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Abstract. We present different approaches of using a special purpose
computer algebra system and theorem provers in software verification. To
this end, we first develop a purely algebraic while-program for computing
a vertex coloring of an undirected (loop-free) graph. For showing its
correctness, we then combine the well-known assertion-based verification
method with relation-algebraic calculations. Based on this, we show how
automatically to test loop-invariants by means of the RelView tool and
also compare the usage of three different theorem provers in respect to
the verification of the proof obligations: the automated theorem prover
Prover9 and the two proof assistants Coq and Isabelle/HOL. As a result,
we illustrate that algebraic abstraction yields verification tasks that can
easily be verified with off-the-shelf theorem provers, but also reveal some
shortcomings and difficulties with theorem provers that are nowadays
available.

1 Introduction

Provably correct programs can be obtained in different ways. Formal program
verification is one of them. It means to prove with mathematical rigor that a
given program meets a given formal specification of the problem. In case of
imperative programs the use of pre- and post-conditions as specifications and
intermediate assertions for the verification is a widely accepted and frequently
used technique. Besides proof rules for the control structures of the program-
ming language used it requires formal specifications for the data types on which
the programs are applied. Experience has shown that algebraic/axiomatic spec-
ifications or modeling by algebraic structures are most suitable for that. In the
present paper we consider a graph-theoretic problem and use relation algebra for
modeling undirected graphs, single vertices, sets of vertices as well as functions
which assign values to vertices.

In the present paper we consider a graph-theoretic problem and use relation
algebra for modeling undirected graphs. The axiomatization of relation-algebraic
calculus started with [26]. The calculus is widely used and many examples in the
context of program verification can be found in the literature, e.g., [2,3,4,6,7].
For the use of relation algebra in graph theory we refer again to [24,25].
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Relation-algebraic proofs are precise and hence allow formal first-order rea-
soning, often even equational reasoning. This is a vantage point for the use of
theorem provers as, for instance, demonstrated in [15,17,18]. Based on these pos-
itive experiences, in [8,9] the automated theorem prover Prover9 [20] is used for
the automated verification of proof obligations appearing in the assertion-based
verification of relational programs. This paper is a continuation of as well as a
step further in this work. We consider a well-known graph theoretical problem,
viz. vertex coloring. However, we do not restrict ourselves to the verification of
the proof obligations via an automated theorem prover. We aim to gain more
experience with tool support in formal verification of relational programs. There-
fore, we also investigate the use of two different proof assistants tools, viz. Coq
[11] and Isabelle/HOL [21], and of a specific purpose computer algebra system
for relation algebra, viz. RelView [5,30]. The paper illustrates that algebraic
abstraction yields verification tasks that can be verified with off-the-shelf theo-
rem provers, but also reveals some shortcomings and difficulties with tools that
are nowadays available.

One aim of the paper is to provide a guideline on how to get started with
different tools with different approaches and possibilities when computations and
mechanical proofs in relation algebra are desired or required. For that reason we
restrict ourselves to a single and not too difficult problem. By this the general
approach is easily visible and is not hidden by complex technical details. All
input files and proof scripts can be found in the web [32].

2 Relation-Algebraic Preliminaries

To model undirected graphs, single vertices, sets of vertices and colorings, we will
use binary relations and manipulate and calculate with such objects in a purely
algebraic manner. Therefore, we recall the fundamentals of relation algebra based
on the homogeneous approach of [26], its developments in [13,19,27] and the
generalization to heterogeneous relation algebra in [24,25].

Set-theoretic relations form the standard model of relation algebras. We as-
sume the reader to be familiar with the basic operations on them, viz. RT (trans-
position), R (complementation), R∪S (union), R∩S (intersection), RS (com-
position), the predicates R ⊆ S (inclusion) and R = S (equality), and the special
relations O (empty relation), L (universal relation), and I (identity relation). The
three Boolean operations , ∪ and ∩, the order ⊆ and the two constants O and
L form Boolean lattices. Well-known properties of set-theoretic relations are RT

= R T, (R∪S)T = RT∪ST, (R∩S)T = RT∩ST, (RT)T = R, (RS)
T

= STRT, and
the monotonicity of the transposition operation. Furthermore, union, intersec-
tion and composition are monotonic in both arguments.

The theoretical framework for these rules (and many others) to hold is that
of a (heterogeneous) relation algebra with typed relations as elements. Typing
means that each relation has a source and a target and we write R : X↔Y
to express that X is the source and Y is the target of R. We call X↔Y the
type of R. As constants and operations of a relation algebra we have those of
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set-theoretic relations, where we (as usual) overload the symbols O, L and I, i.e.,
avoid the binding of types to them. The axioms of a relation algebra are

(1) the axioms of a Boolean lattice for all relations of the same type under the
Boolean operations, the order, empty relation and universal relation,

(2) the associativity of composition and that identity relations are neutral ele-
ments w.r.t. composition,

(3) that QR ⊆ S, QTS ⊆ R and S RT⊆ Q are equivalent, for all relations Q,
R, S (with appropriate types),

(4) that R 6= O is equivalent to LRL = L, for all relations R and all universal
relations (with appropriate types).

