
A Formalisation of the Normal Forms of Context-Free
Grammars in HOL4

Aditi Barthwal1 and Michael Norrish2

1 Australian National University
Aditi.Barthwal@anu.edu.au
2 Canberra Research Lab., NICTA

Michael.Norrish@nicta.com.au

Abstract. We describe the formalisation of the Chomsky and Greibach normal
forms for context-free grammars (CFGs) using the HOL4 theorem prover. We
discuss the varying degrees to which proofs that are straightforward on pen and
paper, turn out to be much harder to mechanise. While both proofs are of similar
length in their informal presentations, the mechanised proofs for Greibach normal
form blow-up considerably.

1 Introduction

A context-free grammar (CFG) provides a concise mechanism for describing the meth-
ods by which phrases in languages are built from smaller blocks, capturing the “block
structure” of sentences in a natural way. The simplicity of this formalism makes it
amenable to rigorous mathematical study.

CFGs form the basis of parsing. We have already mechanised some of the theory of
CFGs [1]. Grammars can benormalised, resulting in rules that are constrained to be of
a particular shape. These simpler, more regular, rules can help in subsequent proofs or
algorithms. For example, using a grammar in Chomsky Normal Form (CNF), one can
decide the membership of a string in polynomial time. Using agrammar in Greibach
Normal Form (GNF), one can prove a parse tree for any string inthe language will have
depth equal to the length of the string.

The Chomsky and Greibach normal form results were first presented in [3] and
[4] respectively. Here, as part of a wider program, we work from the presentation in
Hopcroft and Ullman [5], a standard textbook.

By mechanising these results, we gain extra confidence in their correctness. Because
the results are so basic, this may not seem much of an achievement, but the mechanised
proofs do provide a foundation for the development of yet more mechanised theory. For
example, the proof in Hopcroft and Ullman of the standard result equating grammars
and push-down-automata (mechanised in [2]), assumes that the grammar is in GNF.

Moreover, simply assuming results such as these in order to pursue more complicated
material defeats the motivation at the heart of mechanised mathematics.

Contributions

– The first mechanised proofs of termination and correctness for an algorithm that
converts a CFG to Chomsky Normal Form (Section 3).

– The first mechanised proofs of termination and correctness for an algorithm that
converts a CFG to Greibach Normal Form (Section 4).

– We also discuss the ways in which well-known, “classic” proofs can require con-
siderable “reworking” when fully mechanised. Interestingly, though the proofs we
mechanise here both expand dramatically from their length in Hopcroft and Ull-
man [5], the GNF proof expands a great deal more than the CNF proof.

All the assumptions and assertions in this paper have been mechanised and the
HOL4 sources for the work are available at http://users.rsise.anu.edu.au/˜aditi/.

2 Context-Free Grammars

A context-free grammar (CFG) is represented in HOL using thefollowing type defini-
tions:

(’nts, ’ts) symbol = NTS of ’nts | TS of ’ts
(’nts, ’ts) rule = rule of ’nts => (’nts, ’ts) symbol list
(’nts, ’ts) grammar = G of (’nts, ’ts) rule list => ’nts

The=> arrow indicates curried arguments to an algebraic type’s constructor. Thus,
therule constructor is a curried function taking a value of type’nts (the symbol at
the head of the rule), a list of symbols (giving the rule’s right-hand side), and returning
an (’nts,’ts) rule. The symbols are of two types, type’nts used for non-
terminals and type’ts used for terminal symbols.

Thus, a rule pairs a value of type’nts with a symbol list. Similarly, a grammar
consists of a list of rules and a value giving the start symbol. Traditional presentations
of grammars often include separate sets corresponding to the grammar’s terminals and
nonterminals. Our grammar type does not include these sets explicitly as it is easy to
derive these sets from the grammar’s rules and start symbol,so we shall occasionally
write a grammarG as a tuple(V, T, P, S) in the proofs to come. Here,V is the list of
nonterminals or variables,T is the list of terminals,P is the list of productions andS is
the start symbol.

Definition 1. A list of symbols (orsentential form) s derivest in a single step ifs is of
the formαAγ, t is of the formαβγ, and ifA → β is one of the rules in the grammar.
In HOL:

derives g lsl rsl ⇐⇒
∃ s1 s2 rhs lhs.

(s1 ++ [NTS lhs] ++ s2 = lsl) ∧ (s1 ++ rhs ++ s2 = rsl) ∧
rule lhs rhs ∈ rules g

(The infix++ denotes list concatenation. The symbol∈ denotes membership.)

We write(derives g)∗ sf1 sf2 to indicate thatsf2 is derived fromsf1 in zero
or more steps, also writtensf1 ⇒∗ sf2 (where the grammarg is assumed).

