this theorem
shows that if E and F are uniformly random permutations, the permutation
ErzzEmap resulting from constructing Emap from F and E as in KT rzz is also
uniformly random.

Theorem 10. Let T be a randomly-chosen subset of D, |T | = t, and t ≤ d −
n. Let Rt be a random variable denoting the permutation over M induced by
the RZZ algorithm after all t iterations of KT rzz, instantiated with E and F
as uniformly random permutations over M and D, respectively. For any fixed
permutation Π on M,

Pr [Rt = Π ] =
1

m!

To complete the proof that Erzz
Emap,K

is an SPRP, we need to transition to

the computational setting. Our current proof establishing this uses a reduction
that requires exponential time in the worst case, but is efficient in expectation.
This is due to the rejection sampling in case 3 of KT rzz, which can take as many
as n queries in the worst case but this happens with small probability.

Theorem 11. Assume that E and F are ciphers on domainsM and D, respec-
tively. Let t be a non-zero number, and let T be a random size t subset D. Let A
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be an SPRP adversary against Erzz
Emap,K

making at most q queries to its oracles.

Then the proof gives an adversary B and an adversary C such that

Advsprp
Erzz

Emap,K

(A(t)) ≤ Advsprp
F (B) + Advsprp

E
(C)

Adversary B makes at most q queries and runs in time that of A plus a negligible
overhead. Adversary C runs in expected time c(q+8t) for a small constant c and
and makes q + 8t queries in expectation.

9.2 Efficiency of Recursive Zig-Zag’s KT

Now that we know our construction meets the desired security, we turn to an-
alyzing the efficiency of the key transformation KT . Examining the algorithm,
we can see that with the exception of the random selection of pi, the algorithm
requires O(1) steps for each iteration, or a time linear in t for the whole calcula-
tion. Selecting the pi’s is, however, a bit more involved. As described above, the
pi’s are randomly-selected domain-preserved points in D \ {τ1, . . . , τi−1}.

One way of selecting a pi is to keep picking random points in D\{τ1, . . . , τi−1}
until a domain-preserved point is found. For a small i, there are many points
in D \ {τ1, . . . , τi−1} and we expect to find an acceptable pi within very few
tries. However, as i approaches d − n, for some permutations, the number of
domain-preserved elements in D \ {τ1, . . . , τi−1} may be very small, requiring a
large number of tries.

The next theorem shows that we can limit the number of points we need to
encrypt in order to generate the pi’s. More specifically, we show that with a high
probability, the number of encryptions required for finding the pi’s is linear in
t, with a reasonably small factor. Hence, the expected amortized cost of finding
each of the pi is constant.

Theorem 12. Let X be a random variable (over the probability space defined by
the keys of F and E and the random choices of the pi values) whose value is the
number of encryptions required to select all the pi values in the t transformations
of KT . Let d = |D|. Then Pr [X > 8t ] ≤ e−d/8.

Proof. If t > d/8, where d is the size of the original domain D, we can enumerate
S0 by calculating R(x) for every x ∈ D. This requires d < 8t encryptions.
Once enumerated, we can calculate Si during the generation of the extended
permutation without requiring any further encryptions.

For smaller t we look at s′ = d − s as a random variable with a hypergeo-
metric distribution whose mean is E[s′] = d−d2/(d+n) < d/2. Hypergeometric
distributions are concentrated around the mean. Hence, by Lemma 1, we have

Pr [ d/4 > s ] = Pr [ d/2 + d/4 < s′ ] < Pr [E[s′] + d/4 < s′ ] < e−d/8

Thus, with a high probability, at the ith step in the construction we have a choice
of at least s − i ≥ d/4 − t ≥ d/8 elements of D as candidates for pi. We can,
now, repeatedly pick a random pi ∈ D and check whether pi ∈ Si. Each such try
requires one encryption. Because s− i ≥ d/8 the expected number of encryption
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required is less than 8. Thus, with a high probability, the expected number of
encryption required to select the pi’s is less than 8t.
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