We do not require the Boolean lattice to be complete, as in [26]. In [24] the
equivalences of (3) are called the Schröder equivalences and direction ‘⇒’ of (4)
is called the Tarski rule. Our variant of the Tarski rule is motivated by the fact
that it avoids the degenerated case of a Boolean lattice with one element only.
In the relation-algebraic proofs of this paper we will mention only applications
of the Schröder equivalences, the Tarski rule and ‘non-obvious’ consequences of
the axioms. Furthermore, we will assume that complementation and transpo-
sition bind stronger than composition, composition binds stronger than union
and intersection, and that all expressions and formulas are well-typed. Since
types are helpful for the understanding, they frequently are presented in the
text surrounding the corresponding formulae.

In this paper we make use of the following classes of relations. A relation R is
univalent if RTR ⊆ I and total if RL = L. As usual, a univalent and total relation
is a function. A relation R is injective if RT is univalent and surjective if RT is
total. Finally, a relation R is irreflexive if R ⊆ I and symmetric if R = RT. In case
of set-theoretic relations the equivalence of these relation-algebraic specifications
and the common logical specifications can easily be derived.

Relation algebra provides different ways to model subsets and single elements
of sets. In the present paper we use vectors, a special class of relations introduced
in [24], and usually denoted by lower-case letters. A relation v is a vector if
v = vL. For a set-theoretic relation v : X↔Y the condition v = vL means that
v is (as set of pairs) of the specific form V × Y , with a subset V of X, i.e., for
all x ∈ X and y ∈ Y we have (x, y) ∈ v if and only if x ∈ V . We may consider
v as relational model of the subset V of its source X. For modeling an element
x ∈ X we identify the singleton set {x} with the only element x it contains.
This leads to a specific class of vectors. A point p is an injective and surjective
vector. In the set-theoretic case and if the point p : X↔Y is of the specific form
p = P × Y with P ⊆ X, then injectivity of p means that P contains at most
one element and surjectivity of p means that P contains at least one element.
Next, we prove properties of points which are consequences of our variant of the
Tarski rule.

Lemma 2.1 If p is a point, then we have p 6= O, and if p and q are points, then
we have pqT 6= O.
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Proof. Using the Tarski rule and that the point p is a surjective vector, we get

p 6= O ⇐⇒ LpL = L ⇐⇒ Lp = L ⇐⇒ L = L ,

that is, the first claim, and using the Tarski rule twice, surjectivity of p and
non-emptiness of points (i.e., the first claim), the second claim follows from

pqT 6= O ⇐⇒ LpqTL = L ⇐⇒ LqTL = L ⇐⇒ qT 6= O ⇐⇒ q 6= O. �

In the context of algorithms the choice of an element from a non-empty set is
frequently used. In the same way the choice of a point from a non-empty vector is
fundamental for relational programming. Therefore, we assume a corresponding
operation point to be at hand – as in the programming language of RelView; see
[30] – such that point(v) is a point and point(v) ⊆ v, for all non-empty vectors v.
Note that point is a (deterministic) operation in the usual mathematical sense,
such that each call point(v) yields the same point in v. However, the above
requirements allow different realizations. The specific implementation of point
in RelView uses the fact that RelView deals only with relations on finite
sets, which are linearly ordered by an internal enumeration. A call point(v) then
chooses that point which describes the least element of the set described by v.

3 A Relational Program for Vertex Coloring

Graph coloring in general and vertex coloring in particular is one of the most im-
portant and most studied concepts in graph theory. It leads to many interesting
applications in mathematics and computer science, e.g., in the construction of
timetables. In this section we develop a relational program to compute a vertex
coloring of a given undirected graph, i.e., a labeling of the vertices with colors
such that two adjacent vertices are labeled with different colors.

Assume G to be an undirected (loop-free) graph with vertex set X. We
model G by the adjacency relation E : X↔X such that for all x, y ∈ X it
holds (x, y) ∈ E if and only if x and y are adjacent. Since G is assumed to be
undirected (and loop-free), E is symmetric and irreflexive. E is the input of the
relational program we want to develop and to prove as correct. Since we tent to
a while-program and the use of the inductive assertion method, this leads to

Pre(E) :⇐⇒ E = ET∧ E ⊆ I (Pre)

as pre-condition. The output of our relational program should be a vertex color-
ing of G. Usually natural numbers are taken as colors and, thus, a vertex coloring
of G would be a function C : X → N such that C(x) = C(y) implies (x, y) /∈ E,
for all x, y ∈ X. Functions are specific relations and so vertex colorings are re-
lations as well. We want to stay as abstract as possible and do not want to use
natural numbers as colors, but elements of an abstract set F of colors. As a con-
sequence, a vertex coloring of G is a relation C : X↔F that is univalent, total,
and for all x, y ∈ X if there exists f ∈ F such that (x, f) ∈ C and (y, f) ∈ C this
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implies (x, y) ∈ E . It is easy to show that the third requirement is equivalent
to CCT⊆ E . This yields

Post(C,E) :⇐⇒ CTC ⊆ I ∧ CL = L ∧ CCT⊆ E (Post)

as post-condition. We call the formula CCT ⊆ E of Post(C,E) the coloring
property of C w.r.t. E.

