
For a Microkernel, a Big Lock Is Fine

Sean Peters, Adrian Danis, Kevin Elphinstone, Gernot Heiser
NICTA and UNSW Australia

{sean.peters, adrian.danis, kevin.elphinstone, gernot}@nicta.com.au

Abstract
It is well-established that high-end scalability requires fine-
grained locking, and for a system like Linux, a big lock de-
grades performance even at moderate core counts. Never-
theless, we argue that a big lock may be fine-grained enough
for a microkernel designed to run on closely-coupled cores
(sharing a cache), as with the short system calls typical for
a well-designed microkernel, lock contention remains low
under realistic loads.

1. Introduction
For synchronising access to shared kernel state, the simplest
approach is a big kernel lock (BKL), which is taken upon
kernel entry and not released until kernel exit. The BKL has
a reputation of poor performance owing to contention, even
on moderate processor counts [Lehey 2001]. For achiev-
ing high-end scalability, minimising contention is essential
[Clements et al. 2013], making a big lock unsuitable.

However, there are scenarios which inherently do not deal
with high core counts. For example, SoCs designed for em-
bedded systems only feature low to moderate core counts
for now (up to 8), and optimisations designed for high-end
scalability may be sub-optimal for such processors. Fur-
thermore, for a microkernel that only provides fundamental
mechanisms rather than general system services, high-end
scalability is best achieved by a shared-nothing multikernel
design [Baumann et al. 2009], which consequently avoids
all locking in the kernel in favour of inter-kernel message
passing.

The multikernel is not optimal for small numbers of cores
that share caches, as the required inter-kernel communica-
tion is far more expensive than the communication through
a shared cache between closely-coupled cores. For the seL4

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APSys ’15, July 27 - 28, 2015, Tokyo, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3554-6/15/07. . . $15.00.
http://dx.doi.org/10.1145/2797022.2797042

microkernel [Klein et al. 2009], which is a general-purpose
platform and presently mostly deployed on systems with a
low to moderate core count, we therefore favour a clustered
multikernel approach [von Tessin 2012]: a cluster of cores
which shares a cache shares all kernel state, while across
clusters sharing nothing.

The optimal locking strategy for such a system is far
from obvious: seL4 is designed such that all frequently-used
system calls (message-passing IPC and interrupt handling)
are very short, resulting in much lower contention than on a
monolithic kernel such as Linux. As shared-cache processor
clusters are unlikely to scale to large core counts, a big lock
might well be the best design.

We investigate the locking-granularity trade-offs for a
microkernel running on cores sharing a cache (either as
one cluster of a clustered-multikernel design or because the
whole chip is closely-coupled). We find that in this scenario,
the BKL remains competitive for at least 8-core clusters,
which means that it remains the favoured design for micro-
kernels, in stark contrast to monolithic OSes.

2. What’s the Attraction of the Big Lock?
One might ask why we bother with the big lock at all. In or-
der to compare its performance with fined-grained locking,
we obviously need to implement the latter, so why not just
keep it and stop worrying about scalability?

 400

 600

 800

 1000

 1200

n
o
n
e

B
K

L

fin
e

R
T
M

C
y
c
le

s

6
6

1

7
2

6

8
4

6

8
3

1

(a) x86

n
o
n
e

B
K

L

fi
n
e

6
6

3

7
8

7

1
0

9
5

(b) ARM

Figure 1: Raw round-trip IPC cycle cost for various locking
strategies. Error bars indicate standard deviations.

There are two main concerns which favour the big lock:
overhead and correctness.

mailto:Sean.Peters@nicta.com.au
mailto:Adrian.Danis@nicta.com.au
mailto:Kevin.Elphinstone@nicta.com.au
mailto:gernot@nicta.com.au

2.1 Lock overhead
Each lock introduces overhead, as demonstrated in Figure 1.
Here we measure the (hot cache) round-trip IPC costs on
a single core with different locking strategies applied to
the seL4 kernel on the x86 and ARM architectures (see
Section 4.1 for platform details). “BKL” and “fine” refer to
applying single-lock and fine-grained locking, respectively,
while “RTM” refers to the use of hardware transactional
memory for synchronisation. “None” is identical to “BKL”
with the lock code compiled out. We will discuss details of
the lock implementations later (Section 3).

