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Abstract—Static analysis techniques can be used to compute
safe bounds on the worst-case execution time (WCET) of
programs. For large programs, abstractions are often required
to curb computational complexity. These abstractions may
introduce infeasible paths which result in significant overes-
timation. These paths can be eliminated by adding additional
constraints to the static analysis. Such constraints can be
found manually but this is labour-intensive and error-prone.
Automated methods of finding infeasible path constraints are
thus highly desirable.

In this paper we present Trickle: a method to automatically
detect infeasible paths on compiled binary programs, in order
to refine WCET estimates. We build upon the Sequoll frame-
work and apply satisfiability modulo theory (SMT) solvers to
find classes of infeasible paths. Unlike other techniques, Trickle
can find infeasible paths which contain an arbitrary number
of conflicting conditions. We also integrate the compute all
minimal unsatisfiable subsets (CAMUS) algorithm to reduce
the number of refinement iterations required. We show the
practicality of Trickle by applying it to a WCET analysis of
the seL4 microkernel. We also evaluate its effectiveness on the
Mälardalen WCET benchmarks.

Keywords-Real time systems; Operating system kernels;
Software verification and validation;

I. INTRODUCTION

Infeasible paths in worst-case execution time (WCET)
analyses are a source of overestimation and thus inaccuracy.
They arise when WCET analyses utilize an abstraction of a
program to hide (mostly) irrelevant details, in order to curb
the computational complexity of the analysis. Such analyses
may consider more program paths than are actually possible.
Although this ensures that the results given by the analysis
are sound (i.e. all possible paths are considered), some
of these paths cannot be executed in practice. Infeasible
paths can be eliminated by refining the program abstraction,
leading to more accurate WCET estimates, and thereby
reducing the amount of overprovisioning required for real-
time systems.

The problem of infeasible path detection arises in a variety
of applications, including program compilation and bug
detection. In this paper, we look at the problem in relation
to a specific method of WCET analysis—the implicit path
enumeration technique (IPET). IPET [1], described further in
Section III-A, constructs an abstraction of the possible paths
through a program using linear equations. Without further

constraints on the equations, the abstraction created by IPET
can be overly coarse, as it does not consider the values of
variables and the satisfiability of conditional expressions. As
a result, many infeasible paths may be created.

To refine the abstraction created by IPET, additional
constraints can be introduced into the system of equations.
These constraints can be broadly classified into two cate-
gories: those that rely on knowledge of global invariants,
and those which can be deduced through local reasoning.
The first category can generally be identified quickly by
a developer with an understanding of the code base, but
is significantly more difficult to automate. This is because
automatically deducing global invariants is computationally
expensive—although some techniques exist to “guess” possi-
ble program invariants [2]. It is much easier to automatically
detect infeasible paths which fall into the second category
(i.e. due to local reasoning). It is these paths which we focus
on in this paper.

In this paper, we present Trickle—a method to automat-
ically refine the abstraction used by IPET for computing
WCET. We build upon Sequoll [3] and its ability to reason
about compiled binaries. We utilise an SMT solver and inte-
grate the CAMUS algorithm [4] for identifying unsatisfiable
subsets within a system of constraints. We apply Trickle to
the WCET analysis of the seL4 microkernel [5], and also
evaluate it on the Mälardalen WCET benchmarks [6].

In previous work applying the Sequoll framework, infea-
sible paths were tediously specified manually by a human.
Trickle automates the process of eliminating infeasible paths,
speeding up computation of the worst-case execution time,
while avoiding the potential for human error created by
manual annotations. Trickle has three key advantages over
past approaches: (1) unlike many traditional abstraction-
refinement techniques, this method is well-suited to IPET-
based WCET analyses, as the structure of the infeasible
paths found can be expressed precisely as integer linear
equations; (2) this method can detect infeasible paths arising
from the interaction of an arbitrary number of mutually un-
satisfiable conditions, whereas some techniques are limited
to only pairwise conflicts; and (3) by using an SMT solver
in a directed iterative refinement, our method is more precise
than traditional interval-based value analyses.



int f(int a) {
if (a & 4)

slow();
else

fast();
if (!(a & 4))

slow();
else

fast();
}

if (a & 4)

slow() fast()

if (!(a & 4))

slow() fast()

 

Figure 1: A program with a typical “double diamond”
control flow graph and bit-arithmetic. There are two infea-
sible paths in this program as the if statements are mutually
exclusive.

int f(int a, b) {
if (a == 0)

...
if (a == b)

...
if (b == 1)

...
}

Figure 2: A program containing a “3-diamond.” Any two
conditionals can be simultaneously satisfied, but all three
cannot.

