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Encodings or the proof of their absence are the main way to compare process calculi. To analyse
the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with
quality criteria. There exists a bunch of different criteria and different variants of criteria in order
to reason in different settings. This leads to incomparable results. Moreover it is not always clear
whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show
how to formally reason about and compare encodability criteria by mapping them on requirements
on a relation between source and target terms that is induced by the encoding function. In particular
we analyse the common criteria full abstraction, operational correspondence, divergence reflection,
success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation
(coupled simulation versus bisimulation) that is induced by different variants of operational corre-
spondence. This way we reduce the problem of analysing or comparing encodability criteria to the
better understood problem of comparing relations on processes.

1 Introduction

Encodings are used to compare process calculi and to reason about their expressive power. Encodability
criteria are conditions that limit the existence of encodings. Their main purpose is to rule out trivial
or meaningless encodings, but they can also be used to limit attention to encodings that are of special
interest in a particular domain or for a particular purpose. These quality criteria are the main tool in
separation results, saying that one calculus is not expressible in another one; here one has to show that
no encoding meeting these criteria exists. To obtain stronger separation results, care has to be taken in
selecting quality criteria that are not too restrictive. For encodability results, saying that one calculus is
expressible in another one, all one needs is an encoding, together with criteria testifying for the quality
of the encoding. Here it is important that the criteria are not too weak.

In the literature various different criteria and different variants of the same criteria are employed
to achieve separation and encodability results [6, 13, 15, 17, 18, 14, 3, 19, 2, 8, 24, 7]. Some criteria,
like full abstraction or operational correspondence, are used frequently. Other criteria are used to en-
force a property of encodings that might only be necessary within a certain domain. For instance, the
homomorphic translation of the parallel operator—in general a rather strict criterion—was used in [17]
to show the absence of an encoding from the synchronous into the asynchronous π-calculus, because
this requirement forbids for the introduction of global coordinators. Thus this criterion is useful when
reasoning about the concurrent behaviour of processes, although it is in general too strict to reason about
their interleaving behaviour. Unfortunately it is not always obvious or clear whether the criteria used
to obtain a result in a particular setting do indeed fit to this setting. Indeed, as discussed in [24], the
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homomorphic translation of the parallel operator forbids more than global coordinators, i.e., is too strict
even in a concurrent setting.

The different purposes of encodability criteria lead to very different kinds of conditions that are
usually hard to analyse and compare directly. In fact even widely used criteria—as full abstraction—
seem not to be fully understood by the community, as the need for articles as [9, 20] shows. In contrast
to that, relations on processes—such as simulations and bisimulations—are a very well studied and
understood topic (see for example [5]). Moreover it is natural to describe the behaviour of terms, or
compare them, modulo some equivalence relation. Also many encodability criteria, like operational
correspondence, are obviously designed with a particular kind of relation between processes in mind.
Therefore, in order to be able to formally reason about encodability criteria, to completely capture and
describe their semantic effect, and to analyse side conditions of combinations of criteria, we map them
on conditions on relations between source and target terms.

We consider the disjoint union PS ]PT of the terms or processes from the source and target lan-
guages of an encoding. Then we describe the effect an encodability criterion C has on the class of
permitted encoding functions in terms of a relation RJ·K that relates at least all source terms to their
literal translations, i.e., contains the pair (S,JSK) for all source terms S. If the encodability criterion
C is defined w.r.t. some additional relations on the source or target languages, as it is the case for full
abstraction and operational correspondence, we usually also include these relations in RJ·K. In order to
completely capture the effect of a criterion C we aim at iff-results of the form

J·K satisfies C iff there exists a relation RJ·K such that ∀S. (S,JSK) ∈RJ·K and P
(
RJ·K

)
,

where P is the condition that captures the effect of C. For example, an encoding reflects divergence iff
there exists a relation RJ·K such that ∀S. (S,JSK) ∈RJ·K and RJ·K reflects divergence.

We illustrate this approach by applying it to some very common criteria. We start with divergence
reflection in §3.1, because it is simple and well understood. Accordingly, we do not gain significant
new insights, but it suits us very well to introduce our approach. In the same way success sensitiveness
and respect of barbs are analysed. We then switch to the criteria full abstraction in §3.2 and operational
correspondence in §3.3, which are possibly not completely understood yet. In particular, we show a
connection between full abstraction and transitivity, and prove to which kinds of simulation relations
common variants of operational correspondence are linked. In §4 we analyse the effects of combining
the above criteria. Since we first map the criteria to conditions on relations between source and target
terms, analysing their combined effect requires us to identify a suitable witness relation for the combined
conditions. Combining divergence reflection and success sensitiveness is simple, as illustrated in §4.1.
Combining these two criteria with operational correspondence (§4.2) is more elaborate. Finally we
analyse the effect of combining full abstraction with operational correspondence in §4.3.

All claims in this paper have been proved using the interactive theorem prover Isabelle/HOL [16].
The Isabelle implementation of the theories is available in the ‘Archive of Formal Proofs’ at

http://afp.sourceforge.net/entries/Encodability_Process_Calculi.shtml.

2 Technical Preliminaries

We analyse criteria used to reason about the quality of encodings between process calculi. We do not
force any limitations on the considered calculi. A process calculus is a language LC = (PC, 7−→C)
consisting of a set of terms PC—its syntax—and a relation on terms 7−→C ⊆PC×PC—its semantics.
The elements of PC are called process terms or shortly processes or terms.

http://afp.sourceforge.net/entries/Encodability_Process_Calculi.shtml
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Here we assume that the semantics of the language is provided as a so-called reduction semantics,
because in the context of encodings the treatment of reductions is simpler—the consideration of la-
belled semantics and of criteria using labelled steps is left for further work. A step P 7−→C P′ is an
element (P,P′) ∈ 7−→C. Let Z=⇒C denote the reflexive and transitive closure of 7−→C. We write P 7−→C

if ∃P′. P 7−→C P′ and P 7−→C
ω if P can do an infinite sequence of steps. A term P such that P 7−→C

ω is
called divergent.

