A Formalisation of the Normal Forms of Context-Free
Grammars in HOL4

Aditi Barthwal' and Michael Norrish

L Australian National University
Adi ti.Barthwal @nu. edu. au

2 Canberra Research Lab., NICTA

M chael . Norri sh@i cta. com au

Abstract. We describe the formalisation of the Chomsky and Greibachmab
forms for context-free grammars (CFGs) using the HOL4 tbeoprover. We
discuss the varying degrees to which proofs that are stfaigrard on pen and
paper, turn out to be much harder to mechanise. While botbhfeare of similar
length in their informal presentations, the mechanisedfgrfor Greibach normal
form blow-up considerably.

1 Introduction

A context-free grammar (CFG) provides a concise mechanismescribing the meth-
ods by which phrases in languages are built from smallerkslozapturing the “block
structure” of sentences in a natural way. The simplicity og tformalism makes it
amenable to rigorous mathematical study.

CFGs form the basis of parsing. We have already mechanised sbthe theory of
CFGs [1]. Grammars can lmrmalised resulting in rules that are constrained to be of
a particular shape. These simpler, more regular, rules egmitn subsequent proofs or
algorithms. For example, using a grammar in Chomsky NorroainH CNF), one can
decide the membership of a string in polynomial time. Usingr@mmar in Greibach
Normal Form (GNF), one can prove a parse tree for any stritigatanguage will have
depth equal to the length of the string.

The Chomsky and Greibach normal form results were first ptesein [3] and
[4] respectively. Here, as part of a wider program, we wodafrthe presentation in
Hopcroft and Ullman [5], a standard textbook.

By mechanising these results, we gain extra confidenceiindhieectness. Because
the results are so basic, this may not seem much of an achésiebut the mechanised
proofs do provide a foundation for the development of yetemoechanised theory. For
example, the proof in Hopcroft and Uliman of the standardltesquating grammars
and push-down-automata (mechanised in [2]), assumeshbarammar is in GNF.

Moreover, simply assuming results such as these in ordeursup more complicated
material defeats the motivation at the heart of mechanisgtiematics.

Contributions

— The first mechanised proofs of termination and correctnassari algorithm that
converts a CFG to Chomsky Normal Form (Section 3).

— The first mechanised proofs of termination and correctnessari algorithm that
converts a CFG to Greibach Normal Form (Section 4).

— We also discuss the ways in which well-known, “classic” gsocan require con-
siderable “reworking” when fully mechanised. Intereshintghough the proofs we
mechanise here both expand dramatically from their lengtHdapcroft and Ull-
man [5], the GNF proof expands a great deal more than the Cbibf.pr

All the assumptions and assertions in this paper have beehanised and the
HOLA4 sources for the work are available at http://useigeranu.edu.au/ aditi/.

2 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL usingdhiewing type defini-

tions:
("nts, "ts) synbol = NTS of "nts | TS of 'ts
("nts, "ts) rule =rule of "nts => ('nts, 'ts) synbol |ist

("nts, 'ts) grammar = Gof ('nts, 'ts) rule list => "nts

The=> arrow indicates curried arguments to an algebraic typeaisicactor. Thus,
ther ul e constructor is a curried function taking a value of type s (the symbol at
the head of the rule), a list of symbols (giving the rule’dtitnand side), and returning
an(’'nts,’ts) rule. The symbols are of two types, typet s used for non-
terminals and typét s used for terminal symbols.

Thus, a rule pairs a value of typent s with a symbol list. Similarly, a grammar
consists of a list of rules and a value giving the start symbi@ditional presentations
of grammars often include separate sets correspondingtgrtmmar’s terminals and
nonterminals. Our grammar type does not include these gpiEidly as it is easy to
derive these sets from the grammar’s rules and start syrabalie shall occasionally
write a grammar= as a tuplgV, T, P, S) in the proofs to come. Heré] is the list of
nonterminals or variable§; is the list of terminalsp is the list of productions anfl is
the start symbol.

Definition 1. A list of symbols (osentential form s derivest in a single step it is of
the formaA~, t is of the forma3~, and if A — (3 is one of the rules in the grammar.
In HOL:

derives g Isl rsl <

3s; s2 rhs lhs.
(s; ++ [NTS [hs] ++ sz = Isl) A (s; ++ rhs ++ s = rsl) A
rule lhs ths € rules g

(The infix++ denotes list concatenation. The symbalenotes membership.)

We write (deri ves g)* sfi sf toindicate thatsf, is derived fromsf; in zero
or more steps, also writtesf; =* sf> (where the grammay is assumed).