II. MOTIVATING EXAMPLES

We focus on finding infeasible paths in order to refine the
WCET estimates of a program using IPET. There has been
a significant amount of past research on finding infeasible
paths, especially for WCET analysis (described further in
Section VI). Many algorithms are framed in the context of
a common construction known colloquially as the “double
diamond.” Such a case arises from two mutually exclusive
conditional statements, such as the example shown in Fig-
ure 1. This case is complicated by infeasible paths derived
from bit arithmetic, common in embedded systems but is
not handled by existing infeasible path detection schemes
suitable for IPET.

As a second example, consider the program in Figure 2
with the control flow graph shown in Figure 3. No pair
of conditionals in this program are mutually exclusive,
however all three conditionals cannot be simultaneously
satisfied. One distinct advantage of the Trickle approach is
that it generalises naturally to infeasible paths involving an
arbitrary number of conflicting edges, such as those arising
from n-diamonds. An infeasible n-diamond configuration
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Figure 3: Control flow graph corresponding to the program
in Figure 2, showing variables for the execution counts of
each basic block and edge.

consists of n conditionals such that any strict subset may be
simultaneously satisfiable, but the set of all n conditionals
are not.

III. BACKGROUND

This section summarises the relevant background behind
the implicit path enumeration technique used to compute
worst-case execution time and introduces the CAMUS algo-
rithm developed by Liffiton & Sakallah [4].

A. WCET computation by IPET

There are many possible approaches to compute the worst-
case execution time of a program, each with their own
advantages and drawbacks. Wilhelm et al. have published a
review of the state of the art in worst-case execution analysis
tools and techniques to which we refer the reader [7]. Com-
puting the precise WCET of large programs executing on
modern hardware architectures requires using abstractions of
the program and/or the hardware. The choice of abstraction
selects a compromise between accuracy and scalability.
Here, we only focus on refining the program abstraction,
not the hardware.



We use the implicit path enumeration technique pioneered
by Li et al. [1] and implemented in Chronos [8]. IPET
computes the WCET by viewing it as a linear optimization
problem. It formulates a set of integer linear equations where
variables are used to represent the execution counts of each
basic blocks, as well as each edge between blocks. The
flow constraints from the control flow graph of the program
are encoded as linear equations in an integer linear pro-
gramming problem, as are the constraints on loop bounds.
The overall execution time of the program is the objective
function whose maximum value is found by an integer linear
programming (ILP) solver. The objective function is given as
the sum of products of every basic block’s execution count
and execution time.

In its primitive construction, the equations encode only
the structure of the control flow graph and ignore the flow
of any data through the program. It is entirely possible for a
worst-case path found in this construction to be infeasible in
practice, for example, because of conditional branches that
cannot be satisfied. If the constraints which cause a path
to be infeasible can be expressed as a linear equation, then
the equation can be added to the ILP problem to exclude it.
Note that not all infeasible paths can be expressed this way—
for example, any constraint involving non-linear arithmetic
cannot.

In the remainder of this paper, we use bi both to refer
to the basic block and as a variable denoting the execution
count when part of an equation. Similarly eij refers to the
edge from bi to bj , as well the variable denoting the number
of times that edge is taken.

Given our example in Figure 3, we can express the fact
that all three conditionals are mutually unsatisfiable by the
following equation:

e01 + e34 + e67 ≤ 2

This equation states that the sum of execution counts of the
three “true” edges in the control flow graph (CFG) is at most
two, therefore no path will traverse all three edges. Note that
this expression is only correct if this fragment of the control
flow graph only executes once (i.e. if it is not part of a loop).
We address loops in Section IV.

B. Computing all minimal unsatisfiable subsets

Satisfiability modulo theories (SMT) solvers can be used
to determine if a given set of constraints is satisfiable. Mod-
ern SMT solvers can reason about constraints expressed as
formulae over Booleans, integers, bitvectors, lists and more.
If the constraints are not satisfiable, many SMT solvers
simply return the unenlightening result “unsatisfiable”. How-
ever, some will endeavour to provide a smaller unsatisfiable
subset or “core” of the original problem to explain why the
problem is unsatisfiable, weeding out irrelevant information.

In the context of worst-case execution time, every edge of
a loop-free control flow graph can be viewed as a Boolean

formula of the conditions that must hold for the edge to
be traversed. Given a set of edge conditions along some
execution path, an SMT solver can determine whether the
edge conditions can be simultaneously satisfied. If not, that
path is infeasible, and an unsatisfiable subset can be used to
form an additional constraint that eliminates an entire class
of infeasible paths including the one tested.