The figure shows that the overhead of a single lock is
65 cycles, or 10%, on x86 and 124 cycles, or 20% on ARM.
The overhead of fine-grained locking is three times as high
(for a total of 4 lock acquisitions per system call), about 30%
for x86 and 60% for ARM over the single-core performance.
The extra cost of fine-grained locking is clearly significant,
and IPC costs are critical to the performance of microkernel-
based systems [Liedtke et al. 1997]. It is a priori unclear
whether the reduced contention makes this overhead worth-
while.

Similarly for the RTM lock: it is inherently more expen-
sive. As hardware-supported transactions protect at a cache-
line granularity, RTM should also reduce contention com-
pared to the BKL, and the question is whether this will out-
weigh the higher baseline cost.

2.2 Correctness
Fine-grained locking introduces concurrency into the ker-
nel, and concurrency is notoriously hard to get right [Gode-
froid and Nagappan 2008]. Even for the small, 9 kLOC code-
base of seL4 (of which only about 1,500 LOC is scalability-
critical IPC or interrupt-handling code) we learned that it is
hard to get an optimised fine-grained locking implementa-
tion right. In fact, even after months of work we are still not
convinced that we have it 100% correct.

seL4 is designed as a high-assurance system for safety- or
security-critical uses, so correctness is the number-one con-
cern. The kernel has been comprehensively formally verified
for functional correctness and security enforcement [Klein
et al. 2014], but this applies only to the single-core ver-
sion. Verification of a single-lock version is feasible [von
Tessin 2013], but our present verification approaches cannot
deal with the concurrently-executed code fine-grained lock-
ing produces. Our verification team estimates that extending
the verification to a kernel version with fine-grained locking
will far exceed the cost already paid for verifying the single-
core version.

3. Locking seL4 state
3.1 Big kernel lock
The BKL is the natural, minimal extension of the exist-
ing seL4 design to multicores, as it is easy to implement
and mostly preserves the in-kernel assumption of no con-

currency. The kernel entry and exit code, which saves and
restores the user-state to a per-core kernel stack and sets up
safe kernel execution, remains outside of the BKL, while the
rest of the kernel is protected by the BKL.

This design is not entirely sufficient – the following in-
variant, used in the verification, no longer holds on a multi-
core kernel, even when the BKL is held:

Except for the currently executing thread’s TCB and
page table, all other TCBs and page tables are quies-
cent, and can be mutated or deleted.

User-level code executing on other cores implicitly de-
pends on the running thread’s TCB and page table to tran-
sition to kernel-mode via the kernel entry code to compete
for the BKL. The invariant therefore no longer holds. We ad-
dress this by modifying the kernel to ensure remote cores are
not dependent on any TCB or page-table undergoing dele-
tion. Our prototype currently takes a naı̈ve approach of trig-
gering remote cores to enter the kernel idle loop (which has
a permanent TCB and page-table) using an IPI.

The BKL design, which is partially driven by the existing
event-driven code base, is a valid design choice thanks to
the short duration of most system calls in the microkernel; it
would result in poor scalability on any other kind of system.

The only other changes required are (i) enabling TLB
shoot-down and (ii) introducing per-core idle threads. In or-
der to minimise inter-core cache-line migrations, we also in-
troduce per-core scheduler queues and current-thread point-
ers, even though access is serialised by the BKL.

To reduce contention (and enable the use of transactional
memory, see Section 3.3.1) we further minimise the amount
of locked code by moving context-switch-related hardware
operations after the BKL release.

Our BKL implementation uses a single CLH lock [Craig
1993]. A CLH lock is a scalable queue-based lock that spins
on a local cache-line when waiting. We also experimented
with ticket locks, but they are non-scalable and do not pro-
vide a performance benefit [Boyd-Wickizer et al. 2012].

3.2 Fine-grained locking
To compare the course-grained BKL with more complex
but more scalable fine-grained locking, we first replace the
BKL with a big reader lock [Corbet]. The lock allows all
reader cores to proceed in parallel as they access only local
state to obtain a read lock. Data structures now exposed to
concurrent writes are protected using individual fine-grained
locks.

IPC mutates the state of TCBs, endpoints, and (poten-
tially) the scheduler queues (depending on whether opti-
misations apply that avoid queue updates during IPC [El-
phinstone and Heiser 2013]). We add ticket locks (i.e. fine-
grained locks) to each of these data structures for synchro-
nising IPC within the reader lock. A typical synchronous
IPC now involves the kernel reader lock, two TCB locks,
and one endpoint lock. Lock contention during IPC is now

limited to cases where IPC involves a shared destination or
endpoint, or general contention with the kernel writer lock.
Independent activities performing IPC on independent cores
result in no lock contention. We avoid deadlocks resulting
from locking TCBs by identifying the TCBs involved prior
to locking (made possible by memory safety provided by the
reader lock), and then locking them in order of their memory
addresses.