To develop a relational while-program with input E and output C which
is correct w.r.t. the pre-condition Pre(E) and the post-condition Post(C,E), it
seems to be reasonable to follow a greedy approach. Using a loop, the program
assigns to each vertex an available color that is not already used for one of
its neighbors. Such an approach means that we work with partial colorings.
Formally, that means we use

Inv(C,E) :⇐⇒ CTC ⊆ I ∧ CCT⊆ E (Inv)

as loop-invariant, and want to extend C in each run through the loop by coloring
an uncolored vertex with an allowed color in the above described manner until
C is total. Summing up, we have

{Pre(E) } . . . ; { Inv(C,E) } while CL 6= L do . . .od {Post(C,E) }

as program outline. Because of the definition of the loop-invariant and the post-
condition we immediately obtain the implication

Inv(C,E) ∧ CL = L =⇒ Post(C,E) (PO1)

to be valid. Hence, by (PO1) we have the first proof obligation of program
verification, viz. that the loop-invariant in conjunction with the exit-condition
of the loop implies the post-condition. It remains to develop an initialization that
establishes the loop-invariant and a loop-body that maintains the loop-invariant
as long as CL 6= L holds. Obviously, we have:

Lemma 3.1 The empty relation O : X↔F is univalent and fulfills the coloring
property w.r.t. E.

As an immediate consequence of this lemma we get that the implication

Pre(E) =⇒ Inv(O, E) (PO2)

is valid. If we, guided by this fact, change the above program outline by con-
cretizing the initialization to C := O, then (PO2) is the second proof obligation
of program verification and says for the new program outline that the loop-
invariant is established by the initialization if the pre-condition holds.

To develop a loop-body, we use the fact that the vector CL models the domain
of the univalent relation C : X↔F , i.e., the set of vertices of G which are
already colored. If CL 6= L, then the call point(CL ) selects a point, say p, with
p ⊆ CL that models an uncolored vertex, say x ∈ X. Guided by the above
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mentioned greedy approach, we now consider the vector Ep. A little component-
wise reflection shows that it models the set of neighbors of x and that the derived
vector CTEp models the image of the set of neighbors of x under the univalent
relation C, that is, the set of colors already assigned to a neighbor of x. As a
consequence, the complemented vector CTEp models the set of colors that are
allowed to be assigned to x without contradicting the coloring property w.r.t. E.
If we define a point q as q := point(CTEp ), then q models one of these colors,
say f ∈ F , and the union C∪pqT extends the relation C by additionally assigning
f to x. This yields the following complete program outline:

C := O;
while CL 6= L do

let p = point(CL );

let q = point(CTEp );
C := C ∪ pqT od

(VC)

To improve readability of (VC), we use two let-clauses for assigning the above
mentioned points p and q.

We have already verified two out of the three proof obligations needed to
prove partial correctness of the relational program (VC) w.r.t. the above pre-
and post-condition specification. It remains to verify the third proof obligation

Inv(C,E) ∧ CL 6= L =⇒ Inv(C ∪ pqT, E) (PO3’)

for partial correctness, where p and q are defined as in the relational program
(VC). In case programs do not change the input and the precondition Pre re-
mains unchanged, the pre-condition can be added to the loop-invariant. For the
relational program (VC) this is the case and hence it suffices to show

Pre(E) ∧ Inv(C,E) ∧ CL 6= L =⇒ Inv(C ∪ pqT, E) (PO3)

We prove (PO3) in two steps. First, we show that enlarging a univalent relation
by the product of two points as done in line 5 of the relational program (VC)
yields again a univalent relation.

Lemma 3.2 Let C, p and q be relations such that C is univalent, p and q are
points, CL 6= L, and p ⊆ CL . Then C ∪ pqT is univalent.

Proof. Because of the equation

(C ∪ pqT)
T

(C ∪ pqT) = CTC ∪ qpTC ∪ CTpqT∪ qpTpqT

it suffices to show the following four inclusions:

(1) CTC ⊆ I (2) qpTC ⊆ I (3) CTpqT⊆ I (4) qpTpqT⊆ I

Inclusion (1) holds as C is univalent. Since qpTC = (CTpqT)
T

and I = IT, inclusion
(2) is equivalent to inclusion (3) and, thus, it suffices to show that one of them
holds. To prove inclusion (3), we calculate

p ⊆ CL ⇐⇒ CL ⊆ p ⇐⇒ CTp ⊆ O ,
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where we apply one of the Schröder equivalences in the second step. So, we have
CTp = O and this implies CTpqT = O ⊆ I. Using the vector property and the
injectivity of the point q, inclusion (4) is shown by

qpTpqT⊆ qLqT = qqT⊆ I . �

The following lemma states the second fact we have to prove for verifying proof
obligation (PO3). We show that the enlargement maintains the coloring property.

Lemma 3.3 Let E, C, p and q be relations such that E is symmetric and irre-
flexive, p and q are points, C fulfills the coloring property w.r.t. E, CTEp 6= L,
and q ⊆ CTEp . Then C ∪ pqT fulfills the coloring property w.r.t. E.

Proof. We follow exactly the proof of Lemma 3.2 and start with

(C ∪ pqT) (C ∪ pqT)
T

= CCT∪ pqTCT∪ CqpT∪ pqTqpT,

such that it suffices to show the following four inclusions:

(1) CCT⊆ E (2) pqTCT⊆ E (3) CqpT⊆ E (4) pqTqpT⊆ E

Inclusion (1) holds since it is assumed that C fulfills the coloring property. Be-

cause of pqTCT = (CqpT)
T

and E = E
T

the inclusions (2) and (3) are again
equivalent. To prove inclusion (3), we calculate

q ⊆ CTEp ⇐⇒ CTEp ⊆ q ⇐⇒ Cq ⊆ Ep
⇐⇒ Ep ⊆ Cq ⇐⇒ CqpT⊆ E ,

where we apply the Schröder equivalences in the second and the fourth step.
Using the vector property and the injectivity of the point q and the irreflexivity
of E, inclusion (4) is shown by

pqTqpT⊆ pLpT = ppT⊆ I ⊆ E . �

Combining the Lemmata 3.2 and 3.3, we immediately obtain (PO3) and, thus,
altogether the partial correctness of the relational program (VC) w.r.t. the pre-
condition Pre(E) and the post-condition Post(C,E). Note that only for the
maintenance of the coloring property the pre-condition is required.