A minimal unsatisfiable subset (MUS) is an unsatisfiable
subset of constraints of which removing any individual
constraint allows the others to be satisfied. A set of formulae
may contain multiple MUSes, which themselves may be
disjoint or overlap. The problem of finding MUSes has
seen an increased interest recently due to its increasing
importance in formal verification [9]. Two approaches have
been proposed for finding all minimal unsatisfiable subsets
[4], [10].

In this paper, we apply the compute all minimal unsatis-
fiable subsets (CAMUS) algorithm developed by Liffiton &
Sakallah [4]. The full details of the algorithm are given in
their paper, however we will present a brief overview here
to give an understanding of the limitations when applied to
WCET analysis.

MUSes are closely related to the concept of minimal
correction subsets (MCSes). An MCS is a minimal subset of
constraints in an infeasible constraint system such that when
the MCS is removed, the remaining constraints are feasible.
Each MCS is the set-wise complement of a maximal satis-
fiable subset (MSS)—a satisfiable subset of the constraints
which cannot be expanded any further without making it
unsatisfiable.

Let Ω be a collection of sets of elements from some
domain D. H ⊆ D is a hitting set of Ω iff every set
within Ω is “hit” by an element of H—i.e. each set of Ω
shares a common element with H . An irreducible hitting
set of Ω is a hitting set where no element can be removed
without losing the hitting set property. For example, let Ω =
{{A,D}, {B,C,D}} (and our domain D = {A,B,C,D}).
Then H1 = {A,B,C} and H2 = {A,B} are both hitting
sets of Ω but only H2 is irreducible.

A duality exists between the MUSes and MCSes of an
infeasible constraint system: every MUS is an irreducible
hitting set of the set of all MCSes. Similarly, every MCS
is an irreducible hitting set of the set of all MUSes. The
CAMUS algorithm leverages this duality to compute all
MUSes, by first computing the set of all MCSes (as the
MCSes are easier to compute). Only once all MCSes are
found can the MUSes be computed.

This method of construction gives rise to some chal-
lenges in managing the computational complexity when
computing MUSes. In particular, given a set of disjoint
MUSes, the number of MCSes is the combined product
of the cardinalities of each MUS—i.e. given the disjoint
MUSes {M1,M2, . . . ,Mn}, the number of MCSes is given
by |M1| × |M2| × . . . × |Mn|. This is a worst case for
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Figure 4: An outline of the Trickle algorithm

the CAMUS algorithm as the number of MCSes grows
exponentially with the number of MUSes.

The CAMUS algorithm builds upon an existing constraint
solver. It searches for all maximal satisfiable subsets, giving
all minimal correction sets as their complement, which in
turn are used to compute all minimal unsatisfiable subsets
as their hitting sets. The CAMUS algorithm has been applied
to both Boolean satisfiability (SAT) and SMT solvers. Our
work builds upon the SMT implementation of CAMUS us-
ing the Yices SMT solver [11]. As such, our implementation
is limited to loop bounds based on conditionals which can
be encoded and decided by the Yices SMT solver and the
theories it can support.

IV. DETAILS

The outline of our algorithm is shown in Figure 4.
Using the Sequoll framework, we first precompute the edge
conditions of every edge in the control flow graph. An
edge condition is a Boolean expression corresponding to
a condition which must hold in order for that edge to be
traversed. For example, the edge condition on e34 from
Figure 3 is a = b, and similarly for e35 is a 6= b. As Sequoll
has transformed our program into single static assignment
(SSA) form [12], all edge conditions relate to SSA variables,
making them natural to express to an SMT solver.

We note that using an SMT solver is significantly more
powerful than past approaches using interval-based analyses,
as SMT solvers can evaluate more complex constraints—e.g.
constraints involving bitfields, which are not uncommon in
embedded software.

Using standard IPET techniques, we generate a set of
integer linear equations which encode the structure of the
control flow graph. This is generated using the Chronos
tool [8]. As Chronos also models the instruction and data
caches, the resulting ILP equations are more complex, but
they have the same inherent structure as produced by the
standard IPET approach.

By solving the ILP equations, we obtain an assignment
of values to our basic block and edge count variables.
From these values, we can reconstruct the path through the
abstract program using an Eulerian path algorithm. At least
one Eulerian path is guaranteed to exist due to the flow
constraints for each node—every path into a node must
exit, except for the global source and sink where the path
originates and terminates, respectively.