This is concretely represented using derivation lists. We write R ⊢ l � x → y to
mean that the binary relationR holds between the successive pair of elements ofl,
which starts withx and end withy. Thus,sf

1
⇒∗ sf

2
can be written asderives g ⊢

l � sf
1
→ sf

2
for somel. We also define the leftmost and the rightmost derivation

relations,lderives (
l
⇒) andrderives (

r
⇒).

Definition 2. Thelanguageof a grammar consists of all the words (lists of only termi-
nal symbols) that can be derived from the start symbol.

L g = { tsl | (derives g)∗ [NTS (startSym g)] tsl ∧ isWord tsl }

(PredicateisWord is true of a sentential form if it consists of only terminal symbols.)
The choice of the derivation relation (derives, lderives or rderives) does

not affect the language generated by a grammar. We sayx
l
⇒ y if y is obtained by

expanding the leftmost non-terminal inx . Similarly, x
r
⇒ y if y is obtained by the

expansion of the rightmost non-terminal inx . We use this equivalence for the proof of
normalisation to GNF. This equivalence forms a part of our background mechanisation.

3 Chomsky Normal Form

CFGs can be simplified by restricting the format of productions in the grammar without
changing the language. Some such restrictions, which are shared by the normal forms
we consider, are summarised below.

– Removing symbols that do not generate a terminal string or are not reachable from
the start symbol of the grammar (useless symbols);

– Removingǫ-productions (as long asǫ is not in the language generated by the gram-
mar);

– Removing unit productions, i.e. ones of the formA → B whereB is a nonterminal
symbol.

ǫ represents the empty word in the language of a grammar. Anǫ-production is one
with an empty right-hand side.

The proofs that these restrictions can always be made without changing the lan-
guage are available in our online resources.

In this section we concentrate on Chomsky Normal Form, assuming the grammar
has already gone through the above simplifications.

Theorem 1 (Chomsky Normal Form). Any context-free language withoutǫ is gener-
ated by a grammar in which all productions are of the formA → BC or A → a. Here
A, B, C are variables anda is a terminal.

Proof. Let g1 = (V, T, P, S) be a context-free grammar. We can assumeP contains no
useless symbols, unit productions orǫ-productions using the above simplifications. If a
production has a single symbol on the right-hand side, that symbol must be a terminal.
Thus, that production is already in an acceptable form. The remaining productions in
g1 are converted into CNF in two steps.

The first step is calledtrans1Tmnl, wherein a terminal occurring on the right side
of a production gets replaced by a nonterminal in the following manner. We replace
the productions of the forml → pts (p or s is nonempty andt is a terminal) with
productionsA → t andl → pAs.

trans1Tmnl nt t g g ′ ⇐⇒
∃ ℓ r p s.

rule ℓ r ∈ rules g ∧ r = p ++ [t] ++ s ∧
(p 6= [] ∨ s 6= []) ∧ isTmnlSym t ∧
NTS nt /∈ nonTerminals g ∧
rules g ′ =

delete (rule ℓ r) (rules g) ++
[rule nt [t]; rule ℓ (p ++ [NTS nt] ++ s)] ∧

startSym g ′ = startSym g

(Functiondelete removes an element from a list. The; is used to separate elements
in a list.)

We prove that multiple applications of the above transformation preserve the lan-
guage.

HOL Theorem 1
∀ g g ′. (λ x y. ∃A t. trans1Tmnl A t x y)∗ g g ′ ⇒ (L g = L g ′)

We want to obtain a grammarg2 = (V ′, T, P ′, S) which only contains productions of
the formA → a, wherea is a terminal symbol orA → A1...An whereAi is a non-
terminal symbol. We prove that such ag2 can be obtained by repeated applications of
trans1Tmnl. The multiple applications are denoted by taking the reflexive transitive
closure oftrans1Tmnl.

We define the constantbadTmnlsCount, which counts the terminals occurring in
the RHSs of all productions in the grammar which have more than one terminal symbol
present in the RHS.

badTmnlsCount g = SUM (MAP ruleTmnls (rules g))

(SUM adds the count over all the productions,MAP f l appliesf to each element inl.)
The auxiliaryruleTmnls is characterised:

ruleTmnls (rule ℓ r) = if |r | ≤ 1 then 0 else |FILTER isTmnlSym r |

(|r| denotes the length of a listr.)
Each application of the process should decrease the number of ruleTmnls un-

less there are none to change (i.e., the grammar is already in the desired form). By
induction onbadTmnlsCount we prove that by a finite number of applications of

trans1Tmnl we can get grammarg2. This follows from the fact that the set of sym-
bols in a grammar is finite.

HOL Theorem 2
INFINITE U(:α) ⇒
∃ g ′. (λ x y. ∃ nt t. trans1Tmnl nt t x y)∗ g g ′ ∧
badTmnlsCount g ′ = 0

(Note the use of the assumptionINFINITE U . HereU represents the universal set
for the type of nonterminals (α) in the grammarg andg′. The transformation process
involves introducing a new nonterminal symbol. To be able topick a fresh symbol, the
set of nonterminals has to be infinite.)