Languages can be augmented with (a set of) relations RC ⊆P2
C on their processes. If R ⊆ B2 is

a relation and B′ ⊆ B, then R�B′ = {(x,y) | x,y ∈ B′∧ (x,y) ∈R } denotes the restriction of R to the
domain B′. A relation R preserves some condition P : B→ B (with B representing the Booleans) if
whenever (P,Q) ∈R and P satisfies P then Q satisfies P. A relation R reflects P if whenever (P,Q) ∈R
and Q satisfies P then also P satisfies P. Finally R respects a condition P if R preserves and reflects it.
We use r(·), s(·), and t(·) to denote the reflexive, symmetric, and transitive closure of a binary relation,
respectively.

Relations on process terms are an important tool to reason about processes and languages. Of special
interest are simulation relations; in particular bisimulations. R is a bisimulation if any two related pro-
cesses mutually simulate their respective sequences of steps, such that the derivatives are again related.

Definition 2.1 (Bisimulation) R is a (weak reduction) bisimulation if for each (P,Q) ∈R:
• P Z=⇒ P′ implies ∃Q′. Q Z=⇒ Q′∧ (P′,Q′) ∈R
• Q Z=⇒ Q′ implies ∃P′. P Z=⇒ P′∧ (P′,Q′) ∈R

Two terms are bisimilar if there exists a bisimulation that relates them.

The definition of a strong (reduction) bisimulation is obtained by replacing all Z=⇒ by 7−→ in the above
definition, i.e., a strong bisimulation requires that a step has to be simulated by a single step. Coupled
similarity is strictly weaker than bisimilarity. As pointed out in [21], in contrast to bisimilarity it allows
for intermediate states in simulations: states that cannot be identified with states of the simulated term.
Each symmetric coupled simulation is a bisimulation.

Definition 2.2 (Coupled Simulation) A relation R is a (weak reduction) coupled simulation if both
(∃Q′. Q Z=⇒ Q′∧ (P′,Q′) ∈R) and (∃Q′. Q Z=⇒ Q′∧ (Q′,P′) ∈R) whenever (P,Q) ∈R and P Z=⇒ P′.
Two terms are coupled similar if they are related by a coupled simulation in both directions.

An encoding from LS = (PS, 7−→S) into LT = (PT, 7−→T) relates two process calculi. We call
LS the source and LT the target language. Accordingly, terms of PS are source terms and of PT
target terms. In the simplest case an encoding from LS into LT is an encoding function J·K : PS→PT
from source terms into target terms. Sometimes an encoding is defined by several functions, such as the
encoding function and the renaming policy used in the framework of [8]. Else we identify an encoding
with its encoding function.

An encodability criterion is a predicate on encoding functions, used to reason about the quality of
encodings. We analyse such criteria by mapping them on requirements on relations RJ·K ⊆ (PS]PT)

2

on the disjoint union of the source and target terms of the considered encodings J·K. To simplify the
presentation we assume henceforth that PS ∩PT = /0 and thus PS ]PT = PS ∪PT. The Isabelle
proofs do not rely on such an assumption. We say that a condition P : (PS]PT)→ B is preserved
by an encoding if for all source terms S that satisfy P, the condition P also holds for JSK. A condition
is reflected by an encoding if whenever JSK satisfies it, then so does S. Finally an encoding respects a
condition if it both preserves and reflects it.
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3 Analysing Encodability Criteria

An encoding function J·K : PS→PT maps source terms on target terms. Thereby it induces a relation on
the combined domain of source and target terms that relates source terms with their literal translations.
We start with this relation, i.e., in the simplest case we map an encodability criterion to a requirement on
a relation RJ·K ⊆ (PS]PT)

2 that contains at least the pairs (S,JSK) for all source terms S ∈PS. If we
consider a criterion that is defined w.r.t. some relations on the source or target, we will also include these
relations in RJ·K, possibly closing the latter under reflexivity, symmetry, and/or transitivity.

Alternatively, we could require that RJ·K relates source terms and their literal translations in both
directions, meaning that (S,JSK) ∈ RJ·K and (JSK ,S) ∈ RJ·K for all source terms S ∈PS. However,
this condition limits our analysis to properties that are respected. It does not allow us to reason about
properties like divergence reflection, where some condition need only to be reflected but not necessarily
be preserved, or vice versa. Accordingly we follow the first approach.

3.1 Divergence Reflection and Observables

We start with divergence reflection as defined in [8], because it is often easy to establish and well under-
stood. An encoding reflects divergence if it does not introduce divergence, i.e., if all divergent translations
result from divergent source terms.

Definition 3.1 (Divergence Reflection) An encoding J·K : PS →PT reflects divergence if JSK 7−→T
ω

implies S 7−→S
ω for all source terms S ∈PS.

We can reformulate this criterion as follows: An encoding reflects divergence if it reflects the pred-
icate λP. P 7−→ω . To analyse this criterion it suffices to consider the relation {(S,JSK) | S ∈PS }. It is
obvious that an encoding reflects divergence iff {(S,JSK) | S ∈PS } reflects divergence, i.e., reflects
the predicate λP. P 7−→ω . In fact we can generalise this case. If an encodability criterion can be
described by the preservation or reflection of a predicate, then an encoding satisfies this criterion iff
{(S,JSK) | S ∈PS } preserves or reflects this predicate. Of course direction “if” holds for any relation
that contains at least the pairs (S,JSK). We use the relation {(S,JSK) | S ∈PS } as a witness and it allows
us to analyse the combination of different criteria later.

Lemma 3.2 (Preservation) Let P : (PS]PT)→ B be a predicate. An encoding preserves the predi-
cate P iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RJ·K preserves P.

We obtain a similar result if we replace the unary predicate P(·) by the binary predicate P(·, ·) of type
(PS]PT)×T → B for some arbitrary type T to represent predicates with several parameters. More-
over we obtain the same result for either reflection or respect instead of preservation.

Accordingly an encoding reflects divergence, i.e., the predicate λP. P 7−→ω , iff there exists a relation
RJ·K that relates at least each source term to its literal translation and reflects this predicate.