This is concretely represented using derivation lists. VikkewR - [<z — y to
mean that the binary relatioR holds between the successive pair of elements of
which starts withe and end withy. Thus,sf; =* sf, can be written aderi ves g -

I <sfy — sf, for somel. We also define the leftmost and the rightmost derivation

relations| deri ves (é) andr deri ves (=).

Definition 2. Thelanguagef a grammar consists of all the words (lists of only termi-
nal symbols) that can be derived from the start symbol.

L g={tsl | (derives g)* [NTS (startSymg)] tsl A isWord tsl}

(Predicate sWor d is true of a sentential form if it consists of only terminahgyols.)
The choice of the derivation relatiodér i ves, | deri ves orrderi ves) does

not affect the language generated by a grammar. Werséy y if y is obtained by
expanding the leftmost non-terminal in Similarly, = = y if y is obtained by the
expansion of the rightmost non-terminalinWe use this equivalence for the proof of
normalisation to GNF. This equivalence forms a part of owkiggound mechanisation.

3 Chomsky Normal Form

CFGs can be simplified by restricting the format of produtsim the grammar without
changing the language. Some such restrictions, which aredtby the normal forms
we consider, are summarised below.

— Removing symbols that do not generate a terminal stringenat reachable from
the start symbol of the grammar (useless symbols);

— Removinge-productions (as long asis not in the language generated by the gram-
mar);

— Removing unit productions, i.e. ones of the foAm— B whereB is a nonterminal
symbol.

€ represents the empty word in the language of a gramma¢-pguoeduction is one
with an empty right-hand side.

The proofs that these restrictions can always be made wiitttanging the lan-
guage are available in our online resources.

In this section we concentrate on Chomsky Normal Form, assputhe grammar
has already gone through the above simplifications.

Theorem 1 (Chomsky Normal Form). Any context-free language withauis gener-
ated by a grammar in which all productions are of the fadm— BC or A — a. Here
A, B, C are variables and: is a terminal.

Proof. Letg; = (V, T, P, S) be a context-free grammar. We can assupmntains no
useless symbols, unit productionsegproductions using the above simplifications. If a
production has a single symbol on the right-hand side, grabsl must be a terminal.
Thus, that production is already in an acceptable form. Eneaining productions in
g1 are converted into CNF in two steps.

Thefirst step is caller ans1Tmml , wherein a terminal occurring on the right side
of a production gets replaced by a nonterminal in the follmgumanner. We replace
the productions of the formh — pts (p or s is nonempty and is a terminal) with
productionsd — ¢ andl — pAs.

translTml nt t g ¢ <=
3¢ r p s.
rule £ r erules g A r =p ++ [t] ++ s A
(p #I[1 Vs #[]) ANisTmlSym¢t A
NTS nt ¢ nonTerminals g A
rules ¢ =
delete (rule ¢ r) (rules g) ++
[rule nt [t]; rule £ (p ++ [NTS nt] ++ s)] A
startSym g = startSymyg

(Functiondel et e removes an element from a list. Thas used to separate elements
in a list.)

We prove that multiple applications of the above transfdromapreserve the lan-
guage.

HOL Theorem 1
Vg g (A y. FA t. translTml Atz y)* g ¢ = (L g =L ¢)

We want to obtain a grammags = (V’/, T, P’, S) which only contains productions of
the formA — a, wherea is a terminal symbol o4 — A;...A,, whereA; is a non-
terminal symbol. We prove that suctyacan be obtained by repeated applications of
trans1Tmnl . The multiple applications are denoted by taking the reflekiansitive
closure oft rans1Tml .

We define the constabad Trml sCount , which counts the terminals occurring in
the RHSs of all productions in the grammar which have more tre terminal symbol
present in the RHS.

badTmml sCount g = SUM (MAP rul eTmmls (rules g))

(SUMadds the count over all the productioM&\P f [appliesf to each elementih)
The auxiliaryr ul eTrml s is characterised:

ruleTrmls (rule ¢ r) = if |r] < 1 then 0 else |FILTER i sTml Sym r|

(Ir| denotes the length of a list)

Each application of the process should decrease the numbberl @ Trml s un-
less there are none to change.(the grammar is already in the desired form). By
induction onbadTml sCount we prove that by a finite number of applications of

trans1Tmml we can get grammap. This follows from the fact that the set of sym-
bols in a grammar is finite.