The above process gives us a simplified grammarg2 such that
badTmnlsCount g2 = 0. By HOL Theorem 1 we have thatL(g1) = L(g2). We
now apply another transformation ong2 which gives us our final CNF. The final trans-
formation is calledtrans2NT and works by replacing two adjacent nonterminals in
the right-hand side of a rule by a single nonterminal symbol.Repeated application on
g2 gives us a grammar where all productions conform to the CNF criteria.

trans2NT nt nt1 nt2 g g ′ ⇐⇒
∃ ℓ r p s.

rule ℓ r ∈ rules g ∧ r = p ++ [nt1; nt2] ++ s ∧
(p 6= [] ∨ s 6= []) ∧ isNonTmnlSym nt1 ∧ isNonTmnlSym nt2 ∧
NTS nt /∈ nonTerminals g ∧
rules g ′ =

delete (rule ℓ r) (rules g) ++
[rule nt [nt1; nt2]; rule ℓ (p ++ [NTS nt] ++ s)] ∧

startSym g ′ = startSym g

We prove that the language remains the same after zero or moresuch transformations.
We follow a similar strategy as withtrans1Tmnl to show that applications of

trans2NT will result in grammar (g3) where all rules with nonterminals on the RHS
have exactly two nonterminals,i.e. rules are of the formA → A1A2.

To wrap up the proof we show two results. First, that applications oftrans1Tmnl
followed by applications oftrans2NT, leaves the language of the grammar untouched,
i.e.L(g1) = L(g3). Second, that the transformationtrans2NT does not introduce pro-
ductions to changebadTmnlsCount. We can then apply the two transformations to
obtain our grammar in CNF where all rules are of the formA → a or A → A1A2

(asserted by theisCnf predicate). The HOL theorem corresponding to Theorem 1 is:

HOL Theorem 3
INFINITE U(:α) ∧ [] /∈ language g ⇒
∃ g ′. isCnf g ′ ∧ language g = language g ′

4 Greibach Normal Form

If ǫ does not belong in the language of a grammar then it can be transformed into
Greibach Normal Form. The existence of GNF for a grammar simplifies many proofs,

such as the result that every context-free language can be accepted by a non-deterministic
pushdown automata. Productions in GNF are of the formA → aα wherea is a terminal
symbol andα is list (possibly empty) of nonterminals.

We assume an implicit ordering on the nonterminals of the grammar. The various
stages in the conversion to GNF are summarised below.

PreprocessingRemove useless symbols,ǫ and unit productions from the grammar and
convert it into Chomsky Normal Form.

Stage 1 For each ordered nonterminalAk do the following:
Stage 1.1Return rules of the form such that ifAk → Ajα thenj ≥ k. This result

is obtained usingaProds lemma (Section 4.1).
Stage 1.2Convert left recursive rules in the grammar to right recursive rules. This

is based onleft2Right lemma (Section 4.2).
Stage 2 Eliminate the leftmost nonterminal from the RHS of all the rules to obtain a

grammar in GNF.

In the discussion to follow we assume the grammar already satisfies the Preprocess-
ing requirements (following from the results already covered). We start at Stage 1 which
is implemented using relationr49 in Section 4.4. This is Phase 1 of the GNF algorithm.
Stage 1 depends on two crucial results, Stage 1.1 and Stage 1.2 which are established
separately. Stage 2 can be further subdivided into two partscovered in (Sections 4.5 and
4.6), the Phase 2 and Phase 3 of the algorithm, respectively.

All the stages preserve the language of the grammar. We devote much of our dis-
cussion to mechanising the more interesting stages for eliminating left recursion and
putting together Stage 1 and Stage 2 to get the GNF algorithm.

4.1 Eliminating the leftmost nonterminal

LetA-productions be those productions whose LHS is the nonterminalA. We define the
functionaProdsRulesA Bs rset to transform the set of productionsrset : the result
is a set where occurrences of non-terminals in the listBs no longer occur in leftmost
position inA-productions. Instead, they have been replaced by their ownright-hand-
sides.

HOL Definition 1
aProdsRules A l ru =
ru DIFF {rule A ([NTS B] ++ s) | (B,s) |

B ∈ l ∧ rule A ([NTS B] ++ s) ∈ ru } ∪
{rule A (x ++ s) | (x,s) |
∃B. B ∈ l ∧ rule A ([NTS B] ++ s) ∈ ru ∧ rule B x ∈ ru }

(The notations1 DIFF s2 represents set-difference. Notation|(p, B, s)| denotes thatp,
B ands are the bound variables.)