Lemma 3.3 (Divergence Reflection) An encoding J·K : PS→PT from LS into LT reflects divergence
iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RJ·K reflects divergence.

In a similar way we can deal with the criterion barb sensitiveness. A barb is a property of a process
that is treated as an observable, and whose reachability should be respected by an encoding. We assume
that B is a set of barbs that contains at least all barbs of the source and the target language. Moreover we
assume that each language L specifies its own predicate · ↓L · such that P↓L a returns true if P ∈PL



50 Analysing and Comparing Encodability Criteria

and P has the barb a in L . If a barb a is not relevant or present in a language L then P↓L a does not hold
for any P ∈PL . We use P⇓L a if P reaches the barb a in L , i.e., P⇓L a , ∃P′.P Z=⇒L P′∧P′ ↓L a.

An encoding weakly respects source term barbs iff it respects the predicate λP a. P⇓ a. This holds
iff {(S,JSK) | S ∈PS } respects this predicate, which in turn is the case iff there exists a relation RJ·K
that relates at least each source term to its literal translation and respects this predicate.

Lemma 3.4 (Barb Sensitiveness) Assume LS and LT each define a predicate · ↓ · : P ×B → B.
J·K : PS→PT weakly respects barbs iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RJ·K weakly respects barbs.

Again we obtain a similar result if we replace respect by preservation or reflection or if we consider the
existence instead of the reachability of barbs.

However, only very few encodings directly preserve or reflect barbs. More often barbs are translated,
as for example in the encodings between different variants of the π-calculus in [15, 23] or the two
translations from CSP into variants of CCS with name passing in [10]. Since we do not fix the definition
of ·↓L ·, this can for instance be expressed by adapting this predicate in the target language.

In a similar way we can deal with the criterion success sensitiveness. This criterion was proposed
by Gorla as part of his encodability framework [8]. An encoding is success sensitive if it respects reach-
ability of a particular process X that represents successful termination, or some other form of success,
and is added to the syntax of the source as well as the target language. We write P↓X to denote the fact
that P is successful—however this predicate might be defined in the particular source or target language.
Reachability of success is then defined as P⇓X, ∃P′. P Z=⇒ P′∧P′↓X. An encoding is success sensitive
if each source term and its translation answer the test for reachability of success in the same way.

Definition 3.5 (Success Sensitiveness) Let LS and LT each define a predicate ·↓X: P→B. An encod-
ing J·K : PS→PT is success sensitive if, for all S ∈PS, S⇓X iff JSK⇓X.

Accordingly, an encoding is success sensitive iff it respects the predicate λP. P⇓X. This is the case iff
{(S,JSK) | S ∈PS } respects this predicate, which in turn is the case iff there exists a relation RJ·K that
relates at least each source term to its literal translation and respects this predicate.

Lemma 3.6 (Success Sensitiveness) Assume LS and LT each define a predicate · ↓X: P → B. An
encoding J·K : PS→PT is success sensitive iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RJ·K respects λP. P⇓X.

Success sensitiveness links source term behaviours to behaviours of target terms. If the source and
the target language are very different, they can impose quite different kinds of behaviour that might be
hard to compare directly. For example, observables in the π-calculus refer to the existence of unguarded
input or output prefixes [11], whereas in the core of mobile ambients there are no in- or outputs but only
ambients and action prefixes that describe the entering, leaving, and opening of an ambient [4]. Success
sensitiveness allows to compare such languages by introducing a new kind of barb that can be understood
in both calculi. If we want to compare two languages that are very similar, such as two variants of the
same calculus, we can demand stricter encodability criteria and compare their barbs directly.

Next we concentrate on criteria that cannot be expressed simply by the preservation or reflection of
some predicate.

3.2 Full Abstraction

Full abstraction was probably the first criterion that was widely used to reason about the quality of
encodings [26, 12, 22]. This criterion is defined w.r.t. a relation RS ⊆P2

S on source terms and a relation
RT ⊆P2

T on target terms. An encoding is fully abstract w.r.t. RS and RT if two source terms are related
by RS iff their literal translations are related by RT.
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Definition 3.7 (Full Abstraction) An encoding J·K : PS→PT is fully abstract w.r.t. the relations RS ⊆
P2

S and RT ⊆P2
T if, for all S1,S2 ∈PS, (S1,S2) ∈RS iff (JS1K ,JS2K) ∈RT.

There are a number of trivial full abstraction results, i.e., results that hold for all (or nearly all) encodings
(see e.g. [9, 20]). In particular, for each encoding and each target term relation RT ⊆P2

T there exits a
source term relation RS ⊆P2

S , namely {(S1,S2) | (JS1K ,JS2K) ∈RT }, such that the encoding is fully
abstract w.r.t. RS and RT. For each injective encoding and each source term relation RS ⊆P2

S , there
exits RT ⊆P2

T, namely {(JS1K ,JS2K) | (S1,S2) ∈RS }, such that the encoding is fully abstract w.r.t. RS
and RT. Accordingly we consider full abstraction w.r.t. fixed source and target term relations.

As suggested above, we map this criterion on a relation that relates at least each source term to its
literal translation and includes the relations RS and RT. If we additionally add pairs of the form (JSK ,S)
for all S ∈PS, we make an interesting observation. If we surround the pair (S1,S2) ∈RS by the pairs
(JS1K ,S1) and (S2,JS2K) and add transitivity we obtain the pair (JS1K ,JS2K). Similarly, from transitivity,
(S1,JS1K), (JS1K ,JS2K), and (JS2K ,S2) we obtain the pair (S1,S2). Because of this, an encoding is fully
abstract w.r.t. the preorders RS and RT iff there exists a transitive relation RJ·K that relates at least each
source term to its literal translation in both directions, such that the restriction of RJ·K to source/target
terms is RS/RT.

Lemma 3.8 (Full Abstraction) J·K : PS→PT is fully abstract w.r.t. the preorders RS⊆P2
S and RT⊆

P2
T iff ∃RJ·K.