We are not only interested in partial correctness, but also in total correctness.
Therefore, it remains to prove the proof obligation

Pre(E) =⇒ the relational program (VC) yields a defined value . (PO4)

To verify (PO4), we have to verify two facts: first, we have to prove that the loop
of the relational program (VC) terminates, and, secondly, that the partial opera-
tion point is only applied to non-empty vectors (i.e., yields a defined value). The
following lemma shows that the relation C is strictly enlarged in each execution
of the loop-body.
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Lemma 3.4 Let C, p and q be relations such that p and q are points, CL 6= L,
and p ⊆ CL . Then C ⊆ C ∪ pqT and C 6= C ∪ pqT.

Proof. Inclusion C ⊆ C ∪ pqT is trivial. Next, we show pqT⊆ C by

Cq ⊆ CL ⇐⇒ CTCL ⊆ q Schröder equivalences

=⇒ CTp ⊆ q as p ⊆ CL

⇐⇒ pTC ⊆ qT

⇐⇒ pqT⊆ C Schröder equivalences .

Using pqT⊆ C , the second claim C 6= C∪pqTnow can be shown by contradiction:
C = C ∪ pqT would imply pqT⊆ C, such that pqT⊆ C ∩ C = O follows. But the
latter fact contradicts Lemma 2.1. ut

From this lemma we obtain that the loop of the relational program (VC) ter-
minates if E : X↔X is a relation on a finite set X, i.e., if the graph G is
finite. However, to verify (PO4) we also have to ensure that the partial opera-
tion point is only applied to non-empty vectors. In case of the call point(CL )
non-emptiness of CL follows from the loop-condition. However, since we do not
assume specific properties for the set F of colors, in case of the call point(CTEp )

it may happen that CTEp is empty, viz. if there are too few colors and each
color is already assigned to a neighbor of the vertex modeled by the point p.
This situation can not appear if there are enough colors. Obviously |X| colors
suffice. So, we have the following result:

Theorem 3.1 If E is a relation on a finite set X and F consists of at least |X|
colors, then the relational program (VC) is totally correct w.r.t. the pre-condition
Pre(E) and the post-condition Post(C,E).

The assumptions of this theorem and its proof confirm again the experience
we have made so far with the assertion-based verification of relational programs:
algebra is an ideal base to verify the proof obligations for partial correctness, but
for showing total correctness non-algebraic arguments are necessary, typically.
Usually, they concern the sizes of the carrier sets of the relations in question.

In the following sections we demonstrate how the presented proofs can be
automated, or at least supported by the tools mentioned in the introduction.

4 Invariant Testing using RelView

Relation algebra has a fixed and small set of constants and operations which
(in the case of finite carrier sets) can be implemented very efficiently. At the
University of Kiel we have developed RelView, a special purpose computer
algebra system for relation algebra. It uses BDDs for implementing relations
and makes full use of a graphical user interface. Details can be found in [5,30].

Translating the relational program (VC) into the programming language of
RelView yields the following code:
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color(E)

DECL C, p, q

BEG C = O(E);

WHILE -eq(C*L(C),L(C)) DO

ASSERT(Inv, incl(C^*C,I(C)) & incl(C*C^,-E));

p = point(-(C*L(C)));

q = point(-(C^*E*p));

C = C | p*q^ OD

RETURN C

END.

In this RelView-program the symbols -, ^, |, & and * denote the operations
for complementation, transposition, union, intersection and composition, respec-
tively. Furthermore, eq and incl are base-operations for testing the equality and
inclusion of relations, respectively. All tests yield relations on a specific singleton
set 1 as result, where L : 1↔1 models ‘true’ and O : 1↔1 models ‘false’. A call
of the base-operation O generates an empty relation, with the same type as the
argument. The operations L and I perform the same for the universal relation
and the identity relation, respectively. Due to the initialization of the variable
C in color by the empty relation of the same type as the input E, hence, the
vertex set X of the graph G is taken as set F of colors, implicitly. As a con-
sequence, there are enough colors and the RelView-program color is totally
correct w.r.t. the pre-condition Pre(E) and the post-condition Post(C,E).

Within the RelView-program color we also use the ASSERT-statement for
testing the loop-invariant. If the second part of ASSERT (a relation-algebraic for-
mula formulated as RelView-expression) is true, then the statement is without
effect, otherwise the execution stops and RelView allows us to inspect the val-
ues of the variables via the debug window. Combining the specification of the
loop-invariant in the program via ASSERT with RelView’s feature for generating
relations randomly (also with specific properties like, in our case, symmetry and
irreflexivity) has the general advantage that no invariant-tests have to be done
by hand (which takes time and is vulnerable to mistakes) and a lot of tests can
be done in a very short time. Consequently, one gets a good feeling if a loop-
invariant was chosen correctly. Because of the specific modeling of truth-values
in RelView, furthermore, on the two relations L : 1↔1 and O : 1↔1 the
Boolean operations , ∪ and ∩ precisely correspond to the logical connectives
¬, ∨ and ∧, respectively. This allows to formulate all Boolean combinations over
inclusions of relations as RelView-expressions and to test them via ASSERT.
Experience has shown that this suffices for most practical applications. It also
has shown that stepwise execution and visualization via RelView are frequently
helpful if invariants are not correct, e.g., too weak.