We use a write-lock selectively in our present prototype
to avoid significant code changes for synchronising concur-
rency for paths that are not performance critical. Typical OS
functionality (e.g. networking) is implemented at user-level,
and thus most microkernel system calls are used much less
frequently than IPC or interrupt delivery. Thus the choice of
a writer lock to synchronise less frequent system calls is both
pragmatic and performance-neutral.

At minimum, this design retains the de-allocation of ker-
nel objects within the writer lock. The benefit is that exist-
ing memory safety is retained while holding the reader lock,
though contents of the objects themselves are be exposed to
concurrency for improved scalability.

3.3 Hardware transactional memory
3.3.1 Architectural support
Starting with the Haswell microarchitecture, Intel processors
feature an implementation of restricted transactional mem-
ory (RTM), called Intel TSX. We use this to implement our
RTM lock.

TSX provides 3 new instructions: XBEGIN, XEND, and
XABORT. Code successfully executed between XBEGIN and
XEND instructions will appear to have completed atomically,
and is thus called a transactional region. If there are any
memory conflicts during the execution of the transactional
region, the transaction will abort and jump to the instruction
specified by the XBEGIN. A program can explicitly abort a
transaction by issuing an XABORT instruction.

TSX takes advantage of existing cache coherency proto-
cols, to identify sets of cache lines written to and read by
different cores on the CPU. This has two important conse-
quences: memory conflicts are captured at a cache-line gran-
ularity, and a transaction must fit inside the hardware-limited
L1 cache size. The latter consequence is an indication that it
is probably not feasible to wrap a complete monolithic ker-
nel into an RTM transaction, as it is unlikely to fit within the
L1.

Owing to the implementation of TSX, the RTM lock
logically locks a dynamic set of individual L1 cache lines,
and as such is a fairly extreme case of fine-grained locking,
which should result in much reduced contention (assuming
a sane layout of kernel data structures).

Note that an RTM transaction is not guaranteed to com-
plete, even when the transaction is small enough and has no
memory conflicts. A variety of (hardware-implementation
specific and frequently unspecified) scenarios can result in

an abort. Of particular interest to our work are certain in-
teractions on specific registers that trigger aborts, but are
clearly unavoidable when executing OS code.

Given transactions have no guarantees of progress, the
developer must ensure that there exists a fallback method
of synchronisation that ensures progress in the presence of
repeated aborts. We use a commonly implemented tech-
nique of falling back to a regular lock for the code frag-
ment in the case of repeated aborts. To avoid races be-
tween a transaction-protected and lock-protected fragment,
our transactions test the lock upon entry to an RTM code
fragment to ensure the lock is free and in the read set of the
transaction attempt. A change in lock state by a competing
thread will trigger the desired abort, and allow the fragment
to synchronise via the lock.

3.3.2 RTM lock implementation
The TSX extensions, combined with the small size of the
kernel, allow us to optimistically execute the majority of the
code without concurrency control. This is enabled by the
two-phased system call structure of seL4 [Klein et al. 2009],
where the first phase validates the pre-conditions for execu-
tion and the second phase is guaranteed to execute without
failure. Also important for this design is the event-based de-
sign of the kernel, which avoids blocking. We bracket almost
the entire kernel with the transaction primitives.

In addition to the changes described in Section 3.1, we
need to move any TSX-specific abort-triggering CPU op-
erations after the transaction. Many of those do not occur
in seL4, as most aborting operations are typical for device
drivers, which are user-level programs in seL4. The remain-
ing problematic operations are:

• context-switch-triggered page-table register (CR3) load-
ing and segment-register loading;

• IPI triggering for inter-core notifications;
• interrupt management for user-level device drivers,

which consists of masking and acknowledging interrupts
prior to return to the user-level handler.

The key insight here is that it is safe to move these opera-
tion outside of the transaction, because the two-phase kernel
ensures the system call which requires these operations is
guaranteed to succeed once the execution phase is entered,
and that these operations are local to a core and thus are not
exposed to concurrent access from other cores.