HOL Theorem 2
INFINITE U(:a) =
J¢. (Az y. Int t. translTml nt t z y)* g ¢ A
badTmml sCount ¢’ = 0

(Note the use of the assumptidbtNFI NI TE U/. Herel{ represents the universal set
for the type of nonterminalsy) in the grammay andg’. The transformation process
involves introducing a new nonterminal symbol. To be ablpitk a fresh symbol, the
set of nonterminals has to be infinite.)

The above process gives us a simplified gramgaauch that
badTml sCount g¢» = 0. By HOL Theorem 1 we have thdi(¢:) = L(g2). We
now apply another transformation gp which gives us our final CNF. The final trans-
formation is called r ans2NT and works by replacing two adjacent nonterminals in
the right-hand side of a rule by a single nonterminal symBejpeated application on
go gives us a grammar where all productions conform to the CMera.

trans2NT nt nt; nt2 g ¢ <=
3¢ r p s.
rule £ r erules g A r = p ++ [nt; n] ++ s A
(p #[] Vs #[]) A isNonTml Sym nti A i sNonTml Sym ntz A
NTS nt ¢ nonTerminals g A
rules ¢ =
delete (rule ¢ r) (rules g) ++
[rule nt [nt1; nt]; rule £ (p ++ [NTS nt] ++ s)] A
startSym g = startSymyg

We prove that the language remains the same after zero orsuohgransformations.

We follow a similar strategy as withr ans1Tml to show that applications of
t rans2NT will result in grammar §3) where all rules with nonterminals on the RHS
have exactly two nonterminalise. rules are of the formd — A As.

To wrap up the proof we show two results. First, that applicest oft r ans1Tml
followed by applications df r ans2NT, leaves the language of the grammar untouched,
i.e.L(g1) = L(gs3). Second, that the transformatibnans 2NT does not introduce pro-
ductions to changbadTmml sCount . We can then apply the two transformations to
obtain our grammar in CNF where all rules are of the fodm— a or A — A; A,
(asserted by thesCnf predicate). The HOL theorem corresponding to Theorem 1 is:

HOL Theorem 3
INFINNTE U(:a) A [] ¢ language g =
Jg¢’. isCnf ¢’ A language g = | anguage ¢’

4 Greibach Normal Form

If ¢ does not belong in the language of a grammar then it can beferamed into
Greibach Normal Form. The existence of GNF for a grammar i@ many proofs,

such as the result that every context-free language carceptel by a non-deterministic
pushdown automata. Productions in GNF are of the fdrm aa wherea is a terminal
symbol and is list (possibly empty) of nonterminals.

We assume an implicit ordering on the nonterminals of thengnar. The various
stages in the conversion to GNF are summarised below.

PreprocessingRemove useless symbotsand unit productions from the grammar and
convert it into Chomsky Normal Form.
Stage 1 For each ordered nontermind}. do the following:
Stage 1.1Return rules of the form such thati#f, — A;« thenj > k. This result
is obtained usin@Pr ods lemma (Section 4.1).
Stage 1.2Convert left recursive rules in the grammar to right reatgsules. This
is based ot ef t 2Ri ght lemma (Section 4.2).
Stage 2 Eliminate the leftmost nonterminal from the RHS of all théesuto obtain a
grammar in GNF.

In the discussion to follow we assume the grammar alreadsfiestthe Preprocess-
ing requirements (following from the results already cehr We start at Stage 1 which
is implemented using relatiard9 in Section 4.4. This is Phase 1 of the GNF algorithm.
Stage 1 depends on two crucial results, Stage 1.1 and Stagéhich are established
separately. Stage 2 can be further subdivided into two pausred in (Sections 4.5 and
4.6), the Phase 2 and Phase 3 of the algorithm, respectively.

All the stages preserve the language of the grammar. We elevoth of our dis-
cussion to mechanising the more interesting stages foiiredimg left recursion and
putting together Stage 1 and Stage 2 to get the GNF algorithm.

4.1 Eliminating the leftmost nonterminal

Let A-productions be those productions whose LHS is the nonteridi We define the
functionaPr odsRul es A Bs rset to transform the set of productionset: the result

is a set where occurrences of non-terminals in theHisho longer occur in leftmost
position in A-productions. Instead, they have been replaced by theirraymt-hand-

sides.

HOL Definition 1
aProdsRules A [ru =
ru DIFF {rule A ([NTS B] ++ s) | (B,s) |
B el ANrule A ([NTS B] ++ s) € ru} U
{rule A (z ++ s) | (z,) |
3B. B €l Arule A ([NTS B] ++ s) € ru Arule B z € ru}

(The notatiors; DI FF s, represents set-difference. Notatifip, B, s)| denotes thap,
B ands are the bound variables.)