Lemma 1 (“aProds lemma”). For all possible nonterminalsA, and lists of non-
terminalsBs , if rules g′ = aProdsRules A Bs (rules g) and the start symbols
of g andg′ are equal, thenL(g) = L(g′).

4.2 Replacing left recursion with right recursion

Left recursive rules may already be present in the grammar, or they may be introduced
by the elimination of leftmost nonterminals (using the aProds lemma). In order to deal
with such productions we transform them into right recursive rules. We show that this
transformation preserves the language equivalence.

Theorem 2 (“left2Right lemma”). Let g = (V, T, P, S) be a CFG. LetA →
Aα1 | Aα2 | . . . | Aαr be the set of left recursiveA-productions. LetA →
β1 | β2 | . . . | βs be the remainingA-productions. Then we can constructg′ =
(V ∪ {B}, T, P1, S) such thatL(g) = L(g′) by replacing all the left recursiveA-
productions by the following productions:

Rule 1 A → βi andA → βiB for 1 ≤ i ≤ s
Rule 2 B → αi andB → αiB for 1 ≤ i ≤ r

Here,B is a fresh nonterminal that does not belong ing. This is our HOL Theorem 4.

Relationleft2Right A B g g ′ holds iff the rules ing′ are obtained by replac-
ing all left recursiveA-productions with rules of the form given by Rule 1 and Rule 2
(implemented by thel2rRules function).

HOL Definition 2
left2Right A B g g ′ ⇐⇒
NTS B /∈ nonTerminals g ∧ startSym g = startSym g ′ ∧
set (rules g ′) = l2rRules A B (set (rules g))

In the textbook it is observed that a sequence of productionsof the formA → Aαi

will eventually end with a productionA → βj . The sequence of replacements

A ⇒ Aαi1 ⇒ Aαi2αi1 ⇒ . . . ⇒ Aαip
. . . αi1 ⇒ βjαip

. . . αi1 (1)

in g can be replaced ing′ by

A ⇒ βjB ⇒ βjαip
B ⇒ . . . ⇒ βjαip

. . . αi2B ⇒ βjαip
. . . αi2αi1 (2)

Since it is clear that the reverse transformation is also possible, it is concluded that
L(g) = L(g′). This is illustrated graphically in Figure 1.

HOL Theorem 4
∀ g g ′. left2Right A B g g ′ ⇒ (L g = L g ′)

This is a good example of a “proof” where the authors rely on “obvious” details to
make their point: the proof in Hopcroft and Ullman consists of little more than equa-
tions (1) and (2), and a figure corresponding to our Figure 1. Unfortunately, a figure
does not satisfy a theorem prover’s notion of a proof; moreover it fails to suggest any
strategies that might be used for rigorous treatment (such as automation) of the material.

In the following section, we describe the proof strategy used to mechanise this result
in HOL4. For the purposes of discussion, we will assume that we are removing left
recursions inA-productions ing, using the new nonterminalB, producing the new
grammarg′.

A

a1

A

bA

a2

B

an

B

a2

A

a2A

b

B

a1

A-block

B -block

Fig. 1. A left recursive derivationA → Aa1 → Aa2a1 → · · · → An . . . a2a1 → ban . . . a2a1

can be transformed into a right recursive derivationA → bB → ban → · · · → ban . . . a2 →
ban . . . a2a1. Here the RHSb does not start with anA.

Proof of the “if” direction We use a leftmost derivation with concrete derivation lists
to show that ifx

l
⇒∗

g y, wherey is a word, thenx ⇒∗

g′ y.

HOL Theorem 5
left2Right A B g g ′ ∧ lderives g ⊢ dl � x → y ∧ isWord y ⇒
∃ dl ′. derives g ′ ⊢ dl ′ � x → y

The proof is by induction on the number of timesA occurs as the leftmost symbol
in the derivationdl. This is given byldNumNt A dl.

Base CaseIf there are noAs in the leftmost position (i.e.ldNumNtNTS A dl = 0)
then the derivation ing can also be done ing′.

Step CaseThe step case revolves around the notion of ablock. A block in a derivation
is defined as a (nonempty) section of the derivation list where each expansion is done
by using a left recursive rule ofA. As such, the sentential forms in the block always
have anA as their leftmost symbol. Figure 1 shows theA andB-blocks for leftmost
and rightmost derivations.

If there is more than one instance ofA in the leftmost position in a derivation, then
we can divide it into three parts:dl1 which does not have any leftmostAs, dl2 which
is a block anddl3 where the very first expansion is a result of one of the non-recursive
rules ofA. This is shown in Figure 2.

The division is given by HOL Theorem 6. The second∃-clause of this theorem
refers to the side conditions on the composition of the expansions shown in Figure 2.

In the absence of any leftmostAs, a derivation is easily replicated ing′. Thus, thedl1
portion can be done ing′. The derivation corresponding todl3 follows by our inductive
hypothesis.