(
∀S. (S,JSK) ,(JSK ,S) ∈RJ·K

)
∧RS = RJ·K�PS ∧RT = RJ·K�PT ∧RJ·K is transitive.

Thus an encoding is fully abstract w.r.t. RS and RT if the encoding function combines the relations RS
and RT in a transitive way.

In order to allow combinations with criteria like divergence reflection, i.e., predicates that are not
respected but preserved or reflected, we get rid of the requirement on the pairs (JSK ,S). Therefore we
consider the symmetric closure of RJ·K. An encoding is fully abstract w.r.t. the equivalences RS and RT
iff there exists a relation RJ·K that relates at least each source term to its literal translation, such that the
restriction of the symmetric closure of RJ·K to source/target terms is RS/RT and the symmetric closure
of RJ·K is a preorder.

Lemma 3.9 (Full Abstraction) An encoding J·K : PS →PT is fully abstract w.r.t. the equivalences
RS ⊆ P2

S and RT ⊆ P2
T iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RS = s

(
RJ·K

)
�PS ∧RT = s

(
RJ·K

)
�PT ∧

s
(
RJ·K

)
is a preorder.

Since it is always possible to construct a relation that includes RS, RT, and pairs (S,JSK), the crucial
requirement on the right-hand side is transitivity. A discussion of this criterion and references to earlier
such discussions can be found in [22, 9].

3.3 Operational Correspondence

To strengthen full abstraction it is often combined with operational correspondence. This criterion re-
quires that source terms and their translations ‘behave’ similar, by requiring that steps are preserved and
reflected modulo some target term relation RT ⊆P2

T. Intuitively an encoding is operational correspond-
ing w.r.t. RT if each source term step is simulated by its translation, i.e., J·K does not remove source
behaviour (completeness), and each step of the target is part of the simulation of a source term step,
i.e., J·K does not introduce new behaviour (soundness). There are a number of different variants of this
criterion. We consider three unlabelled variants [15, 8]. In particular the last variant, proposed in [8],
was used for numerous encodability and separation results.
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Definition 3.10 (Operational Correspondence) An encoding J·K : PS→PT is strongly operationally
corresponding w.r.t. RT ⊆P2

T if it is:
Strongly Complete: ∀S,S′. S 7−→S S′ implies (∃T. JSK 7−→T T ∧ (JS′K ,T ) ∈RT)
Strongly Sound: ∀S,T. JSK 7−→T T implies (∃S′. S 7−→S S′∧ (JS′K ,T ) ∈RT)

J·K : PS→PT is operationally corresponding w.r.t. RT ⊆P2
T if it is:

Complete: ∀S,S′. S Z=⇒SS′ implies (∃T. JSK Z=⇒TT ∧ (JS′K ,T ) ∈RT)
Sound: ∀S,T. JSK Z=⇒TT implies (∃S′. S Z=⇒SS′∧ (JS′K ,T ) ∈RT)

J·K : PS→PT is weakly operationally corresponding w.r.t. RT ⊆P2
T if it is:

Complete: ∀S,S′. S Z=⇒SS′ implies (∃T. JSK Z=⇒TT ∧ (JS′K ,T ) ∈RT)
Weakly Sound: ∀S,T. JSK Z=⇒TT implies (∃S′,T ′. S Z=⇒SS′∧T Z=⇒TT ′∧ (JS′K ,T ′) ∈RT)

Again this criterion is trivial if we do not fix the target term relation. Each encoding is operational
corresponding w.r.t. the universal relation on target terms.

The formulation of operational correspondence (in all its variants) strongly reminds us of simulation
relations on processes, such as bisimilarity. Obviously this criterion is designed in order to establish
a simulation-like relation between source and target terms. We now determine the exact nature of this
relation. The first two variants exactly describe strong and weak bisimilarity up to RT. More precisely,
an encoding is operational corresponding w.r.t. a preorder RT that is a bisimulation iff there exists a
preorder RJ·K, such as t(r({(S,JSK) | S ∈PS }∪RT)), that is a bisimulation, relates at least all source
terms to their literal translations, and such that RT =RJ·K�PT , and for all pairs (S,T ) ∈RJ·K it holds that
(JSK ,T ) ∈RT. The last condition is necessary to ensure operational correspondence, and RT =RJ·K�PT

ensures that RT is a bisimulation if RJ·K is. Accordingly, operational correspondence ensures that source
terms and their translations are bisimilar.

Lemma 3.11 (Operational Correspondence) An encoding J·K : PS→PT is operational correspond-
ing w.r.t. a preorder RT ⊆P2

T that is a bisimulation iff ∃RJ·K.
(
∀S. (S,JSK) ∈RJ·K

)
∧RT = RJ·K�PT

∧
(
∀S,T. (S,T ) ∈RJ·K→ (JSK ,T ) ∈RT

)
∧RJ·K is a preorder and a bisimulation.

We obtain the same result if we replace operational correspondence by strong operational correspondence
and bisimulation by strong bisimulation.

Weak and strong bisimilarity are often considered as the standard reference relations for calculi like
the π-calculus. Thus the above result imposes an important property for the comparison of languages.
If bisimilarity is the standard reference relation, i.e., if we usually do not record differences between
terms that cannot be observed by bisimilarity, then an encoding that ensures that source terms and their
translations are bisimilar strongly validates the claim that the target language is at least as expressive as
the source language. Nonetheless, comparisons of different languages are very often considered only
modulo weak operational correspondence and not operational correspondence. As discussed in [21, 10],
relating source terms and their literal translations by a bisimulation does not allow for intermediate states,
i.e., states that occur in simulations of source term steps and thus intuitively are in between two source
term translations but are not related to source terms themselves. Intermediate states result from partial
commitments. If a source term can evolve to one of three different derivatives, operational correspon-
dence (in all variants) ensures that the translation has the same possible evolutions. But operational
correspondence requires that the decision on which of the three possibilities is chosen is done in a single
step. Weak operational correspondence allows for partial commitments, where a first step may rule out
one possibility but not decide on one of the remaining two. Thus weak operational correspondence is
much more flexible and allows to encode source term concepts that have no direct counterpart in the
target.
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Obtaining a result similar to Lemma 3.11 for weak operational correspondence is not that easy. Again
this criterion is linked to a simulation condition on relations between source and target terms up to RT,
but weak operational correspondence does not directly map to a well-known kind of simulation relation.
It is linked to a simulation relation that is in between coupled similarity and bisimilarity. We call it
correspondence similarity.