Given the longest path through the control flow graph,
we can collect all edge conditions of all edges on this path.
This gives us our set of constraints which we can test for
satisfiability with an SMT solver. If the constraints cannot
be satisfied, then we invoke the CAMUS algorithm, which
returns a set of MUSes corresponding to all sets of edge
conditions that are mutually unsatisfiable. Each such set
describes a class of paths which are infeasible.

We note that the CAMUS algorithm may return no MUSes
even when the SMT problem is not satisfiable. This can
arise if the constraints are too complex causing the SMT
solver to time out, or in some circumstances (under some
logical domains) the SMT solver is unable to decide if the
constraints are satisfiable or not.

If no MUSes are returned (because either the constraints
are satisfiable, or CAMUS returns no MUSes) infeasible
paths may still exist in the control flow graph. Loops (dis-
cussed below), non-linear arithmetic, unresolvable memory
accesses, and invariants on the code which are not expressed
to the SMT solver, can all create infeasible paths which
cannot be found using SMT with Trickle. When no further
MUSes are found, we terminate and return the most recent
worst-case path.

On the other hand, if the CAMUS algorithm returns sets
of infeasible constraints, we convert each set (MUS) into
an equation and augment the existing ILP in order to refine
our abstraction. For example, consider the program listed
in Figure 2, with its control flow graph shown in Figure 3.
Assume that the worst-case path detected so far included
the edges e01, e34 and e67 (and possibly others beyond the
graph shown). The CAMUS algorithm would detect that
these edges are not satisfiable and return the single MUS
{e01, e34, e46}. This can be converted into a constraint of
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Figure 5: An example CFG with nested loops

the form:
e01 + e34 + e67 ≤ 2

In general, any such MUS on a loop-free control flow
graph M = {e1, e2, . . . , en} can be converted into an ILP
constraint of the form:

e1 + e2 + · · ·+ en ≤ |M | − 1

We repeat the process again using the original set of
ILP equations, augmented with any constraints derived from
MUSes, until no further MUSes are found. By eliminating
the class of all paths containing any MUS found, the ILP
solver will not find them on subsequent iterations, guaran-
teeing progress.

Now we have seen the general idea behind the algorithm,
there are some details to be addressed.

Loops: The approach used by Trickle is intrinsically
tied to loop-free control flow graphs. The reason for this
limitation is two-fold: first, SMT solvers cannot natively
reason about loops except by explicitly unrolling them, or
by incorporating loop invariants [13]; second, even if we
could find infeasible paths across loop iterations, it may
not be possible to construct a corresponding ILP constraint.
There are some limited classes of constraints which can be
expressed [14], but in the general case it is difficult, if not
impossible.

However, we can detect infeasible paths if they lie within a
single iteration of a loop. Our approach considers each loop
within a program separately. For each loop L (a strongly
connected component in the CFG), we select the edges that
are contained in L, but are not a part of any nested loops
within L. In the example CFG shown in Figure 5, there are
two loops, one nested within the other. We consider the set of
edges of the outer loop {e12, e34, e41}, and the set of edges
of the inner loop {e23, e32}. We do not consider irreducible
loops [15] in our analysis (i.e. loops with multiple entry
points), which means that the nesting of loops must always
be well-defined.

1 if (a == x)
2 if (a < b)
3 c = a;
4 else
5 c = b;
6 if (c != x)
7 ...

Figure 7: An example of C code which is improved by
φ-elimination

It would also be possible for Trickle to detect infeasible
paths which involve the first iteration of a loop and any re-
lated conditions prior to entry of the loop body, and similarly
paths involving the final iteration of a loop and any related
conditions after the loop exit. We have not implemented this
in our analysis, but it could detect infeasible paths which
reduce the computed WCET estimate in some cases.

Model checkers are better suited to exploring iterations
of a loop, however any resulting infeasible paths may not
be expressible as ILP constraints. One simple method to
simultaneously overcome the limitation of loops in SMT
solvers, and the problem of constructing corresponding ILP
constraints, is to (partly or fully) unroll loop iterations. We
have not done so in our analysis, but this is also an area
for future work. Loop unrolling is impractical though if the
number of loop iterations is large or unknown. In some cases
loop unrolling can also cause a state explosion if the loops
contain conditionals, as the number of possible paths is then
exponential in the number of iterations.