The proof falls through if derivationdl2 can somehow be shown to have an equiv-
alent ing′. This is shown by proving HOL Theorem 7. The theorem states that for a
derivations ing of the form given by Equation (1), there is an equivalent derivation in
g′ in the form of Equation (2).

To show the remaining “only if” part, (x
r
⇒∗

g′ y, wherey is a word, thenx
r
⇒∗

g y), we
mirror the leftmost derivation strategy. In this case we rely on the rightmost derivation

L1

Ln

dl1 whereLi 6= A

A

A
dl2

M1

dl3 whereMi 6= A

Ln → Ay

A → pM1z

Fig. 2. We can splitdl into dl1, dl2 anddl3 such thatdl1 has noA-expansions,dl2 consists of
only A-expansions anddl3 breaks the sequence ofA-expansions so that the very first element
in dl3 is not a result of anA-expansion. The dashed lines are elements in the derivationlist
showing the leftmost nonterminals (L1 . . . Ln, A, M1). Ln → Ay is the firstA-expansion indl
andA → pM1z (p is a word), breaks the sequence of the consecutiveA-expansions indl2.

HOL Theorem 6
lderives g ⊢ dl � x → y ∧ ldNumNt (NTS A) dl 6= 0 ∧ |dl | > 1 ⇒
∃ dl1 dl2 dl3.

dl = dl1 ++ dl2 ++ dl3 ∧ ldNumNt (NTS A) dl1 = 0 ∧
(∀ e1 e2 p s. dl2 = p ++ [e1; e2] ++ s ⇒ |e2| ≥ |e1|) ∧
∃ pfx.

isWord pfx ∧
(∀ e. e ∈ dl2 ⇒ ∃ sfx. e = pfx ++ [NTS A] ++ sfx) ∧
dl2 6= [] ∧
(dl3 6= [] ⇒
|LAST dl2| ≤ |HD dl3| ⇒
¬(pfx ++ [NTS A] HD dl3))

(Herex <<= y holds iffx is a prefix ofy.)

and the notion of aB-block, whereinB is always the rightmost nonterminal. We omit
the details due to the similarity with the proof of the if direction.

4.3 Stitching the pieces together

Using theaProds lemma and eliminating of left recursive rules, it is clear that any
grammar can be transformed into Greibach Normal Form. The textbook achieves this
by providing a concrete algorithm for transforming rules inthe grammar into an in-
termediate form where left recursion has been eliminated. This is Phase 1 of our HOL
implementation. We model this transformation with a relation. From this point, multiple
applications of theaProds lemma transform the grammar into GNF. These applica-
tions correspond to the Phase 2 and Phase 3. Each phase bringsthe grammar a step
closer to GNF.

Let g = (V, T, P, S) andV = A1 . . . An be the ordered nonterminals ing. We will
need at leastn freshBs that are not ing when transforming the left recursive rules into
right recursive rules. LetB = B1, . . . , Bn be these distinct nonterminals. The three
phases are applied in succession to the grammar and achieve the following results.

HOL Theorem 7
left2Right A B g g ′ ∧
lderives g ⊢ dl � pfx ++ [NTS A] ++ sfx → y ∧
lderives g y y ′ ∧ isWord pfx ∧
(∀ e. e ∈ dl ⇒ ∃ sfx. e = pfx ++ [NTS A] ++ sfx) ∧
(∀ e1 e2 p s. dl = p ++ [e1; e2] ++ s ⇒ |e2| ≥ |e1|) ∧
(|y | ≤ |y ′| ⇒ ¬(pfx ++ [NTS A] y ′)) ⇒
∃ dl ′. derives g ′ ⊢ dl ′ � pfx ++ [NTS A] ++ sfx → y ′

Phase 1Transform the rules ing to give a new grammarg1 = (V1, T, P1, S) such that
if Ai → Ajα is a rule ofg1, thenj > i. Sincei not equal toj, we have removed the
left recursive rules ing, introducingm newB non-terminals, wherem ≤ n. Thus,
V1 ⊆ V ∪ {B1, . . . , Bn}. This is done using multiple applications of theaProds
transformation followed by a single application ofleft2Right. This process is
applied progressively to each of the nonterminals.

Phase 2All the rules of the formAi → Ajβ in g1 are replaced byAi → aαβ, where
Aj → aα to give a new grammarg2 = (V1, T, P2, S). This is done progressively
for each of the nonterminals inV by using theaProds lemma.

Phase 3All the rules of the formBk → Aiβ in g2 are replaced withBk → aαβ,
whereAi → aα to give g3 = (V1, T, P3, S) such thatg3 is in Greibach Normal
Form. Again, applying theaProds lemma progressively for each of theBs gives
us a grammar in GNF.