Lemmal (“aProds lemma”). For all possible nonterminalsi, and lists of non-
terminalsBs, if rul es ¢’ = aPr odsRul es A Bs (rul es g) and the start symbols
of g andg’ are equal, therL(g) = L(¢').

4.2 Replacing left recursion with right recursion

Left recursive rules may already be present in the grammaney may be introduced
by the elimination of leftmost nonterminals (using the alriemma). In order to deal
with such productions we transform them into right reciesivies. We show that this
transformation preserves the language equivalence.

Theorem 2 (“] ef t 2Ri ght lemma”). Letg = (V,T,P,S) be a CFG. Letd —
Aoy | Aas | ... | Ac«, be the set of left recursivel-productions. LetA —
B1| B2] ... | Bs be the remainingA-productions. Then we can construgt =
(V. U{B},T, P,S) such thatL(g) = L(g’) by replacing all the left recursivel-
productions by the following productions:

Rulel A — 3;andA — 3;Bfor1 <i<s
Rule2 B — a; andB — a;Bfor1 <i<r

Here, B is a fresh nonterminal that does not belongjirThis is our HOL Theorem 4.

Relationl ef t 2Ri ght A B ¢ ¢’ holdsiffthe rulesiny’ are obtained by replac-
ing all left recursiveA-productions with rules of the form given by Rule 1 and Rule 2
(implemented by thé 2r Rul es function).

HOL Definition 2
left2Right A B g ¢ «—
NTS B ¢ nonTerminals g A startSymg = startSymg’ A
set (rules ¢') = 12rRules A B (set (rules g))

In the textbook it is observed that a sequence of productibtie formA — A
will eventually end with a productiod — ;. The sequence of replacements

A= 140[2'1 = AO&Z'ZOZZ'I = ... = AOéip c QG = 6]'041'13 s QG (1)
in g can be replaced ig’ by
A= 6]B = 6]'041'133 = ... = 6]'041'13 .. .Oéi2B = ﬂjaip cee O, Oy (2)

Since it is clear that the reverse transformation is alsaiptes it is concluded that
L(g) = L(¢"). This is illustrated graphically in Figure 1.

HOL Theorem 4
Vg g'. left2Right A B g g = (L g =1L ¢

This is a good example of a “proof” where the authors rely dovious” details to
make their point: the proof in Hopcroft and Ullman consistditie more than equa-
tions (1) and (2), and a figure corresponding to our Figurerifoliunately, a figure
does not satisfy a theorem prover’s notion of a proof; moeedvfails to suggest any
strategies that might be used for rigorous treatment (ssi@li@mation) of the material.

In the following section, we describe the proof strategydusemechanise this result
in HOLA4. For the purposes of discussion, we will assume thatave removing left
recursions inA-productions ing, using the new nontermindB, producing the new
grammary’.

Fig. 1. A left recursive derivatiold — Aa; — Aazar — -+ — A, ...a2a1 — ban ...a2a1
can be transformed into a right recursive derivatibn— bB — ba, — --- — bay, ...a2 —
bay, ...az2a;. Here the RHS does not start with adl.

Proof of the “if” direction We use a leftmost derivation with concrete derivation lists
to show that ifz $; y, Wherey is a word, therx =7, y.

HOL Theorem 5
left2Right A B g ¢ A lderives gk dl <z — y A isWrd y =
3dl’. derives ¢ F dll <z — y

The proof is by induction on the number of timdsoccurs as the leftmost symbol
in the derivationd!. This is given byl dNun\t A di.

Base Casdf there are nads in the leftmost position.g.| dNunNt NT'S Adl = 0)
then the derivation iy can also be done ig.

Step CaseThe step case revolves around the notion blaek A block in a derivation

is defined as a (nonempty) section of the derivation list whearch expansion is done
by using a left recursive rule of. As such, the sentential forms in the block always
have anA as their leftmost symbol. Figure 1 shows tAeand B-blocks for leftmost
and rightmost derivations.

If there is more than one instance 4fin the leftmost position in a derivation, then
we can divide it into three partg/; which does not have any leftmods, di; which
is a block andil;s where the very first expansion is a result of one of the nonrsiee
rules of A. This is shown in Figure 2.

The division is given by HOL Theorem 6. The secoftlause of this theorem
refers to the side conditions on the composition of the egjoaas shown in Figure 2.

In the absence of any leftmads, a derivation is easily replicatedgh Thus, theil;
portion can be done ify’. The derivation corresponding s follows by our inductive
hypothesis.