4. Evaluation
4.1 Platforms
4.1.1 x86 platform
As an x86 platform we use a desktop Dell Optiplex 9020,
which features a Q87 Express chipset with an Intel Core
i7-4770 processor. This is a quad-core processor with a
clock rate of 3.4 GHz and two hardware threads each, giv-

ing 8 hardware threads in total. It is also a representative of
the Haswell microarchitecture, and as such supports Intel’s
TSX, which we use for the RTM lock implementation (see
Section 3.3).

The processor features three levels of cache. Each core
has private L1 instruction and a data caches, each 32 KiB in
size and 8-way associative. Each core furthermore has a pri-
vate, non-inclusive, 8-way 256 KiB L2 cache. An inclusive,
16-way, 8 MiB L3 cache is shared between all cores.

The platform also includes 16 GB of main memory and a
82574L Gigabit Ethernet controller.

4.1.2 ARM platform
Our ARM platform is the Sabre Lite, which is based on
a Freescale i.MX 6Q SoC, featuring a quad-core ARM
Cortex-A9 MPCore processor.

The cores run at a 1 GHz clock rate and have private, split
L1 caches, each 4-way-associative and 32 KiB in size. The
cores share a 1 MiB, unified, 16-way-associative L2 cache,
which is the last-level cache. Typical L1 access time is 1–2
cycles, L2 access time is 8 cycles [ARM 2010]. The platform
has 1 GiB of main memory, we measure the access time to
be 51 cycles.

The platform also features a Gigabit Ethernet controller,
though the theoretical maximum performance is limited to
470 Mb/s (total for transmit and receive) due to an internal
bus throughput limitation [Freescale 2013].

The MPCore architecture features a snoop control unit
(SCU) between the private L1 data caches and the shared
L2 cache. The SCU implements a variation of MESI cache
coherence, with the following adaptions.

• The SCU duplicates the tag bits of the L1 data caches
to enable checking of remote caches without accessing
them.

• Clean data is copied directly from L1 to L1 (ARM terms
this direct data intervention).

• Dirty data (i.e. the modified state in MESI) is migrated
directly from one core’s L1 to another core’s L1, with-
out first writing the data back to the shared L2 (termed
migratory lines).

4.2 Microbenchmarks
As IPC performance is a key contributor to overall sys-
tem performance in microkernel-based systems, and thus
optimising IPC performance has a long history in the L4
community [Elphinstone and Heiser 2013]. The traditional
benchmark for best-case IPC performance is “ping-pong”: a
pair of threads on a single core does nothing other than send-
ing messages to each other. This allows us to asses the basic
cost of our lock implementations, i.e. the pure acquisition
and release cost, without any contention.

We extend single-core ping-pong to multiple cores (in-
cluding hyperthreads). Specifically, we run a copy of ping-

pong on each hardware thread, with all hardware threads ex-
ecuting completely independently and unsynchronised.

This benchmark produces extreme contention on the ker-
nel (almost zero user-level execution time). However, none
of the kernel data structures are contended, as each hardware
thread’s pair of software threads accesses disjoint kernel ob-
jects (TCBs and IPC endpoints) during their syscalls. Hence,
while maximising contention on the BKL, fine-grained lock-
ing and RTM can be expected to scale perfectly.

The lack of concurrent accesses to shared data further-
more allows us to run this benchmark for a baseline that
shows optimal performance of a theoretical, perfect, zero-
overhead fine-grained lock: We use an (unsafe!) kernel im-
plementation without any locking.

4.3 Macro-benchmark: Redis
Multicore ping-pong presents an unrealistic case with no
user-level work that is a worst case for the BKL. In order to
assess the BKL scalability, and the significance of the over-
heads of the fine-grained schemes, we look for a “realistic
worst-case” scenario, i.e. a benchmark which produces as
high a system-call rate as can be expected under realistic
conditions.

None of the usual embedded-system benchmarks produce
significant syscall loads on the microkernel, we therefore use
a server-style benchmark. Note that the nature of the bench-
mark is completely irrelevant for this exercise, all that counts
is the rate and distribution of kernel entries. The relevant
operations are IPC and interrupt handling, as all other mi-
crokernel operations deal with resource management that is
relatively infrequent.

In fact, the seL4 equivalence of a syscall in a monolithic
system is sending an IPC message to a server process and
waiting for a reply (i.e. two microkernel IPCs per mono-
lithic OS syscall). Similarly, an interrupt, which in a mono-
lithic OS results in a single kernel entry, produces two for
the microkernel-based system, as the interrupt is converted
by the kernel into a notification to the driver (one kernel en-
try), and the driver acknowledges to the kernel with another
syscall.