5 Verification of Proof Obligations using Prover9

Along the lines of [8,9] we now show how the correctness proof of the relational
program (VC) can be supported by an automated theorem prover, i.e., we au-
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tomate the proofs of Section 3 as far as possible. Intending a user-optimized
approach we choose Prover9 as verification tool. This choice is based on an eval-
uation that shows that Prover9 performs best for automated reasoning in the
context of relation algebra; see [9] for details. A further reason for the choice of
Prover9 is the positive experience made in [8,9] in the automated verification of
relational programs with this tool.

Prover9 [20] is a resolution- and paramodulation-based automated theorem
prover for first-order and equational logic. However, it does not include a type
system. Of course, types can be realized using predicates. Since this is a bit
cumbersome, we have decided to restrict our experiments to homogenous relation
algebra in the sense of [13,26,27], with untyped relations. This algebraic structure
axiomatizes the algebra of relations on one set (the universe) and its axioms are
obtained from those of Section 2 if all demands concerning types are removed.
A consequence of our decision is that the sets of vertices and colors coincide, as
in case of the RelView-program color of Section 4.

For each result of Section 3 we want to prove, we create one input file.
Each file consists of three parts, where the first two parts of each file coincide.
The first part contains the language options, in particular the list of operations
of relation algebra. We use the symbols ^, ’, \/, /\ and * for transposition,
complement, union, intersection and composition, respectively, with the binding
strengths of Section 2. The second part is a list of assumptions and contains the
axioms of homogeneous relation algebra, some auxiliary facts which turned out
to be well suited for proving relation-algebraic results, and predicates for defining
properties of relations. The constants L, O, I and the inclusion of relations are
implicitly defined via the axioms, in symbols L, O, I and <=. The encoding of
the axiomatization in Prover9 is straightforward. For example, the distributivity
laws can be formulated as follows:

x /\ (y \/ z) = (x /\ y) \/ (x /\ z).

x \/ (y /\ z) = (x \/ y) /\ (x \/ z).

To give another example in the notation of Prover9 the Schröder equivalences
look as follows:

x*y <= z <-> x^*z’ <= y’.

x*y <= z <-> z’*y^ <= x’.

Although Prover9 accepts capital letters as variable names, such as Q, R and S,
we use the small letters x, y and z for variables, since variables which are denoted
by these letters are automatically assumed as universally quantified. The set of
auxiliary facts only lists statements which are already proven by Prover9 (e.g., in
[16,17]). The predicates to specify, for instance, univalent relations or relations
with the coloring property can be encoded as follows:

univalent(x) <-> x^*x <= I.

coloringProperty(x,z) <-> x*x^ <= z’.

The goal to be proven by Prover9 is specified in the third part of the file. As
mentioned, we apply algebra only for proving facts, where arguments concerning
sizes of sets etc. are not necessary. This means that, besides the auxiliary lemma
about points of Section 2, we apply Prover9 only for proving the lemmata of
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Section 3. Doing so, we use the variables p and q for the general points p and
q of Lemma 2.1 as well as for the specifically selected points p := point(CL )

and q := point(CTEp ) of Section 3 and the (again automatically universally
quantified) variables x for the relation C and z for the relation E, respectively.
Then, e.g., the statement of Lemma 3.3 can be encoded as follows:

all p all q (symmetric(z) & irreflexive(z) & point(p) & point(q) &

coloringProperty(x,z) & (x^*z)*p != L & q <= ((x^*z)*p)’

-> coloringProperty(x \/ p*q^,z)).

Prover9 has no problems to derive a proof of Lemma 2.1 and requires only
a couple of milliseconds. For the input files for the Lemmata 3.1, 3.2 and 3.4
Prover9 generates output files containing their proofs instantaneously as well.
However, in case of Lemma 3.3 Prover9 is not able to find a proof in an ap-
propriate time (we stopped the execution after one hour). Guided by our ex-
perience gained by previous case studies we know that in such a situation the
unfolding of definitions, the subdivision of the entire task into appropriate sub-
tasks and the removal of laws may help, since these steps reduce the size of
the search space, frequently even dramatically. In the present case replacing
coloringProperty(x \/ p*q^,z) by its definition is not sufficient. Also the re-
moval of formulae seems not to be helpful. If, however, the proof of Lemma 3.3 is
divided into, first, showing that its conclusion is equivalent to the conjunction of
the inclusions (1) to (4) of its proof and, secondly, that from its assumptions this
conjunction follows, then for each of these tasks Prover9 needs again no time.

If Prover9 fails to find a proof, besides the unfolding of definitions, the manual
change of the goal and the removal of axioms or auxiliary facts, one can use
that the tool allows a weighting of formulae to specify on them an order of
significance in view of the present problem. Because of our experiments with
different weightings, in the case of Lemma 3.3 we believe that also a weighting
of formulae does not lead to a proof in an appropriate time.