The proof falls through if derivationi, can somehow be shown to have an equiv-
alent ing’. This is shown by proving HOL Theorem 7. The theorem statasftr a
derivations ing of the form given by Equation (1), there is an equivalent\dgidn in
g’ in the form of Equation (2).

To show the remaining “only if” parta(é;/ y, wherey is aword, therx é; y), we
mirror the leftmost derivation strategy. In this case wg @i the rightmost derivation

dly whereL; # A

,,,,, Lot _____

L, — Ay <; 77777 A
. dls

,,,,, AL _

A — pMiz C 77777 M,

dls whereM; # A

Fig. 2. We can splitdl into di1, dl> anddls such thatdl; has noA-expansionsdls consists of
only A-expansions andls; breaks the sequence dfexpansions so that the very first element
in dls is not a result of amd-expansion. The dashed lines are elements in the derivision
showing the leftmost nonterminalé{ ... L., A, M1). L,, — Ay is the firstA-expansion inil
andA — pMiz (p is a word), breaks the sequence of the consecutiexpansions inlls.

HOL Theorem 6

Iderives g F dl <<z — y A ldNum\t (NTS A) dl # 0 A |dl] > 1 =
ddlh dl dls.

dl = dh ++ dly ++ dl3 A 1 dNumNt (NTS A) dh = 0 A
(Ver e2 p s. dlo = p ++ [e1; e] ++ s = |e| > |e]) A
dpfz.

isWword pfr A

(Ve. e € dh = Isfr. e = pfx ++ [NTS A] ++ sfx) A

dly # [1 A

(dis #[]1 =

ILAST di| < |HD dis| =

=(pfxr ++ [NTS A] HD di3))
(Herex <<= y holds iffz is a prefix ofy.)

and the notion of &-block, whereinB is always the rightmost nonterminal. We omit
the details due to the similarity with the proof of the if ditien.

4.3 Stitching the pieces together

Using theaPr ods lemma and eliminating of left recursive rules, it is cleaatthny
grammar can be transformed into Greibach Normal Form. Txtbdek achieves this
by providing a concrete algorithm for transforming rulestie grammar into an in-
termediate form where left recursion has been eliminatéés iE Phase 1 of our HOL
implementation. We model this transformation with a relatiFrom this point, multiple
applications of thePr ods lemma transform the grammar into GNF. These applica-
tions correspond to the Phase 2 and Phase 3. Each phase thenggammar a step
closer to GNF.

Letg = (V,T,P,S) andV = A, ... A, be the ordered nonterminalsgnWe will
need at least fresh Bs that are not iy when transforming the left recursive rules into
right recursive rules. LeB = B, ..., B, be these distinct nonterminals. The three
phases are applied in succession to the grammar and achéfalowing results.

HOL Theorem 7
left2Right A B g ¢ A
I derives g F dl < pfr ++ [NTS A] ++ sfr — y A
Iderives g y 3y A isWord pfzr A
(Ve. e € dl = Jsfx. e = pfr ++ [NTS A] ++ sfz) A
(Ver e2 p s. dl = p ++ [e1; e] ++ s = |e2] > |ea]) A
(Jyl < Iyl = ~(pfo ++ [NTS 4] y)) =
3dl’. derives ¢ F dlI' < pfr ++ [NTS A] ++ sfz — v

Phase 1 Transform the rules ig to give a new grammay; = (V4,7T, Py, .S) such that
if A; — Ajaisarule ofg;, thenj > i. Sincei not equal toj, we have removed the
left recursive rules i, introducingm new B non-terminals, wherer < n. Thus,
Vi CVU{By,...,B,}. Thisis done using multiple applications of taBr ods
transformation followed by a single applicationlodf t 2Ri ght . This process is
applied progressively to each of the nonterminals.

Phase 2 All the rules of the form4; — A;(3 in g; are replaced byl; — aa3, where
A; — aa to give a new grammay, = (V4,T, P», S). This is done progressively
for each of the nonterminals i by using theaPr ods lemma.

Phase 3All the rules of the formB, — A;(in go are replaced withB, — aaf,
whereA4; — aa to givegs = (V4,T, Ps, S) such thatys is in Greibach Normal
Form. Again, applying thaPr ods lemma progressively for each of tli#s gives
us a grammar in GNF.

4.4 Phase 1—Ordering theA ;-productions

Phase 1 is represented by the HOL relatief9. This corresponds to Figure 4.9 in
Hopcroft and Ullman showing the first step in the GNF algaritiTher 49 relation
relates two states where the second state is the resulinsfaraning rules for a single
Ap.