Definition 3.12 (Correspondence Simulation) A relation R is a (weak reduction) correspondence sim-
ulation if for each (P,Q) ∈R:
• P Z=⇒ P′ implies ∃Q′. Q Z=⇒ Q′∧ (P′,Q′) ∈R
• Q Z=⇒ Q′ implies ∃P′′,Q′′. P Z=⇒ P′′∧Q′ Z=⇒ Q′′∧ (P′′,Q′′) ∈R

Two terms are correspondence similar if a correspondence simulation relates them.

Just as coupled similarity, correspondence similarity allows for intermediate states that result from partial
commitments, but in contrast to coupled similarity these intermediate states are not necessarily covered
in the relation. Correspondence similarity is obviously strictly weaker than bisimilarity, but it implies
coupled similarity.

Lemma 3.13 For each correspondence simulation R there exists a coupled simulation R ′ such that
∀(P,Q) ∈R. (P,Q) ,(Q,P) ∈R ′.

Correspondence simulation is linked to weak operational correspondence in the same way as bisim-
ilarity is linked to operational correspondence.

Lemma 3.14 (Weak Operational Correspondence) J·K : PS→PT is weakly operat. corresp. w.r.t. a
preorder RT ⊆P2

T that is a correspondence simulation iff ∃RJ·K.
(
∀S. (S,JSK) ∈RJ·K

)
∧RT = RJ·K�PT

∧
(
∀S,T. (S,T ) ∈RJ·K→ (JSK ,T ) ∈RT

)
∧RJ·K is a preorder and a correspondence simulation.

Accordingly, weak operational correspondence ensures that source terms and their literal translations are
correspondence similar and thus coupled similar.

Correspondence similarity and coupled similarity are weaker than bisimilarity. Nevertheless, prov-
ing that a relation is a correspondence simulation and, even more, showing that a particular pair of terms
is contained in a correspondence simulation, can be more difficult than it is in the case of bisimula-
tion. Fortunately, encodings that satisfy only weak operational correspondence—and introduce partial
commitments—often do so w.r.t. a variant of bisimilarity. As example consider the de-centralised encod-
ing of [10]. It translates from CSP into asynchronous CCS with name passing and matching. [10] proves
that this encoding is operational corresponding w.r.t. a target term preorder RT that is a weak reduction
bisimulation. Thus, by Lemma 3.14, the encoding ensures that source terms and their literal translations
are correspondence similar, and thus coupled similar.

4 Combining Encodability Criteria

As done in [8], often several different criteria are combined to ensure the quality of an encoding. Of
course we have to ensure that the criteria we want to combine do not contradict each other and thus
trivially rule out any kind of encoding. Moreover, the combination of criteria might lead to unexpected
side effects, such that their combined effect on the quality of encodings is no longer obvious or clear.
One major motivation of our desire to analyse encodability criteria is to be able to formally compare
them and analyse side effects that result from their combinations.

In the previous section we derive iff-results linking a single criterion with the existence of a relation
between source and target terms satisfying specific conditions. Of course we can trivially combine two
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such results by considering two different source-target relations on the right-hand side. But this way
side effects that results from the combination of the criteria remain hidden. Instead we want to combine
the criteria into conditions of a single source-target relation. Therefore we need to find a witness, i.e., a
relation that satisfies the conditions of both relations.

4.1 Divergence Reflection and Success Sensitiveness

The combinations of criteria defined on the pairs of RJ·K—such as the preservation, reflection, or respect
of some predicate—are easy to analyse. Obviously an encoding reflects divergence and respects success
iff there exists a relation RJ·K that relates at least each source term to its literal translation and both reflects
divergence and respects success.

Lemma 4.1 Assume LS and LT each define a predicate↓X: P→B. J·K : PS→PT reflects divergence
and respects success iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RJ·K reflects divergence and respects success.

The⇐-direction of Lemma 4.1 is an immediate corollary of Lemmas 3.3 and 3.6. For the other direction
we obtain from these lemmata two relations that satisfy the condition C , ∀S. (S,JSK) ∈ RJ·K and of
which one reflects divergence and the other respects success. We have to combine these two relations
into a single relation that satisfies all three conditions. If the latter two conditions are defined on the pairs
of the respective relations, this is always possible. The reason is that the condition C ensures that we can
use {(S,JSK) | S ∈PS } as a witness for both relations and thus as a witness for their combined effect.
More precisely, if there are two relations that both satisfy C and each satisfies a predicate about the pairs
of the respective relation, then there exists a single relation, namely {(S,JSK) | S ∈PS }, that satisfies all
three conditions.

Lemma 4.2 Let R1,R2⊆ (PS]PT)
2 and the predicates P1,P2 be such that ∀i∈{1,2} . ∀S. (S,JSK)∈

Ri and ∀i ∈ {1,2} . ∀(P,Q) ∈Ri. Pi((P,Q)). Then there exists a relation RJ·K ⊆ (PS]PT)
2 such that

∀S. (S,JSK) ∈RJ·K and ∀i ∈ {1,2} . ∀(P,Q) ∈RJ·K. Pi((P,Q)).

4.2 Adding Operational Correspondence

Gorla [8] combines five criteria to define ‘good’ encodings. Three of these—the ‘semantical’ ones—we
considered in Section 3: weak operational correspondence (called ‘operational correspondence’ in [8])
w.r.t. a relation RT, success sensitiveness, and divergence reflection. Gorla assumes that, ‘for the sake of
coherence’ as he claims, the relation RT never relates two process TP and TQ such that TP⇓X and TQ 6⇓X,
i.e., RT has to respect (reachability of) success. This allows us to find a witness relation to combine the
effect of weak operational correspondence and success sensitiveness. Our iff-result for weak operational
correspondence requires that this relation is a preorder, has to relate source terms with their literal transla-
tions, and satisfies RT =RJ·K�PT . Because of that, a minimal witness is t(r({(S,JSK) | S ∈PS }∪RT)).
This witness also satisfies ∀S,T. (S,T ) ∈ RJ·K → (JSK ,T ) ∈ RT. Without the condition that RT re-
spects success—or another suitable assumption—we cannot ensure that t(r({(S,JSK) | S ∈PS }∪RT))
respects success and thus we find no witness for the combination of the respective conditions.