In order to hammer our kernel, we use a simple server
scenario, consisting of the Redis key-value store [Redis].
It receives client requests from the network, using a (user-
level) Ethernet driver and a port of the lwIP TCP/IP stack
[lwIp] to run as a usermode process.

When running on a single core, the setup consists of three
processes: driver, network stack and Redis.

For multicore setups, Core 0 has the same configuration,
while all other cores (or hardware threads) run their own
copies of lwIP and Redis. All interrupts go to the Ethernet
driver on Core 0, which de-multiplexes incoming packets to
the network stacks based on port number.

Note that we run Redis as volatile instances (we disabled
file system access), as our prototype lacks file system sup-
port.

We evaluate performance using the Yahoo! Cloud Serv-
ing Benchmarks (YCSB) [Cooper et al. 2010], running on a
dedicated pair of load generator machines, with a dedicated
Gigabit Ethernet network between the load generators and
the machine under test. On each load generator we run one
instance of the YCSB benchmark per Redis instance on the
target machine. All YCSB benchmark instances start simul-
taneously and are tuned to perform a number of operations
that would result in approximately 30 seconds of run time.
We also increase the recordcount to 32000, to entirely fill
our prototype’s memory limitations.

YSCB consists of several workloads. We show the re-
sults of workload A as presented in Cooper et al. [2010].
This workload is an update-heavy workload (50/50 read and
writes) that uses zipfian distribution for record selection in
the store.

We also include a Linux-based Redis configuration for
comparison. We use Linux 3.13.0, configured at run-time
using /sys/devices/system/cpuX/online to use one to eight
cores, together with a Redis instance per core.

5. Results
5.1 Microbenchmarks
We collect results from 16 one-second runs of the ping-pong
benchmarks and calculate the mean and standard deviation.

5.1.1 Single-Core IPC Microbenchmarks
Single-core ping-pong results are shown in Figure 1, which
was already discussed early-on, showing the contention-free
locking cost: about 10% overhead for the BKL and 30%
for fine-grained locking and transactions on x86, and about
twice that on ARM.

The higher synchronisation costs on the ARM processor
relate to its partial-store-order memory model. It requires
memory barriers (dmb instructions) to preserve memory-
access ordering. In our experience, the barriers cost from
6 cycles up to 19 cycles depending on micro-architectural
state. Our implementation of BKL executes 6 barriers on this
benchmark, while 16 are needed with fine-grained locking.
These barriers explain most of the overhead.

As mentioned in Section 2, the significant cost of fine-
grained locking provides a motivation for sticking with the
BKL as long as possible, even if verification tractability was
no issue.

5.1.2 Multicore IPC Microbenchmarks
We run multicore ping-pong with a two-second warm-up,
followed by sampling total IPCs during a one second inter-
val to give total IPC round-trip throughput per second. We
repeat each benchmark 16 times and we report the mean and
standard deviation (as error bars) in Figure 2.

In the figure, core-counts > 4 for x86 correspond to the
use of hyperthreading: Cores= 4+i means i cores have both

hardware threads enabled, while the remaining ones just use
a single hardware thread.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

e
c
)

Cores

x86none
BKL
fine

RTM

 0

 2

 4

 6

 1 2 3 4

Cores

ARM

Figure 2: Synchronous intra-core IPC round-trip throughput
on x86 (left) and ARM (right), error bars are too small to be
visible.

Note that for the single-core case, these throughput fig-
ures are slightly less than the inverse of those of Figure 1, as
the latter are pure best-case kernel times, while the through-
put figures include minimal userland code.

The “none” case here corresponds to the theoretical op-
timal case (using the unsafe lock-free implementation). As
expected, this case scales perfectly on both architectures, al-
though hyperthreading adds somewhat less throughput than
real cores.

Fine-grained locking also scales perfectly, as the locks are
not contented in this case. Throughput is somewhat degraded
(compared to the baseline), owing to the lock overhead.

On x86 we observe that RTM behaves identically to fine-
grained locking. This is also expected: as explained in Sec-
tion 3.3.1, RTM is logically an extreme case of fine-grained
locking, and the baseline lock overhead is that same as for
the fine-grained locks according to Figure 1.