φ-elimination: In SSA representation, φ-functions (and
the φ-variables to which they are assigned) are used to
represent a value that depends on the path taken through
the program. They are located at nodes in the control flow
graph with multiple incoming edges. For example, Figure 6a
shows part of a control flow graph where a φ-function is
used. In the general case, the value of x4 here depends on
which incoming edge was taken. However, as our algorithm
evaluates the feasibility of a specific path, we can transform
the φ-function into edge conditions on the incoming edges,
as shown in Figure 6b. This allows the SMT solver to track
the variable through the path.

The process of φ-elimination actually gives rise to some
of the “triple-diamond” scenarios described in Section II
(although such scenarios can exist without φ-elimination).
To see how this arises in practice, consider the code in
Figure 7. Any loop-free path that executes both lines 3 and 7
is infeasible. We have not shown the full control flow graph
for this example, but there are three edge conditions in the
infeasible set: {a = x, c = a, c 6= x}.

Curbing complexity: Due to the inherently exponential
nature of SMT solving, and the exponential complexity of
the CAMUS algorithm in the presence of multiple MUSes,



x1 ← ... x2 ← ... x3 ← ...

x4 ← ɸ(x1, x2, x3)

(a) a φ-variable in the CFG

x1 ← ... x2 ← ... x3 ← ...

x4=x1 x4=x3x4=x2

(b) CFG after transforming edge conditions

Figure 6: An example of φ-elimination

we must choose our candidate edges to test with CAMUS
carefully. For programs with longer paths (e.g. 200 edges),
there may easily be 10 or more MUSes on a given worst-
case path.

To reduce the complexity of finding these MUSes, we
observed that many conflicting edges are generally in close
proximity. Given this, we use a small sliding window over
the edges of the candidate path, and use CAMUS to find
conflicts over smaller segments. The sliding window begins
with a fixed initial size s0, and moves forward incrementally
by d for each query to CAMUS, partially overlapping
with the previous query. This detects many of the common
conflicts quickly. The variables s0 and d can be tuned based
on the efficiency of the SMT solver.

If no conflicts are found after the first pass with the sliding
window, we repeat the process, increasing the size of the
sliding window until it either contains an MUS or covers
the entire path (at which point we know the SMT solver
has deemed the path feasible). In extreme circumstances,
the SMT solver may take too long as it performs a compu-
tationally expensive search. In this case, the impatient user
can abort the SMT solver. This construction gives a suitable
anytime algorithm, where the result returned is valid even if
interrupted by the user prematurely.

As an example, consider a worst-case path that follows
the sequence of edges:

e1, e2, e3, e4, e5, e6, e7, e8

with an initial window size of s0 = 4, and increment of
d = 2. We first run CAMUS over {e1, e2, e3, e4}, followed
by {e3, e4, e5, e6}, followed by {e5, e6, e7, e8}. If no MUSes
are found, we then expand to {e1, e2, . . . , e6} and finally,
{e1, e2, . . . , e8}.

Note that we may not find all MUSes along a specific
path, but it is not necessary. For example, if a path contains
one MUS with edges close together (close enough to fit
within a small sliding window), as well as a second MUS
where the conflicting edges are far apart, we will only find

the first MUS. This eliminates the path in question (and any
such paths containing the MUS) and guarantees forwards
progress. We may later encounter the second MUS on a
different worst-case path and can eliminate it then.

Using the sliding window technique, this approach could
also be parallelized easily by processing different fragments
of the sliding window on separate cores or machines.

Trickle also implements a further optimization, that re-
moves redundant clauses before applying the CAMUS al-
gorithm. Many paths often share the same edge condition
amongst several edges. In such cases, only one instance of
the edge condition needs to be passed to the SMT solver.

V. EVALUATION

A. seL4

We demonstrate the applicability of Trickle by applying it
to a worst-case interrupt response time analysis of the seL4
microkernel [5]. seL4 uses an event-driven non-preemptible
kernel design, which ensures that no exceptions or interrupts
occur within the kernel. This design was necessary to make
formal verification feasible and also significantly simplifies
static analyses of the kernel. However, it also increases
the worst-case interrupt response time of the kernel. In
order to bound interrupt response time and provide real-
time responsiveness, preemption points are inserted into
the kernel in long-running operations. A preemption point
detects if an interrupt is pending, and if so, postpones
the current operation to be resumed later, and handles the
interrupt.