Lemma 4.3 Assume LS,LT each define a predicate↓X: P→B. An encoding J·K : PS→PT is success
sensitive and weakly operational corresponding w.r.t. a preorder RT ⊆P2

T that is a success respecting
correspondence simulation iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RT = RJ·K�PT ∧ RJ·K respects success ∧(

∀S,T. (S,T ) ∈RJ·K→ (JSK ,T ) ∈RT
)
∧RJ·K is a preorder and a correspondence simulation.
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s1 s2

t1 t2
t3

LS = ({s1,s2 } ,{(s1,s1) ,(s1,s2)})
LT = ({ t1, t2, t3 } ,{(t1, t3) ,(t3, t3)})
RT = t(r({(t2, t3)}))
Js1K = t1 and Js2K = t2

Figure 1: Encoding satisfying operational correspondence and divergence reflection

We obtain a similar result if we replace weak operational correspondence and correspondence simulation
by operational correspondence and bisimulation. Similarly, we can replace weak operational correspon-
dence, correspondence simulation, and the predicate ⇓X in the definition of success sensitiveness by
strong operational correspondence, strong bisimulation, and ↓X. Also, in all variants of the above result
we can add on the left-hand side that the encoding as well as RT (weakly) respect barbs iff we add on
the right-hand side that RJ·K (weakly) respects barbs.

As an example we can consider—once more—the de-centralised encoding from CSP into a variant
of CCS of [10]. Additionally to operational correspondence w.r.t. a preorder RT that is a bisimulation,
[10] proves that this encoding satisfies success sensitiveness, divergence reflection, barb sensitiveness—
w.r.t. standard CSP barbs in the source and a notion of translated barbs in the target—and preservation
of distributability (a criterion defined in [25]). RT respects success and weakly respects barbs (but
does not reflect divergence). Thus the encoding ensures that source terms and their literal translations
are correspondence similar and thus coupled similar w.r.t. a relation that respects success and weakly
respects barbs.

Success sensitiveness significantly strengthens the requirements on a simulation relation like corre-
spondence simulation or bisimulation. Thus the combined effect—a success respecting correspondence
simulation—is stronger than the effects of both criteria considered in isolation—a correspondence simu-
lation and a success respecting relation. Accordingly, the framework of Gorla in [8] ensures that (among
other conditions) source terms and their literal translations are correspondence similar w.r.t. a success re-
specting relation and thus—to refer to a more established simulation relation—are coupled similar w.r.t.
a success respecting relation.

In [8] there is no such condition that links RT and divergence reflection. Requiring that RT reflects
divergence would e.g. exclude weak bisimulation. Since this relation is often referred to as the standard
relation for calculi as the π-calculus, excluding it would be too strict a requirement. As a consequence,
the criteria in [8] do not allow to combine the effects of weak operational correspondence and divergence
reflection into a single relation, as done for success sensitiveness. Consider the following counterexam-
ple, visualised in Figure 1. Obviously the encoding—indicated by the dotted line—satisfies operational
correspondence w.r.t. RT—indicated by the dashed line—and reflects divergence. But to relate s1 and
its literal translation Js1K = t1 by a correspondence simulation, we have to simulate the step s1 7−→S s2.
Therefore we need either the pair (s2, t3)—which can be obtained by including RT in RJ·K—or the pair
(s2, t1), but in either case the respective source-target relation does not reflect divergence. Thus in gen-
eral an encoding that satisfies the criteria of [8] induces a source-target relation that is a correspondence
simulation that only partially reflects divergence.

Of course particular encodings might satisfy stronger requirements than enforced by the minimal
setting in [8]. If the encoding is operational corresponding w.r.t. a relation that reflects divergence,
we can combine the effects of these two criteria in one relation. Accordingly, if an encoding reflects
divergence, respects success, and satisfies operational correspondence w.r.t. a preorder that is a success
respecting and divergence reflecting bisimulation, we can combine the conditions of all three relations
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as in the following lemma.

Lemma 4.4 Assume LS and LT each define a predicate ↓X: P → B. An encoding J·K : PS →PT
reflects divergence, respects success, and is operational corresponding w.r.t. a preorder RT ⊆P2

T that
is a success respecting and divergence reflecting bisimulation iff ∃RJ·K.

(
∀S. (S,JSK) ∈RJ·K

)
∧RT =

RJ·K�PT ∧
(
∀S,T. (S,T ) ∈RJ·K→ (JSK ,T ) ∈RT

)
∧RJ·K reflects divergence, respects success, and is a

preorder and a bisimulation.

Again we obtain similar results for weak operational correspondence and correspondence simulation as
well as for strong operational correspondence, strong bisimulation, and↓X.

4.3 Full Abstraction and Operational Correspondence

Before the framework in [8] was proposed, often a combination of full abstraction and operational cor-
respondence was used. For simplicity we switch to source-target relations that relate source terms and
their literal translations in both directions and assume that RS and RT are equivalences in the following.
Then a witness for the effect of operational correspondence is t(r({(S,JSK) ,(JSK ,S) | S ∈PS }∪RT)).
Since this relation is transitive, it indeed suffices as witness to combine the effects of full abstraction
and operational correspondence. The only obstacle left is that, to cover the effect of full abstraction, the
source-target relation should also include RS. Fortunately we do not have to include RS by construction,
because its inclusion is ensured by full abstraction and the inclusion of RT. For every encoding J·K that
is fully abstract w.r.t. RS and RT and for all transitive relations RJ·K that relate at least all source terms to
their literal translations in both directions, RJ·K contains RS iff the restriction of RJ·K to encoded source
terms contains the restriction of RT to encoded sources.