4.4 Phase 1—Ordering theAi-productions

Phase 1 is represented by the HOL relationr49. This corresponds to Figure 4.9 in
Hopcroft and Ullman showing the first step in the GNF algorithm. Ther49 relation
relates two states where the second state is the result of transforming rules for a single
Ak.

HOL Definition 3
r49 (bs0,nts0,g0,seen0,ubs0) (bs,nts,g,seen,ubs) ⇐⇒
∃Ak b rules0 rules1.

(nts0 = Ak::nts) ∧ (bs0 = b::bs) ∧ (ubs = ubs0 ++ [b]) ∧
(seen = seen0 ++ [Ak]) ∧ (nts = TL nts0) ∧
(r49Elem Ak)

∗ (seen0,rules g0,[]) ([],rules0,seen0) ∧
(rules1 = l2rRules Ak b (set rules0)) ∧
(startSym g = startSym g0) ∧ (set (rules g) = rules1)

(Herebs0 consists of freshBis not in grammarg0, nts0 are the ordered nonterminals
(increasing) ing0, seen0 holds the nonterminals andubs0 holds theBis that have been
already processed. The relation,r49, holds if the rules ofg are obtained by transform-
ing rules for a single nonterminal (Ak) and using up a fresh non-terminalb to eliminate
(possible) left recursion forAk. Theb is used up irrespective of whether a left recursion

elimination is required or not. This simplifies both the definition and reasoning for the
relation.)

There are two parts tor49. The first part is the relationr49Elem. This works on
a single nonterminal and progressively eliminates rules ofthe formAk → Ajγ where
j has a lower ranking thank and is inseen0. We do this for each element ofseen0

starting from the lowest ranked.seen0 consists of ordered nonterminals having a lower
ranking thank.

HOL Definition 4
r49Elem Ak (seen0,ru0,sl0) (seen,ru,sl) ⇐⇒
∃Aj. (seen0 = Aj::seen) ∧ (sl = sl0 ++ [Aj]) ∧

(set ru = aProdsRules Ak [Aj] (set ru0))

Using the closure,r49Elem∗, we can repeatedly do this transformation for all the
elements inseen0 to obtain the new set of rulesrules0 in ther49 definition. At the end
of the above transformation, we have productions of the formAk → Ajγ, wherej ≥ i.
In the second part (corresponding tol2rRules), we replace productions of the form
Ak → Akα with their right recursive counterparts to obtain a new set of rules using
thel2rRules function. The above process is repeated for each nonterminal in g by
taking the closure ofr49. Thus, ifr49∗ (B, V, g, [], []) (B1, [], g1, V, B2) holds then
g1 has successfully been transformed to satisfy the Phase 1 conditions. More explicitly,
as mentioned in Hopcroft and Ullman, the rules ing1 should now be of the form:

– (C1) OrderedAi rules - if Ai → Ajγ is in rules ofg, thenj > i.
– (C2)Ai rules in GNF - Ai → aγ, wherea is T .
– (C3)Bi rules - Bi → γ, wherey is in (V ∪ B1, B2, . . . , Bn)∗.

Automating an algorithmThat Phase 1 has achieved these succinctly stated conditions
is “obvious” to the human reader because of the ordering imposed on the nonterminals.
A theorem prover, unfortunately, cannot make such deductive leaps. In an automated
environment, the only assertions are the ones already present as part of the system or
what one brings,i.e. verifies, as part of mechanising a theory. In particular, we need
to define and prove invariant a number of conditions on the state of the system as it is
transformed.

The composition of the rules from conditions (C1) and (C2) is asserted using the
invariantrhsTlNonTms:

HOL Definition 5
rhsTlNonTms ru ntsl bs ⇐⇒
∀ e. e ∈ set ntsl DIFF set bs ⇒

∀ r. rule e r ∈ ru ⇒
∃ h t. (r = h::t) ∧ EVERY isNonTmnlSym t ∧

∀ nt. (h = NTS nt) ⇒
nt ∈ set ntsl DIFF set bs ∧
∃nt1 t1. (t = NTS nt1::t1) ∧ nt1 ∈ set ntsl DIFF set bs

InvariantseenInv asserts the ordering (j > i) part of (C1):

HOL Definition 6
seenInv ru s ⇐⇒
∀ i. i < |s| ⇒

∀nt rest. rule (EL i s) (NTS nt::rest) ∈ ru ⇒
∀ j. j ≤ i ⇒ EL j s 6= nt

(The notationEL i ℓ denotes theith element ofℓ.)

The invariantrhsBNonTms ensures (C3). This is stronger than what we need (at
least at this stage of the process), since it also states thatthe very first nonterminal in
the RHS has to be one of theAis. This is observed in the textbook as part of later
transformations (our own Phase 3), but actually needs to be proved at this stage.