HOL Definition 3

r49 (bsg, ntso, go, seeng, ubsp) (bs, nts, g, seen, ubs) <=

JA, b rulesp rules;.
(ntso = Ag::imnts) A (bsp = b::bs) A (ubs = ubsg ++ [b]) A
(seen = seeng ++ [Ax]) A (nts = TL ntsp) A
(r49El em A) ™ (seeng, rules go,[1) ([], ruleso, seeng) A
(rules; = I 2rRules A, b (set rulesp)) A
(startSymg = startSymgy) A (set (rules g) = rules;)

(Herebsq consists of fresiB;s not in grammairy, ntsg are the ordered nonterminals
(increasing) iryg, seeng holds the nonterminals ands, holds theB;s that have been
already processed. The relatio®9, holds if the rules of; are obtained by transform-
ing rules for a single nonterminall(;) and using up a fresh non-termirtetio eliminate
(possible) left recursion fad ;.. Theb is used up irrespective of whether a left recursion

elimination is required or not. This simplifies both the ditiim and reasoning for the
relation.)

There are two parts t049. The first part is the relation49El em This works on
a single nonterminal and progressively eliminates ruleheform A, — A;vy where
j has a lower ranking thah and is inseeng. We do this for each element eéeny
starting from the lowest rankeskeen consists of ordered nonterminals having a lower
ranking thark.

HOL Definition 4
r49El em Ax (seeng, Tuo, slp) (seen, ru, sl) <=
JA;. (seeng = Aji:iseen) A (sl = slp ++ [A;]) A
(set ru = aProdsRules A, [A;] (set rup))

Using the closure;, 49El ent, we can repeatedly do this transformation for all the
elements irseeng to obtain the new set of rulesiesg in ther 49 definition. At the end
of the above transformation, we have productions of the fdgm— A;~, wherej > 1.
In the second part (correspondinglt@r Rul es), we replace productions of the form
Ar — Aga with their right recursive counterparts to obtain a new geutes using
thel 2r Rul es function. The above process is repeated for each nontekimimgaby
taking the closure of 49. Thus, ifr 49* (B, V. g,[],[]) (B1,[], 91, V, B2) holds then
g1 has successfully been transformed to satisfy the Phaseditioos. More explicitly,
as mentioned in Hopcroft and Ullman, the rulegirshould now be of the form:

— (C1) Ordered 4; rules - if A; — Aj;~ isin rules ofg, thenj > i.
— (C2) A; rules in GNF - A; — a~v, wherea is T'.
— (C3) B, rules- B; — v, whereyisin (VU By, Bs, ..., B,)*.

Automating an algorithmrhat Phase 1 has achieved these succinctly stated corgdition
is “obvious” to the human reader because of the ordering geagon the nonterminals.
A theorem prover, unfortunately, cannot make such dedaiddigps. In an automated
environment, the only assertions are the ones alreadyrgraseart of the system or
what one bringsi.e. verifies, as part of mechanising a theory. In particular, wecd
to define and prove invariant a number of conditions on thie sththe system as it is
transformed.

The composition of the rules from condition8) and C2) is asserted using the
invariantr hsTI NonTrms:

HOL Definition 5
rhsTI NonTns ru ntsl bs <=
Ve. e € set ntsl DIFF set bs =
Vr. rule e r € ru =
3h t. (r = hi:t) A EVERY isNonTmml Sym ¢ A
Vnt. (h = NTS nt) =
nt € set ntsl DIFF set bs A
Int; t;. (t = NTS nt;::t;) A nt; € set ntsl DIFF set bs

Invariantseenl nv asserts the ordering ¢ i) part of (C1):

HOL Definition 6
seenlnv ru s <=
Vi, 1 < |s] =
Vnt rest. rule (EL ¢ s) (NTS nt::rest) € ru =
Vj. j <i=ELj s # nt

(The notatiorEL i ¢ denotes thé'" element of.)

The invariantr hsBNonTs ensures@3). This is stronger than what we need (at
least at this stage of the process), since it also stateshthatery first nonterminal in
the RHS has to be one of thé;s. This is observed in the textbook as part of later
transformations (our own Phase 3), but actually needs tadesd at this stage.

HOL Definition 7
rhsBNonTns ru ubs <=
VB. B € ubs = Vr. rule B r € ru =
EVERY i sNonTml Symr» A r # [] A
dnt. (HD r = NTS nt) A —=(nt € ubs)

(FunctionHD returns the first element of a list.)

Most of the reasoning in the textbook translates to progdinch specific invariants.
These assertions, easily and convincingly made in texe h&lden assumptions that
need to be identified and proved before proceeding with ttenaation.