Lemma 4.5 Let J·K : PS →PT be an encoding that is fully abstract w.r.t. RS ⊆P2
S and RT ⊆P2

T
and let RJ·K ⊆ (PS]PT)

2 be transitive such that ∀S. (S,JSK) ,(JSK ,S) ∈RJ·K. Then RS = RJ·K�PS iff
∀S1,S2. (JS1K ,JS2K) ∈RT↔ (JS1K ,JS2K) ∈RJ·K.

Because of that an encoding is fully abstract w.r.t. RS and RT and operational corresponding w.r.t.
a bisimulation RT iff there exists a transitive bisimulation that relates source terms and their literal
translations in both directions and contains RS and RT.

Lemma 4.6 Let RS ⊆P2
S and RT ⊆P2

T be equivalences. An encoding J·K : PS →PT is fully ab-
stract w.r.t. RS and RT and operational corresponding w.r.t. RT and RT is a bisimulation iff ∃RJ·K.(
∀S. (S,JSK) ,(JSK ,S) ∈RJ·K

)
∧RS = RJ·K�PS ∧RT = RJ·K�PT ∧RJ·K is a transitive bisimulation.

So what do we gain by combining the two criteria, that we do not obtain from each of them in
isolation? In comparison to our iff-result for operational correspondence we add only the condition that
RS = RJ·K�PS . As a consequence RS has to be a bisimulation.

Full abstraction ensures that RS and RT have the same basic properties. For example, if we ei-
ther consider surjective encodings (∀T. ∃S. T = JSK) or restrict RT to encoded source terms ({(T1,T2) |
∃S1,S2. T1 = JS1K∧T2 = JS2K∧ (T1,T2) ∈ RT}), then RS is reflexive iff RT is reflexive, and similarly
for symmetry and transitivity. But properties such as being a bisimulation are not respected by full ab-
straction on its own. As counterexample consider the fully abstract but not operational corresponding
encoding in Figure 2. Here RS is a bisimulation but RT is not. By removing the arrow t2 7−→T t3 from
the target and adding it to the source s2 7−→S s3, the encoding remains fully abstract and RT becomes
a bisimulation but RS loses this property. Operational correspondence does not refer to a source rela-
tion RS and thus does not enforce any properties on this relation. But combining full abstraction with
operational correspondence w.r.t. a bisimulation RT enforces RS to be a bisimulation.
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s1 s2 s3

t1 t2 t3

LS = ({s1,s2,s3 } , /0)
LT = ({ t1, t2, t3 } ,{(t2, t3)})
RS = t(s(r({(s1,s2)}))) and RT = t(s(r({(t1, t2)})))
Js1K = t1, Js2K = t2, and Js3K = t3

Figure 2: Encoding satisfying full abstraction but not operational correspondence

Lemma 4.7 Let RS ⊆P2
S and RT ⊆P2

T be equivalences. If an encoding J·K : PS →PT is fully
abstract w.r.t. RS and RT and operational corresponding w.r.t. RT and RT is a bisimulation then RS is
a bisimulation.

To conclude that RS is a bisimulation iff RT is a bisimulation, we have to get rid of pairs in RT that do
not result from pairs of encoded source terms and their derivatives, because operational correspondence
provides no information about such pairs. The simplest way to do so, is to assume a surjective encoding.

Lemma 4.8 Let RS ⊆P2
S and RT ⊆P2

T be equivalences. If an encoding J·K : PS→PT is surjective
(∀T. ∃S. T = JSK), fully abstract w.r.t. RS and RT, and operational corresponding w.r.t. RT then:

RS is a bisimulation iff RT is a bisimulation

5 Conclusions

Within this paper we provide a number of results about different encodability criteria. In particular:
• We analyse divergence reflection, barb sensitiveness, success sensitiveness, full abstraction, and

operational correspondence as well as several combinations of these criteria.
• We prove that different variants of operational correspondence correlate with different kinds of

simulation relations from coupled similarity to strong bisimilarity.
• We define a new kind of simulation relation—correspondence similarity—that completely covers

the effect of weak operational correspondence as proposed in [8].
• We relate the combination of success sensitiveness and operational correspondence w.r.t. a bisimu-

lation with the existence of a success respecting bisimulation between source terms and their literal
translations.
• We show that for surjective encodings the combination of full abstraction w.r.t. RS and RT and

operational correspondence w.r.t. RT implies that RS is a bisimulation iff RT is a bisimulation.
In [7] a quality criterion for encodings was proposed that requires the translation JSK of a source term

S to be related to S according to a behavioural equivalence or preorder defined on a domain of interpre-
tation (such as labelled transition systems or reduction-based transition systems with barbs) that applies
to both languages. This behavioural relation has to be chosen with care and should be meaningful for the
application at hand. Possible choices include strong and weak barbed bisimilarity, barbed weak coupled
simulation equivalence, or (in between) our new correspondence preorder. Iff-results—as the results
above—relate these instances of the criterion discussed in [7] with other encodability criteria. In partic-
ular, by the results of Section 3, if an encoding satisfies the criterion of [7] w.r.t. (weak) bisimilarity, then
it also satisfies operational correspondence w.r.t. (weak) bisimilarity.1 Moreover, if an encoding satisfies
the criterion of [7] w.r.t. correspondence similarity, then it also satisfies weak operational correspondence
w.r.t. coupled similarity.2

1And by the results of Section 4 the bisimulation may be required to (weakly) respect barbs at both sides of the implication.
2We may not conclude that it also satisfies weak operational correspondence w.r.t. correspondence similarity, at least not

when also weakly respecting barbs. A counterexample can be found in Figure 3. There we have a weakly barb respecting
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s1

s2sa sc

t1

t2
t3

t4
t5ta tc

LS = ({s1,s2,sa,sc } ,{(s1,s2) ,(s2,sa) ,(s2,sc)})
sa ↓LS a sc ↓LS c s2 ↓LS b
LT = ({ t1, t2, t3, t4, t5, ta, tc } ,