HOL Definition 7
rhsBNonTms ru ubs ⇐⇒
∀B. B ∈ ubs ⇒ ∀ r. rule B r ∈ ru ⇒

EVERY isNonTmnlSym r ∧ r 6= [] ∧
∃nt. (HD r = NTS nt) ∧ ¬(nt ∈ ubs)

(FunctionHD returns the first element of a list.)

Most of the reasoning in the textbook translates to providing such specific invariants.
These assertions, easily and convincingly made in text, have hidden assumptions that
need to be identified and proved before proceeding with the automation.

A straightforward example is one concerning the absence ofǫ-productions. From
the construction, it is clear that there are noǫ-rules in the grammar (because it is in
CNF), and that the construction does not introduce any. One does not realise the need for
such a trivial property to be established until its absence stops the proof midway during
automation. There are ten invariants that had to be established as part of the proof. This
has to be done both for the single step case and for the closureof the relation.

Proof of language equivalenceWith all the required properties established, we can now
go on to prove:

HOL Theorem 8
r49∗ (bs0,nts0,g0,seen0,ubs0) (bs,nts,g,seen,ubs) ∧

|bs0 | ≥ |nts0 | ∧ ALL_DISTINCT bs0 ∧ ALL_DISTINCT nts0 ∧
(set (ntms g0) ∩ set bs0 = ∅) ∧ (set bs0 ∩ set ubs0 = ∅) ∧
(set nts0 ∩ set seen0 = ∅) ⇒
(L g0 = L g)

(The distinct nonterminals in a grammarg are given byntms g.)

In order to reason about which nonterminals have already been handled, we main-
tain the seen nonterminals and the seenBis as part of our states. Because of this, extra
assertions about them have to provided. Once ‘seen’, a nonterminal or aBi cannot
be seen again (citing the uniqueness of theBis and the nonterminals ing). These are
reflected in the various conditions of the forms1 ∩ s2 = ∅.

Proof. The proof is by induction on number of applications ofr49.

The above proof becomes trivially true if relationr49 fails to hold. To counter this
concern, we show that such a transformation does exist for any start state. This step
is necessary because we have modelled transformations using relations (which can be
partial) rather than by functions (which must be total in HOL).

HOL Theorem 9
|bs0 | ≥ |nts0 | ∧ ALL_DISTINCT bs0 ∧ ALL_DISTINCT nts0 ∧

(set nts0 ∩ set seen0 = ∅) ∧ (set (ntms g0) ∩ set bs0 = ∅) ∧
(set bs0 ∩ set ubs0 = ∅) ⇒
∃ g. r49∗ (bs0,nts0,g0,seen0,ubs0)

(DROP |nts0 | bs0,[],g,seen0 ++ nts0, ubs0 ++ TAKE |nts0 | bs0)

(FunctionDROP n ℓ dropsn elements from the front ofl and TAKE n ℓ takesn

elements from the front ofl.)

Proof. The proof is by induction onnts0.

Note: Everywhere a relation such asr49, r49Elem is used we have provided
proofs that the relation always holds.

4.5 Phase 2—ChangingAi-productions to GNF

We have already established that removing useless nonterminals does not affect the
language of the grammar. The nonterminals ing1 are ordered such that the RHS of a
nonterminal cannot start with a nonterminal with lower index. Sinceg is in CNF and
only has useful nonterminals, ruleAn → a is in g1, wherea is in T . An is the highest
ranked nonterminal and as such cannot expand to any nonterminal.

Thus, if we transform nonterminalsV usingaProds, starting from the highest
rank, we are bound to get rules of the form,Ak → aα, for a in T andα in V1. This
is done by repeated applications offstNtm2Tm until all the nonterminals inV have
been transformed.

HOL Definition 8
fstNtm2Tm (ontms0,g0,seen0) (ontms,g,seen) ⇐⇒
∃Ak rules0. (ontms0 = ontms ++ [Ak]) ∧ (seen = Ak::seen0) ∧

(r49Elem Ak)
∗ (seen0,rules g0,[]) ([],rules0,seen0)

∧ (rules g = rules0) ∧ (startSym g = startSym g0)

(Here ontms0 are nonterminals with indices in decreasing order (An, An−1 . . . A1)
andseen0 contains the nonterminals that have already been processed.)

To prove that all the ‘seen’ nonterminals inV are in GNF, we establish thatgnfInv
invariant holds through the multiple applications of the relation.

HOL Definition 9
gnfInv ru s ⇐⇒
∀ i. i < |s| ⇒

∀ r. rule (EL i s) r ∈ ru ⇒ validGnfProd (rule (EL i s) r)

(PredicatevalidGnfProd (rule ℓ r) holds iffr = aα for terminala and (pos-
sibly empty) list of nonterminalsα.)

Multiple applications of this process result ing2 satisfying thePhase 2 condition
that all the rules for nonterminals inV are now in GNF.