Summing up, Prover9 was able to prove the desired results and requires in
one case a small user interaction only. As all automatic theorem provers, if the
goals are appropriately formulated, then no interaction is needed and, hence, no
deeper knowledge about (relation-)algebraic reasoning is required from the user.

6 Verification of Proof Obligations using Coq

Now we change the paradigm from ‘automated’ to ‘user-controlled’ and demon-
strate how to verify Lemma 2.1 and the lemmata of Section 3 by use of the proof
assistant Coq. More information about this tool can be found in [11,29].

Since the functionality of Coq is based on the predicative calculus of induc-
tive constructions, each object has a type. Thus, heterogeneous relation algebra
can be modeled, and it has already been done within a relation-algebra library,
presented in [22] and available via the web (see [23]). This library does not only
include a model for heterogeneous relation algebra but also for a large number
of other algebraic structures. For this purpose, sets of operations and laws are
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provided, mainly in the modules lattice (for lattice theory), monoid (for pre-
ordered monoids) and kat (for Kleene algebra with tests). The dependencies of
the structures w.r.t. the operations and laws are managed in the module level,
i.e., one can choose which kind of structure should be used by providing the
required operations and laws.

Since we want to derive the proofs of Lemma 2.1 and those of Section 3,
we assume a heterogeneous relation algebra, where the constants, operations,
predicates and laws are defined in the mentioned modules. At the moment, the
Axioms (3) and (4), i.e., the Schröder equivalences and the Tarski rule, are not
formulated in the library of [22], yet.

The Schröder equivalences can be derived via the two so-called modular laws
of a Dedekind category, that is, via the law named capdotx and its dual law
capxdot, which are defined in the module monoid.v. One of the Schröder equiv-
alences can be encoded as follows:

Lemma schroe1 ‘{laws} ‘{BL+STR+CNV<<l} n m p(Q:X n m)(R:X m p)(S:X n p):

Q*R <== S <-> Q‘*!S <== !R.

With ‘{laws} and ‘{BL+STR+CNV<<l}, respectively, we provide the operations
and axioms of relation algebra. The symbols ‘, !, +, ^ and * are used for trans-
position, complement, union, intersection and composition, respectively.

The missing Tarski rule has to be added since it is necessary for the proofs
of Lemma 2.1 and (implicitly) of Lemma 3.4. In contrast to the Schröder equiv-
alences, the Tarski rule is not a consequence of the given laws, i.e., we have to
provide it as an additional axiom. In Section 2, we specify the Tarski rule by the
equivalence of R 6= O and LRL = L for all relations R and universal relations
with appropriate types. Of course, constants are typed objects in Coq, too. But,
if Coq can infer the type from the context, then it is not necessary to specify
it. In such a case the universal relation, empty relation and identity relation are
denoted with top, 0 and 1, respectively. In case of non-inferable types we have
to specify them by, for instance, top’ X Y for the universal relation L : X↔Y .
We have a universal quantification over the three occurring universal relations
in the Tarski rule. For its formulation within Coq, besides the type of R we
have to specify the types of the two universal relations of the left-hand side of
LRL = L only. The type of O in R 6= O and the type of the right-hand side of
LRL = L then can be inferred from the context. Considering this typing and
using a Coq-definition, the Tarski rule can be encoded as follows:

Definition Tarski_rule ‘{laws} : Prop :=

(forall a b c d (R:X b c),(top’ a b)*R*(top’ c d) == top <-> ~(R == 0)).

Note that we omit the assumption ‘{BL+STR+CNV<<l} about the level, because
such definitions can be written without having a structure satisfying any law.
We assume the definition Tarski_rule in each lemma whose relation-algebraic
proof uses the Tarski rule. As already mentioned, this concerns Lemma 2.1 of
Section 2 and Lemma 3.4 of Section 3.

As in the previous section, we define predicates specifying, e.g., relations as
points or relations with the coloring property. In Coq, this can be done as follows:

Definition coloringProperty ‘{laws} {n} {m}: X n m -> X m m -> Prop :=
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fun x y => x*x‘<== !y.

Definition point ‘{laws} {n} {m}: X n m -> Prop :=

fun p => vector p /\ p*p‘ <== 1 /\ (forall a, top’ a m == top*p).

Here vector is yet another predicate for describing vectors. Such predicates
improve the readability of the encoding.

Using the defined predicates and the definition specifying the Tarski rule, the
first statement of Lemma 2.1 can be encoded as follows:

Lemma lemma_2_1_1 ‘{laws} ‘{BL+STR+CNV<<l} m n:

tarski_rule -> forall (p:X m n), point p -> ~(p == 0).

Its second statement and the lemmata of Section 3 can be formulated in a similar
way. For example, the Coq-version of Lemma 3.3 is given below; it looks rather
similar to the version in Prover9 with typed relations though (note that the
conjunction symbol /\ of Coq corresponds to the symbol & in Prover9):

Lemma lem3_3 ‘{laws} ‘{BL+STR+CNV<<l} v f (C:X v f)(E p:X v v)(q:X f v):

symmetric E /\ irreflexive E /\ point p /\ point q /\

coloringProperty C E /\ ~(C‘*E*p == top) /\ q <== !(C‘*E*p)

-> coloringProperty (C + p*q‘) E.