The BKL variant serialises the IPC path across all the
available hardware threads and has very little parallelism
available to take advantage of the available hardware. Its
performance plateaus after 3 cores.

On ARM, we see similar behaviour, except the higher
overhead for fine-grained locking is readily visible, and the
BKL variant outperforms fine-grain locking up to 3 cores,
prior to plateauing.

Remember that this benchmark measures a pathological
case of no work done at user level, it represents an unrealistic
worst-case scenario for the BKL.

5.2 Macrobenchmark
We run the Redis benchmark on our x86 platform. For each
combination of kernel variant and number of cores, we run
YCSB three times and report mean and standard deviation.
We instrument the kernel to record idle time within the idle
loop for obtaining CPU utilisation for each run.

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(k

o
p

s
/s

e
c
)

Cores

Linux
BKL
Fine
RTM

Figure 3: YCSB Redis A benchmark.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8

X
p

u
t

(k
o

p
s
/s

e
c
)

Cores

Linux
BKL
Fine
RTM

Figure 4: Redis throughput divided by average core utilisa-
tion.

Figure 3 shows mean throughput for varying number of
cores. Standard deviations are shown as (except for Linux
nearly indistinguishable) error bars.

The figure shows that throughput is independent of the
kernel variant. Further investigation reveals that overall sys-
tem throughput is limited by the network bandwidth, and
that the all cores have significant idle time.

To compare efficiency of similar throughput, we show in
Figure 4 the normalised “Xput” value, which we define as
throughput divided by average utilisation of all cores. This
represents the throughput for a fixed processing cost, and
is thus the right figure of merit to compare on differently
loaded processors.

We see that all seL4 variants perform very similarly. The
BLK kernel drops slightly (again, barely outside the error
bars) below that of the other seL4 variants, but does not show
the performance cliff indicative of significant contention.
The results indicate that for 8-way parallelism, and likely
beyond, the choice of lock is essentially irrelevant to perfor-
mance.

6. Related Work
Writing parallel and scalable code is a topic almost as old as
computing itself. Cantrill and Bonwick [2008] provide some
historical context and motivation for concurrent software,
together with words of wisdom to tackle the difficulties of
writing high-performance and correct concurrent software.
We adhere to their advice by avoiding parallelising complex
software (i.e. splitting the BKL) as our data shows it is
unwarranted.

Recent complementary work evaluates the scalability of
various synchronisation primitives [David et al. 2013] on
many-core processors. The authors reinforce that scalability
is a function of the hardware, with scalability best when
access is restricted to a single socket with uniform memory
access – exactly our area of interest.

Hardware transactional memory is utilised in TxLinux
[Rossbach et al. 2007] to implement cxspinlocks, a com-
bination of co-operative spinlocks and transactions capable
of supporting device I/O and nesting. A small microkernel
needs neither, as I/O is at user-level, and it can be designed
to avoid complex, nested, fine-grained locks.

Patches for Linux to utilise Intel TSX have been made
available [Kleen]. To our knowledge, no performance data
was released. Eliding existing fine-grained locking does
nothing to reduce kernel complexity. We elide the whole mi-
crokernel, providing favourable performance while retaining
simplicity.

7. Conclusions
Our initial results show that the big kernel lock remains an
attractive approach for synchronising access to shared state
in a microkernel, at least for hardware sharing caches and
moderate core counts. On our realistic (but tough) bench-
marks, more sophisticated locking schemes fail to demon-
strate performance advantages.

While at odds with scalability folklore, this result is fun-
damentally neither surprising, nor is it limited to kernel code.
A big lock can be expected to scale well, as long as two
conditions are met: (1) lock acquisition and hold times are
short (i.e. inter-core cache latencies and critical sections are
small), and (2) inter-lock times (i.e. concurrent execution
phases) are long in comparison. What may be a bit more sur-
prising is that these conditions can be met in an OS kernel:
they will not be met for a monolithic kernel under realistic
loads, but they can be met for a well-designed microkernel.

We intend to explore this space further by running macro-
benchmarks on ARM and also on closely-clustered plat-
forms with higher core counts. It might be possible that
we need to limit cluster size, and move to the clustered-
multikernel design even on large shared-cache multiproces-
sors. This would be an interesting trade-off to explore.

References
AMBA Level 2 Cache Controller (L2C-310) Technical Reference

Manual. ARM Ltd., r3p1 edition, 2010. ARM DDI 0246E.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim
Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian
Schüpbach, and Akhilesh Singhania. The multikernel: A new
OS architecture for scalable multicore systems. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles,
Big Sky, MT, US, October 2009.

Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and
Nickolai Zeldovich. Non-scalable locks are dangerous. In Pro-

ceedings of the 2012 Ottawa Linux Symposium, Ottawa, CA,
July 2012.

Bryan Cantrill and Jeff Bonwick. Real-world concurrency. ACM
Queue, 6(5), September 2008.

Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich,
Robert T. Morris, and Eddie Kohler. The scalable commutativ-
ity rule: Designing scalable software for multicore processors. In
ACM Symposium on Operating Systems Principles, pages 1–17,
Farmington, PA, US, October 2013.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. Benchmarking cloud serving systems
with YCSB. Indianapolis, IN, US, June 2010.

J. Corbet. Big reader locks. http://lwn.net/Articles/378911/.
Travis S. Craig. Building FIFO and priority-queuing spin locks

from atomic swap. Technical Report UW-CSE-93-02-02, De-
partment of Computer Science and Engineering, University of
Washington, 1993.

Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Ev-
erything you always wanted to know about synchronization but
were afraid to ask. In ACM Symposium on Operating Systems
Principles, pages 33–48, Farmington, PA, US, November 2013.

Kevin Elphinstone and Gernot Heiser. From L3 to seL4 – what have
we learnt in 20 years of L4 microkernels? In ACM Symposium
on Operating Systems Principles, pages 133–150, Farmington,
PA, USA, November 2013.

Freescale. i.MX 6Dual/6Quad Applications Processor Reference
Manual, rev. 1 edition, April 2013.

Patrice Godefroid and Nachiappan Nagappan. Concurrency at Mi-
crosoft – an exploratory survey. In CAV Workshop on Exploiting
Concurrency Efficiently and Correctly, Princeton, NJ, US, July
2008.

Andi Kleen. RFC: Kernel lock elision for TSX. https://lkml.org/
lkml/2013/3/22/630.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: Formal verification of an OS
kernel. In ACM Symposium on Operating Systems Principles,
pages 207–220, Big Sky, MT, USA, October 2009.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. Compre-
hensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems, 32(1):2:1–2:70, February 2014.

Greg Lehey. Improving the FreeBSD SMP implementation. In
Proceedings of the 2001 USENIX Annual Technical Conference,
FREENIX Track, Boston, MA, US, June 2001.

Jochen Liedtke, Kevin Elphinstone, Sebastian Schönberg, Her-
rman Härtig, Gernot Heiser, Nayeem Islam, and Trent Jaeger.
Achieved IPC performance (still the foundation for extensibil-
ity). In Proceedings of the 6th Workshop on Hot Topics in Oper-
ating Systems, pages 28–31, Cape Cod, MA, USA, May 1997.

lwIp. lwIP. http://www.nongnu.org/lwip/.

Redis. Redis. http://redis.io.

Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter,
Hany E. Ramadan, Bhandari Aditya, and Emmett Witchel.
TxLinux: Using and managing hardware transactional memory
in an operating system. In ACM Symposium on Operating Sys-
tems Principles, Stevenson, WA, US, October 2007.

Michael von Tessin. The clustered multikernel: An approach to
formal verification of multiprocessor OS kernels. In 2nd Work-
shop on Systems for Future Multi-core Architectures, pages 1–6,
Bern, Switzerland, April 2012.

Michael von Tessin. The Clustered Multikernel: An Approach to
Formal Verification of Multiprocessor Operating-System Ker-
nels. PhD thesis, School of Computer Science and Engineering,
UNSW, Sydney, Australia, Sydney, Australia, December 2013.

http://lwn.net/Articles/378911/
https://lkml.org/lkml/2013/3/22/630
https://lkml.org/lkml/2013/3/22/630
http://www.nongnu.org/lwip/
http://redis.io

	Introduction
	What's the Attraction of the Big Lock?
	Lock overhead
	Correctness

	Locking seL4 state
	Big kernel lock
	Fine-grained locking
	Hardware transactional memory
	Architectural support
	RTM lock implementation

	Evaluation
	Platforms
	x86 platform
	ARM platform

	Microbenchmarks
	Macro-benchmark: Redis

	Results
	Microbenchmarks
	Single-Core IPC Microbenchmarks
	Multicore IPC Microbenchmarks

	Macrobenchmark

	Related Work
	Conclusions