4.6 Phase 3—ChangingBi-productions to GNF

The final phase is concerned with the rules corresponding to theBis which are intro-
duced as part of the left to right transformation. We follow asimilar strategy to Phase 2
to convert allBi-productions to GNF.

At the end of Phase 2, all rules involving nonterminals inV are of the formAi →
aα, for terminala and list (possibly empty) of nonterminalsα. From the invariant
rhsBNonTms, we have that theBi rules are of the formBi → Akβ whereβ is a
list (possibly empty) of nonterminals. TheaProds lemma is now used to obtain rules
of the formBi → aαβ which satisfy GNF, done by establishing thatgnfInv holds for
seenBis.

HOL Definition 10
fstNtm2TmBrules (ubs0,ontms0,g0,seen0) (ubs,ontms,g,seen) ⇐⇒
∃ b rules0.

(ubs0 = b::ubs) ∧ (ontms0 = ontms) ∧ (seen = seen0 ++ [b]) ∧
(rules0 = aProdsRules b ontms (set (rules g0))) ∧
(set (rules g) = rules0) ∧ (startSym g = startSym g0)

(ubs0 containsB1 . . . Bn, ontms0 = V , the nonterminals in the original grammarg
andseen0 is used to keep a record of theBis that have been handled.)

We show that the above transformation resulting in grammarg3 preserves the language
of the grammar.

Finally, the three phases can be combined to show that any grammar that can be
transformed into Chomsky Normal Form can be subsequently transformed into a gram-
mar in Greibach Normal Form.

This transformation resulting in grammarg3 also preserves the language of the
grammar and the invariantgnfInv over the seenBis.

Finally, the three phases can be combined to show that any grammar that can be
transformed into Chomsky Normal Form can be subsequently transformed into a gram-
mar in Greibach Normal Form.

HOL Theorem 10
INFINITE U(:α) ∧ [] /∈ language g ∧ language g 6= ∅ ⇒
∃ g ′. isGnf g ′ ∧ language g = language g ′

(The predicateisGnf g holds iff predicategnfInv is true for the rules and nonter-
minals ofg.)

5 Related work and conclusions

In the field of language theory, Nipkow [6] has provided a verified and executable lexi-
cal analyzer generator. This is the closest in nature to the mechanisation we have done.

The proof for CNF is∼1400 lines and GNF is∼6000, which is excluding proofs
that are in the HOL library as well as the library maintained by us. Only parts of the
proofs have been shown. The proof for CNF only covers half a page in the textbook.
On the other hand, GNF covers almost three pages (including the two lemmas). This
includes diagrams to assist explanation and an informal, high level reasoning. All of
this is beyond the reach of automation in its current state. Issues such as finiteness and
termination, which do not arise in a textual proof, become central when mechanising it.
Similarly, choice of data structures and the form of definitions (relations vs functions)
have a huge impact on the size of the proof as well as the ease ofautomation. These
do not necessarily overlap. We have only presented the key theorems that are relevant
to understanding and filling some of the deductive gaps in thetextbook proofs. These
theorems also cover the intermediate results needed because of the particular mechani-
sation technique. The size of these gaps also depends on the extent of detail in the text
proof, which in our case is very sparse. It is hard to frame general techniques when the
majority of the results require carefully combing the fine details in the text and making
deductions about the omitted steps in the reasoning. From deducing and implementing
the structure for induction for theleft2Right lemma to establishing the numerous
invariants for the final step of GNF algorithm, the problems for automation are quite di-
verse. Having extensive libraries is possibly the best way to tackle such highly domain
specific problems. Like typical software development, the dream of libraries compre-
hensive enough to support all needed development fails as soon as one steps outside
of the already conquered areas. The need for ever more libraries has never really gone
away.

The simplification of CFGs (including CNF and GNF) is∼14000 lines. It took a
year to complete the work which includes over 700 lemmas/theorems.

AcknowledgementsNICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. Aditi Barthwal and Michael Norrish. Verified, executableparsing. In Giuseppe Castagna,
editor,Programming Languages and Systems: 18th European Symposium on Programming,
volume 5502 ofLecture Notes in Computer Science, pages 160–174. Springer, March 2009.

2. Aditi Barthwal and Michael Norrish. Mechanisation of pdaand grammar equivalence for
context-free languages. InTo appear in Proceedings of WoLLIC. Springer, 2010.

3. N Chomsky. On certain formal properties of grammars.Information and Control, 2(2):137–
167, 1959.

4. Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars.
J. ACM, 12(1):42–52, 1965.

5. John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Ma., USA, 1979.

6. Tobias Nipkow. Verified lexical analysis. In J. Grundy andM. Newey, editors,Proceedings of
the 11th International Conference on Theorem Proving in Higher Order Logics (TPHOLs’98),
pages 1–15, Canberra, Australia, 1998. Springer-Verlag LNCS 1479.