Usually, the development of proofs in Coq is done via various tactics. The
proofs of the mentioned lemmata, apart from Lemma 3.4, can be managed with
only a few basic tactics, such as intro for introducing new variables or hy-
potheses, unfold for unfolding upcoming predicates in the goal as well as in the
hypotheses and rewrite for replacing terms. More interesting are the tactics
defined in the module normalisation.v of the library described in [22]. This
module includes three specific tactics called ra, ra_simpl and ra_normalise

which can be used to automate parts of the proofs, for instance in case of uni-
versally quantified inclusions and equalities. The proof of Lemma 3.4 has to be
handled in a different way since the occurring negated equality. For this pur-
pose, we slightly change the proof presented in Section 3 and import a module
for classical propositional logic, viz. the module Coq.Logic.Classical Prop, to
provide the required De Morgan’s laws. The advantage of this approach is that
we are able to prove the lemma with the already mentioned tactics, i.e., we avoid
to deal with contradiction in Coq.

In summary, Coq offers a type system and allows to model heterogeneous
relation algebra in a very natural way. Amongst others, the library we have
used offers a typed model for heterogeneous relations, a large number of already
proven algebraic theorems and very helpful tactics for reasoning about relation
algebra.

7 Verification of Proof Obligations using Isabelle/HOL

In this section we discuss the verification of the relational program (VC) by
means of Isabelle/HOL, a proof assistant that additionally offers support for
automated theorem proving via the Sledgehammer tool. For more details on
Isabelle/HOL, see e.g., [21].
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Similar to Coq, libraries can be included in Isabelle/HOL. The development
of such libraries usually takes a long time and deep insights in the theorem
prover at hand. Luckily, as in the case of Coq, relation algebra has already be
formalized in Isabelle/HOL and is available via the web (see [1]). However, the
library of [1] formalizes homogeneous relation algebra only. A consequence of its
use with regard to the verification of the relational program (VC) is again that
the sets of vertices and colors coincide.

The formalization [1] of homogeneous relation algebra follows the lines of
[19,26]. Besides the basic constants, operations and predicates and the axioms
it includes a number of further important relation-algebraic concepts such as
subidentities, vectors and points, as well as various notions associated to func-
tions – together with numerous proven facts. For example, all facts about relation
algebra listed in Section 2 have been proven. As a consequence, it seems to be
an ideal basis for the verification of relational programs such as (VC). However,
the current implementation does not contain the Tarski-rule (similar to Coq),
so we added this rule to the set of assumptions of a lemma when necessary.

The provided libraries are included by a simple imports-statement; encoding
of the lemmata is easy and straightforward. For example, Lemma 3.3 is encoded
as follows, where ^ indicates transposition and the symbol - is used for both
negation and complement:

lemma assumes "symmetric e" and "irreflexive e"

and "is_point p" and "is point q"

and "coloringProperty x e" and "q ≤ -(x^ ; e ; p)"

shows "coloringProperty (x + p;q^) e"

It might be confusing that we use different symbols for the same operation (e.g.,
T, ^, ‘ and ^ for transposition). However, since we use different tools we decided
to stick to the notation of these frameworks. Since the GUI of Isabelle/HOL
allows non-ascii symbols, transposition can be encoded as ^.

The used predicates are basically identical to the ones of Prover9 and Coq.
For example, coloringProperty is defined as follows:

definition coloringProperty

where "coloringProperty x e ≡ x ; x^ ≤ -e"

A straightforward approach would be the use of the Isabelle/Isar tool (see
[28]), which basically replays the proofs given in Section 3. The advantage of this
approach is that it provides a proof certificate and verifies the manual proofs.
Moreover the generated proofs are easy to read. However, this strategy does not
provide (much) automation and hence requires expert knowledge in relation-
algebraic reasoning.

As mentioned in Section 5, automated reasoning within the relation-algebraic
setting is successful if the proof-goals are appropriately formulated. In contrast
to Coq, Isabelle/HOL offers support for (first-order) automated theorem provers
via the integrated tool Sledgehammer (see [12] for more details), thus, allows to
combine the ‘automated’ and ‘user-controlled’ paradigm. The Sledgehammer
tool takes the given goal and proven facts available, feeds them to automated
theorem provers, such as E and Z3, and awaits their output. In case one of the
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provers is successful in finding a proof, the proof is included in the Isabelle-
file; in case all theorem provers fail, the GUI continues to assist in a manual
proof derivation. That means that Isabelle/HOL provides both proof-assistance
and proof-automation and it seems to be the perfect combination of interac-
tion and automation. In fact, a proof of Lemma 3.3 becomes ‘nearly’ automatic:
after a first manual step using Isabelle’s unfolding and simplification mecha-
nisms (simp add: unfold_defs distrib_left distrib_right, safe) we end
up with the four subgoals (1) to (4) presented in the proof of Lemma 3.3. This
command unfolds automatically all predicates (unfold_defs) and uses the built-
in simplifier, which is manually extended by the two distributivity axioms of
relation algebra (distrib_left distrib_right).

The derived subgoals can now all be proven automatically by Sledgehammer
using not only the axioms of relation algebra, but also the facts provided by the
theories of relation algebra of [1]. The fact "x;y ≤ z ⇔ y ≤ -(x^;-z)",
for example, which was proven in the framework of [1], is automatically cho-
sen to prove the second subgoal (p;q^;x^≤ -e) (in the proof pqTCT ⊆ E ).
All other lemmata presented in the paper, except Lemma 3.4, can be proven
in an identical way: first derive subgoals using the inbuilt simplifier, and then
use Sledgehammer and the provided automated theorem provers to prove these
subgoals automatically. Lemma 3.4 could not be proven by this strategy. In fact,
we could only reply the proof by contradiction given in Section 3 – real proof
automation was not possible.