{(t1, t3) ,(t2, t4) ,(t2, tc) ,(t3, t5) ,(t3, ta) ,(t4, ta) ,(t5, tc)})
ta ↓LT a tc ↓LT c t4 ↓LT b t5 ↓LT b
Rcorr. sim. = {(s1, t1) ,(s2, t2) ,(s2, t3) ,(sa, ta) ,(sc, tc)}
Js1K = t1, Js2K = t2, JsaK = ta, and JscK = tc

Figure 3: Encoding not satisfying weak operational correspondence w.r.t. to a correspondence simulation
that weakly respects barbs, even though Rcorr. sim. is a weakly barb respecting correspondence simulation
relating each source term with its encoding

The above results may leave the impression that we try to replace common encodability criteria by
conditions on relations between source terms and their translations. That is not the case. But we provide
alternative ways to prove different criteria. An example of how the above results can be used to reason
about the quality of an encoding are the two encodings of [10]. That paper analyses ways to encode
the CSP synchronisation mechanism following an approach of [21]. The latter shows that a central
encoding of a similar synchronisation mechanism ensures that source terms and their translations behave
bisimilar, whereas a decentralised encoding only ensures coupled similarity. Proving coupled similarity
can be more difficult than proving bisimilarity. Here our results allow to decrease the proof burden. With
Lemma 3.14 we can conclude from weak operational correspondence w.r.t. a bisimulation that source
terms and their literal translations are coupled similar, without having to deal with coupled similarity
directly. This way we have to deal with the difficult partial commitments, which are introduced by the
de-central implementation, only in operational correspondence and not when relating target terms.

In retrospective, mapping encodability criteria on requirements of a relation between source and tar-
get terms seems quite natural. Indeed the main challenge of the above presented iff-results was not in
proving them but in finding the exact matches between variants of the considered criteria and require-
ments on the relation. As a consequence we had to define a new kind of simulation relation to capture
the version of operational correspondence used in [8].

We do not claim that it is always simple to obtain iff-results as presented in this paper or that we
provide a strategy to obtain such results. Instead we claim that proving such results formally captures the
effect of a criterion on the quality of an encoding function and thus(1) helps us to understand a criterion,
(2) allows to identify unexpectedly strict or weak criteria (3) allows to compare (sets of) criteria, and
(4) allows to analyse the side effects that result from the combination of criteria. Analysing criteria this
way is not necessarily straightforward. To illustrate this, consider the requirement on the preservation of
the (degree of) distribution of a process (preservation of distributability). In the context of asynchronous
distributed systems this requirement is very important.

Several attempts to capture it were proposed in the literature. At least for the π-calculus, the most

correspondence simulation relating s2 with t2 and s2 with t3, but, due to the asymmetric nature of correspondence simulations,
there is no weakly barb respecting correspondence simulation relating t2 and t3.3 By Lemma 3.13 the terms t2 and t3 are weakly
barb respecting coupled similar, however.

3This example does not contradict the weakly barbed variant of Lemma 4.3, for its right-hand side does not hold. Namely,
the condition ∀S. (S,JSK) ∈RJ·K forces (s1, t1) ∈RJ·K, and thus, since RJ·K is a correspondence simulation, also (s2, t) ∈RJ·K
for some t ∈ {t1, t3, t5, ta, tc}. As s2 weakly respects barbs a and c, so must t, yielding t ∈ {t1, t3}. The requirement (S,T ) ∈
RJ·K→ (JSK ,T ) ∈RT yields (t2, t) ∈RJ·K, but there exists no correspondence simulation containing this pair.
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prominent candidate is the homomorphic translation of the parallel operator (JP | QK= JPK | JQK) as used
in [17]. [25] shows that this criterion is too strict by providing an encoding that preserves distributability
but does not translate the parallel operator homomorphically. Instead this encoding is compositional.
Compositionality requires that the translation of an operator is the same for all occurrences of that op-
erator in a term, i.e., it can be captured by a context. Compositionality is significantly weaker than the
homomorphic translation of the parallel operator but also forbids the introduction of global coordinators.
However, to ensure the preservation of distributability, this criterion is too weak. [25] claims to provide
a suitable criterion for the degree of distributability, but without a formal way to reason about the effect
of encodability criteria, there is no way to formally prove such a claim. Thus [25] can only provide
arguments and illustrations. The inability to formally prove it was one of the original motivations for the
present work. Unfortunately, analysing the three criteria compositionality, the homomorphic translation
of the parallel operator, and the preservation of distributability is not an easy task.

Compositionality obviously implies some kind of congruence property on encoded source term con-
texts, but it is not obvious how to turn this observation into an iff-result. To map the homomorphic
translation of the parallel operator on conditions on a relation between source and target terms, is even
more difficult. This criterion clearly implies some strong properties on such a relation, but it is not clear
which condition implies the homomorphic translation of the parallel operator. Because of that, we can-
not completely capture the effect of this criterion on the quality of an encoding. This explains why this
criterion was originally accepted as a criterion for the preservation of distributability. It is not easy to
capture the cases for which it is too strict. The criterion for the preservation of distributability proposed
in [25] can intuitively be understood as a concurrency respecting variant of operational correspondence.
It not only requires that the source term behaviour is preserved and reflected, but also that the simula-
tions of independent steps are independent. Thus analysing this criterion appears to require some kind of
simulation relations that not only consider interleaving semantics. We leave the analysis of these criteria
to further research.

All claims in this paper have been proved using the interactive theorem prover Isabelle/HOL. For
this purpose, a rich theory of encodability criteria was implemented. Since we do not force any assump-
tions on process calculi except that they consist of a set of processes, i.e., a type P , and a reduction
relation, i.e., a relation of type P2 = P ×P , this theory can be used to formally reason in Isabelle
about encodings for all kinds of source and target languages. A number of well-known process calculi
including the π-calculus can for instance be represented in the Psi-calculi framework [1]. Thus there are
Isabelle implementations of well-known process calculi that can directly be combined with our Isabelle
implementation to formally reason about encodings between such calculi.
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