Our version of seL4 contains 125 non-preemptible re-
gions of code. Each region begins and ends at program
points where interrupts can be handled immediately—i.e.
at a preemption point or kernel entry/exit. The worst-case
interrupt response time of the kernel is determined by the
maximum worst-case execution time of any of these 125
non-preemptible regions. In essence, we are running 125
separate WCET analyses, covering all code paths within the
kernel.
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Figure 8: Percentage improvement of the 45 cases where our
algorithm improved the worst-case execution time estimates
by eliminating infeasible paths, compared with using no
infeasible path information

Trickle detects infeasible paths in 45 of the 125 regions.
Where infeasible paths are found, Trickle arrives at a feasible
path after one iteration in 31 cases, after two iterations in a
further 14 cases, and up to 7 for the remaining 3 cases. In
two cases, it reduces the WCET automatically by 23% (from
17 912 cycles to 13 800) using two iterations and 5 MUSes.
The improvements in WCET for all 45 cases where Trickle
detects infeasible paths are shown in Figure 8.

Trickle detects a total of 252 MUSes when applied to
seL4. Note that these are only the MUSes required to
identify specific worst-case execution paths as infeasible.
Many more may exist in the program, but they do not affect
our WCET computation. Of the MUSes found, 20 % are a
single-element MUS (an infeasible basic block), 44 % are
pair-wise conflicts, 30 % are 3-way conflicts, and 6 % are
4-way conflicts.

In our previous analyses of the seL4 microkernel [16],
[17], the process of identifying infeasible path constraints
was purely manual. Identifying a single infeasible path (or
class of paths) by hand could take between 5 minutes and
several hours. It involved two phases: (1) understanding
what the execution path is doing and deciding if it is
actually feasible; and if not (2) devising an infeasible path
constraint expressible to the ILP solver which eliminates
the path or class of paths. This process would need to be
repeated until no infeasible paths could be observed. For a
single non-preemptible region in seL4, this typically took
several days of labour, as the path may initially be 100,000s
of instructions long. The paths eliminated were manually
identified as infeasible because of either local constraints, or
global kernel invariants. Trickle only automates the former
category, and as such the largest tangible benefit is the
reduced human effort. This automation also made it practical
to perform the WCET analysis over all 125 preemption
points.

To compare the improvements over our manual analysis,

Baseline

With Trickle

Manual

With Trickle

 0  100  200  300  400  500  600  700

668 
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Figure 9: Reduction in WCET (in thousands of cycles)
through applying automated infeasible path detection. The
baseline figure uses no infeasible-path information, while
manual is the best result achieved with manual annotations.

we applied Trickle to the kernel binary used in our previous
analysis [17]. The results are shown in Figure 9. Beginning
with no infeasible path information (“baseline”), the reduc-
tion in WCET from Trickle is similar to what was obtained
manually and previously validated by Sequoll [3], but with
much less tedium. Trickle was unable to improve upon our
best manual efforts (“manual”) to eliminate infeasible paths
(which have not been machine-validated).

The difference between the results from Trickle and our
best manual efforts is due to additional constraints which
could not be deduced by sequoll. Over half of these extra
constraints could be deduced if the memory aliasing analysis
in sequoll was improved (currently, data written to heap
memory are not tracked, so subsequent reads return un-
known values). The remaining constraints rely upon global
invariants maintained across the kernel (e.g. the type of
certain objects found when dereferencing pointers). These
latter constraints could not be deduced without reproducing
a substantial portion of the seL4 proof. However, integrating
such invariants directly from the proof is an interesting area
for future research.

Pairwise-conflict comparison: We briefly explore the
effectiveness of Trickle’s ability to find MUSes of size
greater than 2 (e.g. the triple-diamond from our motivating
example). We found that for the main kernel entry point,
using only pair-wise edge conflicts gave a 4.7% improve-
ment in computed WCET (compared with no infeasible
path detection), whereas using n-way conflicts gave a 10.7%
improvement. This difference indicates that eliminating in-
feasible paths with n-way conflicts can give notable im-
provements to WCET estimates.

B. Comparing CAMUS vs built-in unsat core

We can demonstrate the effectiveness of the CAMUS
algorithm by comparing it with the single unsatisfiable core
generated by our SMT solver (Yices 1.0.37). With either
the CAMUS-generated MUSes, or the single “unsat” core
provided by Yices, we are guaranteed to arrive at the same



# # original new
Benchmark conflicts iter. WCET WCET % diff
cover 3 1 20 781 18 283 -12.0%
crc 5 1 177 586 176 072 -0.9%
statemate 7 2 51 768 51 614 -0.2%
ndes 2 1 447 116 447 097 -0.0%

Table I: Infeasible paths detected in Mälardalen WCET
benchmark suite

result, assuming that there are no bugs in the SMT solver.1

What we can evaluate is how much faster we arrive at a
feasible path.