A straightforward example is one concerning the abseneepobductions. From
the construction, it is clear that there are aaoules in the grammar (because it is in
CNF), and that the construction does not introduce any. ©es dot realise the need for
such a trivial property to be established until its absetmgssthe proof midway during
automation. There are ten invariants that had to be edt&llias part of the proof. This
has to be done both for the single step case and for the cloéthre relation.

Proof of language equivalenc@ith all the required properties established, we can now
go on to prove:

HOL Theorem 8
r49* (bsg, ntso, go, seeng, ubsp) (bs, nts, g, seen, ubs) A
|bso| > |ntsg| A ALL_DI STINCT bsy A ALL_DI STINCT ntsp A
(set (ntnms gg) N set bsy = @) A (set bsp N set wbsy = @) A
(set ntsp N set seeny = 0) =
(L go =1L yg)

(The distinct nonterminals in a grammarare given bynt ns ¢.)

In order to reason about which nonterminals have already bagedled, we main-
tain the seen nonterminals and the séks as part of our states. Because of this, extra
assertions about them have to provided. Once ‘seen’, a moim&l or a B; cannot
be seen again (citing the uniqueness of B)e and the nonterminals if). These are
reflected in the various conditions of the fosm N s3 = 0.

Proof. The proof is by induction on number of applicationg @f9.

The above proof becomes trivially true if relatioA9 fails to hold. To counter this
concern, we show that such a transformation does exist fpistant state. This step
is necessary because we have modelled transformatiorgs nesétions (which can be
partial) rather than by functions (which must be total in HOL

HOL Theorem 9
|bso| > |ntsg| A ALL_DI STI NCT bsy A ALL_DI STI NCT ntsy A
(set ntsp N set seenyg = P) A (set (ntns gg) N set bsy = 0) A
(set bsp N set ubsy = 0) =
dg. r49* (bso, ntso, go, seeny, ubsp)
(DROP |ntso| bso, [], g, seeng ++ ntsg, wubsp ++ TAKE |ntsp| bso)

(FunctionDROP n ¢ dropsn elements from the front dfand TAKE n (takesn
elements from the front of)

Proof. The proof is by induction onts.

Note: Everywhere a relation such ag19, r 49El emis used we have provided
proofs that the relation always holds.

4.5 Phase 2—Changing;-productions to GNF

We have already established that removing useless nomalsrdoes not affect the
language of the grammar. The nonterminalgirare ordered such that the RHS of a
nonterminal cannot start with a nonterminal with lower ixd8inceg is in CNF and
only has useful nonterminals, rule, — a isin g1, wherea is inT'. A,, is the highest
ranked nonterminal and as such cannot expand to any nomigrmi

Thus, if we transform nonterminalg using aPr ods, starting from the highest
rank, we are bound to get rules of the fordy, — aq, fora in T and« in V4. This
is done by repeated applicationsfaft Nt m2 Tmuntil all the nonterminals iV’ have
been transformed.

HOL Definition 8
fst Nt nRTm (ontmso, go, seeng) (ontms, g, seen) <
JF A, rulesp. (ontmsp = ontms ++ [Ax]) A (seen = Ay:: seeng) A
(r49El em Ay) ™ (seeng,rules go,[]1) ([], ruleso, seeny)
A (rules g = rulesp) N (startSymg = startSym gy)

(Here ontmsy are nonterminals with indices in decreasing ordet, (A,,—1 ... A1)
andseeng contains the nonterminals that have already been processed

To prove that all the ‘seen’ nonterminalslihare in GNF, we establish thghf | nv
invariant holds through the multiple applications of thiatien.

HOL Definition 9
gnflnv ru s <
Vi 1 < |s] =
Vr. rule (EL ¢ s) r € ru = validGnfProd (rule (EL 3 s) r)

(Predicateval i dGnf Prod (rul e ¢ r) holdsiffr = a« for terminala and (pos-
sibly empty) list of nonterminals.)

Multiple applications of this process resultgn satisfying thePhase 2 condition
that all the rules for nonterminals i are now in GNF.

4.6 Phase 3—ChangindB;-productions to GNF

The final phase is concerned with the rules correspondiniget@ts which are intro-
duced as part of the left to right transformation. We follogimilar strategy to Phase 2
to convert allB;-productions to GNF.

At the end of Phase 2, all rules involving nonterminald/irare of the form4; —
aa, for terminala and list (possibly empty) of nonterminals From the invariant
rhsBNonTrs, we have that theB; rules are of the formB; — AxB whereg is a
list (possibly empty) of nonterminals. Tler ods lemma is now used to obtain rules
of the formB; — a3 which satisfy GNF, done by establishing tigaif | nv holds for
seenpB;s.