8 Assessment and Concluding Remarks

In this paper we have developed a relational program for calculating a vertex
coloring of an undirected graph, which is modeled by the adjacency relation. A
relation-algebraic approach was chosen since case studies have shown that such
an approach is not only very suitable for prototyping and testing programs by
systems like RelView, but also for proof automation. The program verification
was performed by classical reasoning about pre- and post-conditions, and loop-
invariants. The proofs of the proof obligations were executed with the help of
Prover9, Coq and Isabelle/HOL, which are prominent tools to support verifica-
tion tasks. This repetition of mechanized proofs and the comparison with the
original mathematical proofs allow us to compare these mentioned tools. As one
might expect each and every tool has its pros and cons.

Prover9 does not include a type system such that the typing of relations in
heterogeneous relation algebra would have to be realized by predicates. Such
predicates make the encoding more complicated and decrease the readability.
In our example types could be avoided, but if, e.g., incidence relations are used
to model undirected graphs or hypergraphs, then types are mandatory. All but
one theorems of Section 3 were proved full automatically by Prover9 in nearly
no time. Unfortunately, in spite of weighting the significant rules such that they
should be applied first, Prover9 was still not able to find a proof for Lemma 3.3
in an appropriate time frame. At the end, we decided not to change the weights
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of the assumptions but to split the goal into subgoals. Indeed, this approach
requires a kind of interaction by the user, but it yields to uniform assumptions
for all theorems of Section 3 as well as to short proving times. These results are
not only based on the investigations presented in this paper but additionally
coincide with those discussed in [8,9,14]. Since Prover9 is fully automatic it
can be used as a black box and without having a deep understanding of its
functionality. From a user’s point of view a big advantage of Prover9 is that the
encoding of the axiomatization of homogenous relation algebra, the definition
of predicates and the formulation of theorems which have to be proved is very
straightforward and also comprehensible for non-experts.

The proof assistant Coq is the very opposite of Prover9. It is completely user-
controlled, i.e., a purely interactive theorem prover. Coq has a sophisticated type
system with type inference, which is comparable with those of functional pro-
gramming languages such as Haskell, ML and OCaml. For performing our proofs
we used an already existing library for relation algebra. In this case the library
implements homogenous as well as heterogeneous relation algebra. Due to this
we were able to reproduce all proofs of Section 3 without any restrictions on
types. The used library does also include tactics, that is, strategies for proof-
finding and proof execution. They support relation-algebraic reasoning. Some of
them implemented decision procedures for subsets of relation algebra, which we
might use in future experiments. Furthermore, the library comes with a large
number of algebraic structures related to relation algebras, e.g., Dedekind cat-
egories, Kleene algebras and Kleene algebras with tests. For this reason, the
library can also be used in the context of reasoning about such structures as
well. We refer to [10] for an application concerning Dedekind categories. The
usage of Coq requires a lot of knowledge about the internals of the tool, such as
the available tactics and the hierarchy and dependencies of the modules. Besides
this, in our case the user needs expertise about relation-algebraic reasoning and
the used library for relation algebra to be able to derive the proofs step by step.
So, from a user’s point of view Coq is far more complicated than Prover9; it is
suitable for advanced users only.

For the proof verification with Isabelle/HOL we were also able to build on
already existing theories. Since a library for heterogeneous relation algebra does
not exist yet, we used a library that implements homogenous relation algebra.
Using this library we again have to avoid typed relations, although Isabelle/HOL
provides a type system similar to that of Coq. Concerning proof paradigms, Is-
abelle/HOL bridges the gap between interactive and automated reasoning via
the Sledgehammer tool. Our experiments have shown that our strategy, i.e., first
using the inbuilt simplifier for deriving subgoals and then Sledgehammer to prove
these subgoals automatically, was successful with all theorems of Section 3 except
Lemma 3.3, again. For the latter one, we have to derive new subgoals with two
manual steps. However, more intrinsic proofs (here a proof by contradiction)
requires again expert knowledge in relation-algebraic reasoning. Isabelle/HOL
does not offer tactics nor decision procedures, yet, for relation-algebraic rea-
soning specifically. With regard to usage, Isabelle/HOL is powerful enough to
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support non-expert users with many (standard) tasks in case the problems in
question are not very complex. But in case of more complex problems it requires
experience and is then, like Coq, suitable for advanced users only.

As future work we plan to exhaust the capabilities of Prover9 w.r.t. the dif-
ferent options, e.g., the weighting of the given assumptions, to hopefully achieve
best proving times for relation-algebraic theorems. Concerning Coq, we plan to
explore the full power of the tactics and to investigate whether they are support-
ive in verification tasks. For Isabelle/HOL, we want to consider the implementa-
tion of tactics which are specific for relation-algebraic reasoning. Furthermore,
an extension of the used library to heterogeneous relation algebra is desirable.
We assume that by all this many verification tasks concerning programs on rela-
tions or related objects can be automated to a large extent – this can, however,
only be verified by further and more complicated case studies. Finally, we plan
to investigate in the future how tools for generating loop invariants (as Why3,
see [31]) are applicable for our purposes.
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