Applying the CAMUS algorithm to seL4 required 67
refinements of the control flow graph. In comparison, using
the unsat core generated by Yices required 152 refinement
iterations. However, the number of refinement iterations
alone does not necessarily imply a faster result, as it does
not account for the extra run time of the CAMUS algorithm.

Our current implementation of CAMUS (and also the
unsat core approach) does not immediately lend itself to
a fair comparison. For technical reasons, a C program
encoding the SMT problem is compiled for each SMT
instance. A sizable proportion of the execution time is spent
in the C compiler. An optimized implementation would not
incur these overheads—e.g. by using direct API calls to
construct the SMT problem from within Trickle.

To compare the execution times of CAMUS against the
unsat core approach, we subtract out the time spent in
compilation of the SMT instances, leaving only the run time
of the SMT solver and Trickle itself. We note that in all of
our experiments, we let the SMT solver run to completion.

The work required to compute the edge conditions is the
same for both the CAMUS and unsat core approaches, and
takes approximately one hour to compute across the entire
seL4 binary using the Sequoll framework. Once all edge
conditions are computed, using CAMUS takes 105 minutes
to analyse all worst-case paths through seL4, whereas using
a single unsat core requires 111 minutes. Note that these
are the times after subtracting the compilation overheads—
including the compilation time makes the unsat core method
significantly slower because it uses many more SMT in-
stances.

C. WCET benchmarks

We applied our algorithm to detect infeasible paths in
programs from the Mälardalen WCET benchmark suite [6].
Like in our previous results from Sequoll [3], we had to
omit benchmarks using floating-point arithmetic, irreducible
loops and recursion, due to lack of tool support. Due to im-
plementation shortcomings we were also unable to analyse
several other benchmarks (in particular, our implementation

1 We encountered one bug in Yices which caused it to crash on certain
inputs. The Yices developers swiftly fixed this bug in the 1.0.37 release.

does not currently handle 64-bit arithmetic instructions used
in the compiled assembly of these benchmarks).

We detected infeasible paths in four benchmarks, shown
in Table I. Depending on the benchmark, the number of in-
feasible paths detected and the improvement in WCET vary
dramatically, and most have little impact. Although some
of the Mälardalen benchmark programs have quite complex
control flow graphs, most of them are comparatively small
(compared to seL4). Infeasible paths are much more likely
in larger programs, where they can cause significant overes-
timation.

Finally, we note that although many of the benchmarks
are single-path programs (including cover and crc), they
can still exhibit infeasible paths due to the abstractions used.

We see much larger improvements in seL4’s WCET than
in these benchmarks because of the increased complexity
of the code being analysed in seL4. The size and structure
of the seL4 code means that there are many infeasible paths
which can be eliminated. For example, seL4 contains several
functions that use switch statements over an object type
[17]—for two such functions where one calls another, a
quadratic number of infeasible paths are introduced, which
are detected and eliminated by our algorithm.

VI. RELATED WORK

The issue of infeasible path detection in static analysis
arises not only in the worst-case execution time domain, but
also when generating test vectors [18], detecting program-
ming errors [19], and in other general data flow analyses
[20]. This has driven much research into finding infeasible
paths automatically. However, the domain of worst-case
execution time analysis, and specifically using IPET-based
analyses, places many limitations on what infeasible path
information can be utilized. Not all techniques for finding
infeasible paths can be applied to IPET.

Engblom & Ermedhal demonstrate how various types of
flow information can be converted to equations suitable
for IPET-based analyses [14]. Like Trickle, they divide a
program into “scopes,” which are loop-free subsets of code,
and express a number of different constraint types as ILP
equations. These include the same construction we use for
expressing conflicting edges. Their method also supports the
ability to restrict constraints to specific loop iterations. They
do not detect any constraints, but allow a user to provide
these annotations more easily.

Suhendra et al. developed an algorithm to find infeasible
paths for WCET analyses, based on detecting pairwise con-
flicts between assignments and conditional branches [21].
Like Trickle, they are also limited to finding such conflicts
within loop-free CFGs, and thus treat each loop individually.
As they only search for pairwise conflicts, their algorithm
would not detect the case given in our motivating example.