HOL Definition 10
fstNt m2TnBrul es (ubsp, ontmso, go, seeng) (ubs, ontms, g, seen) <=

b rulesy.
(ubsp = b::ubs) A (ontmsy = ontms) A (seen = seeng ++ [b]) A
(rulesy = aProdsRul es b ontms (set (rules gg))) A

(set (rules g) = rulesp) A (startSym g = startSym gp)

(ubs0 containsB; ... By, ontmsy = V, the nonterminals in the original grammar
andseeny is used to keep a record of thig s that have been handled.)

We show that the above transformation resulting in gramynareserves the language
of the grammar.

Finally, the three phases can be combined to show that amyngaa that can be
transformed into Chomsky Normal Form can be subsequeathgformed into a gram-
mar in Greibach Normal Form.

This transformation resulting in grammas also preserves the language of the
grammar and the invariaghf | nv over the seerB;s.

Finally, the three phases can be combined to show that amyngaa that can be
transformed into Chomsky Normal Form can be subsequeathgformed into a gram-
mar in Greibach Normal Form.

HOL Theorem 10

INFINNTE U(:a) A [] ¢ language g A | anguage g # 0 =

Jg¢’. isGf ¢ A language g = | anguage ¢
(The predicateé sGnhf ¢ holds iff predicategnf | nv is true for the rules and nonter-
minals ofg.)

5 Related work and conclusions

In the field of language theory, Nipkow [6] has provided a fiedi and executable lexi-
cal analyzer generator. This is the closest in nature to #ehanisation we have done.

The proof for CNF is~1400 lines and GNF is6000, which is excluding proofs
that are in the HOL library as well as the library maintaingdus. Only parts of the
proofs have been shown. The proof for CNF only covers halfgepa the textbook.
On the other hand, GNF covers almost three pages (includmgwo lemmas). This
includes diagrams to assist explanation and an informgh kével reasoning. All of
this is beyond the reach of automation in its current sta®ids such as finiteness and
termination, which do not arise in a textual proof, beconmére when mechanising it.
Similarly, choice of data structures and the form of defim# (relations vs functions)
have a huge impact on the size of the proof as well as the eamatahation. These
do not necessarily overlap. We have only presented the leyréims that are relevant
to understanding and filling some of the deductive gaps indktook proofs. These
theorems also cover the intermediate results needed loétre particular mechani-
sation technique. The size of these gaps also depends ortéme ef detail in the text
proof, which in our case is very sparse. It is hard to frameegaitechniques when the
majority of the results require carefully combing the fingadle in the text and making
deductions about the omitted steps in the reasoning. Fralmaileg and implementing
the structure for induction for thieef t 2Ri ght lemma to establishing the numerous
invariants for the final step of GNF algorithm, the problemsfutomation are quite di-
verse. Having extensive libraries is possibly the best wagdtkle such highly domain
specific problems. Like typical software development, theach of libraries compre-
hensive enough to support all needed development fails @s &® one steps outside
of the already conquered areas. The need for ever moreiibriaas never really gone
away.

The simplification of CFGs (including CNF and GNF)~44000 lines. It took a
year to complete the work which includes over 700 lemmasf#ras.

AcknowledgementdNICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the@igconomy and the
Australian Research Council through the ICT Centre of Hroek program.

References

1. Aditi Barthwal and Michael Norrish. Verified, executalgarsing. In Giuseppe Castagna,
editor, Programming Languages and Systems: 18th European SympasilProgramming
volume 5502 ol ecture Notes in Computer Scienpages 160-174. Springer, March 2009.

2. Aditi Barthwal and Michael Norrish. Mechanisation of pdad grammar equivalence for
context-free languages. Tro appear in Proceedings of WoLLISpringer, 2010.

3. N Chomsky. On certain formal properties of grammangormation and Contrqgl2(2):137—
167, 1959.

4. Sheila A. Greibach. A new normal-form theorem for confiege phrase structure grammars.
J. ACM 12(1):42-52, 1965.

5. John E. Hopcroft and Jeffrey D. Ullmamntroduction to Automata Theory, Languages and
Computation Addison-Wesley, Reading, Ma., USA, 1979.

6. Tobias Nipkow. Verified lexical analysis. In J. Grundy aMdNewey, editorsProceedings of
the 11th International Conference on Theorem Proving ingigOrder Logics (TPHOLS'98)
pages 1-15, Canberra, Australia, 1998. Springer-VerlaG&N479.