Gustafsson et al. have shown that abstract interpretation
can be combined with symbolic execution to find infeasible



paths [22]. Their approach is able to detect paths with
more than two conflicting edges, and is similarly limited
to loop-free segments of code. As their analysis is based
upon abstract interpretation, a join can lose precision (but
is necessary to curb complexity). They are limited by the
reasoning ability of their symbolic execution engine (they
present an interval-based solver), whereas we are limited by
the reasoning ability of our SMT solver. In the absence of
joins (no precision is lost), and if the reasoning ability of
their symbolic execution engine was comparable to our SMT
solver, then we would expect the infeasible paths found by
their approach to be the same as Trickle. However a different
complexity trade-off is made. Their method attempts to find
all possible sets of infeasible paths in a single pass, using
abstract joins to curb complexity, whereas Trickle takes a
guided approach based on the current worse-case path in
an iterative refinement. Given this, we expect that Trickle
can perform better on loop-free code segments with an
exponential number of flow facts.

Similarly, Ferdinand et al. perform a value analysis based
on abstract interpretation to compute an interval of possible
values for each register at each program point [23]. Their
approach is also susceptible to loss of precision when paths
join and, due to the use of intervals, has less expressive
power than an SMT solver.

The model-checking-based approach taken by Cassez [24]
to compute WCET inherently eliminates infeasible paths,
as it is guaranteed to find a concrete worst-case (if the
analysis terminates). However, the technique does not scale
to programs the size of seL4.

Huuck et al. present a method to eliminate infeasible paths
for reducing false positives in static analysis of source code
[19]. They use a model checker to identify a path to an
error condition, compute a weakest precondition from the
path, and use an SMT solver to test the validity of the
precondition. If the SMT solver shows that the precondition
is unsatisfiable, they augment the model with an “observer”
which encodes the unsatisfiability information and elimi-
nates the path from subsequent model checking runs. Their
approach works on loops, as the loop is detected by the
model checker, and unrolled inside the weakest precondition
expression given to the SMT solver. However, the infeasible
path information they detect cannot be incorporated into an
IPET-based WCET analysis.

Banerjee et al. demonstrate a method to incorporate
information from infeasible path analysis into the micro-
architectural model of the system [25]. They use a SAT
solver to identify infeasible paths in parallel with the micro-
architectural modelling phase to eliminate spurious machine
states which arise due to the merging of paths in abstract in-
terpretation, thereby reducing overestimation. This technique
complements an existing infeasible path detection algorithm.

Our approach shares conceptual similarities with
counterexample-guided abstraction refinement (CEGAR)

algorithms for model checking [26], which were later
extended to software verification [27]. CEGAR-style
algorithms use counterexamples to refine the abstraction
of a system in order to arrive at a model with the
required precision to solve the problem. C̆erný et al. have
applied CEGAR-like algorithms to general quantitative
properties such as WCET [28]. They demonstrate automated
abstraction-refinement schemes of cache behaviour, using
standard CEGAR techniques for eliminating infeasible
paths. Their approach however does not easily integrate
into IPET-based analyses.

VII. CONCLUSIONS AND FUTURE WORK

Eliminating infeasible paths is necessary to obtain good
worst-case execution time estimates of large programs. In
this paper, we introduced the Trickle algorithm to automat-
ically detect infeasible paths within a control flow graph
using an SMT solver. The computational complexity of the
SMT solver is mitigated by iteratively analysing the worst-
case path found so far. We integrate the CAMUS algorithm
for finding all subsets of mutually unsatisfiable constraints
to speed up the elimination of infeasible paths by reducing
the number of iterations required, and we have shown how
to integrate CAMUS effectively in the context of infeasible
path detection.

Trickle can detect arbitrary sets of conflicting edges on a
control flow graph. The information about infeasible paths
can be easily integrated with an IPET-based WCET analysis.
Being based on an SMT solver, it can detect more complex
conflicts relations than other approaches.

We have evaluated our detection method by applying it
to a worst-case execution time analysis of seL4, where we
demonstrate that it can reduce the WCET estimate by 23%.
By using the CAMUS algorithm, we can achieve these
results with fewer iterations than using a single unsatisfiable
core obtained from an SMT solver. We also significantly
reduce the amount of labour, and potential for error, that
arises from performing infeasible path elimination manually.

Future work includes investigating better handling of in-
feasible paths across loop iterations, either through unrolling
or deducing loop invariants. The addition of a value analysis
phase, using techniques such as abstract interpretation, may
also improve the precision of the analysis in cases where
values are propagated between loop nests. In addition, better
memory aliasing analysis in the Sequoll framework would
enable Trickle to detect more infeasible paths.

Trickle can be downloaded from http://www.ssrg.nicta.
com.au/software/TS/wcet-tools/
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