
Many-Core Chips — A Case for Virtual Shared Memory

Gernot Heiser
NICTA

∗
and University of New South Wales and Open Kernel Labs

Sydney, Australia
gernot@nicta.com.au

ABSTRACT
We make the case for virtual shared memory (VSM) for supporting
future many-core chips. VSM is a shared memory abstraction im-
plemented over distributed memory by a hypervisor, providing the
operating system direct access to all memory in the system. VSM
on a distributed-memory system, such as a many-core chip with lo-
cal memory associated with each core or small group of cores, pro-
vides a non-uniform memory model to the operating system. We
argue, based on our experience with a prototype called vNUMA
(implemented on a cluster), that this model can perform well for
NUMA-aware software. The indirection layer provided by the vir-
tualization provides benefits to hardware manufacturers, as it can
absorb certain faults, including faulty nodes and packet losses in
the interconnect.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Distributed
memories, Virtual memory

General Terms
Algorithms, Design, Management, Performance

Keywords
Many-core processors, hypervisor, virtual machine, scalability,
guest operating system

1. INTRODUCTION
Future many-core systems, with thousands of cores on a single

chip, will be significantly different from present multi-core chips
[1].

Busses scale poorly and will be replaced by on-chip intercon-
nect networks with local subnets linked by routers, and inter-core

∗NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digi-
tal Economy and the Australian Research Council through the ICT
Centre of Excellence program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMCS ’09, Washington, DC, USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

message-passing latencies varying by maybe an order of magnitude
depending on the physical distance. Cores (or groups of cores) will
have their own clocks, synchronised via protocols running across
the interconnect. Cores (or groups of cores) will have significant
amounts of local memory. The only shared memory is likely to be
off-chip; even the closest off-chip memory may be distributed, due
to three-dimensional integration. This implies that shared memory
will be several orders of magnitude more expensive to access than
local memory.

Figure 1: Likely architecture for thousands of cores.

The need to keep yields reasonably high will force manufacturers
to ship chips with many dead cores and interconnects. These will
be detected and removed from the software-visible hardware during
a burn-in phase or even at boot time. The result is that the actual
topology of the chip will not be determined by the part number,
but will need to be discovered at boot time, and the software must
adopt to the topology.

Such a many-core chip will therefore look not unlike a contem-
porary workstation cluster: a distributed system with a high-speed
interconnect. Compared to local memory, the shared off-chip mem-
ory will be expensive to access and will appear like some network-
attached storage in a cluster, and will be seen as backing store rather
than being directly accessed during computation.

This observation makes it natural to explore programming
paradigms developed for distributed systems: explicit message-
passing and distributed shared memory (DSM). Message-passing
approaches, such as MPI [15], are an obvious approach that maps
well to the message-passing nature of the hardware (as it does in
distributed systems), and is likely to be the approach of choice for
highly-parallel applications. However, shared memory is a more
convenient programming paradigm in many circumstances and pro-

mailto:gernot@nicta.com.au

Figure 2: Architecture a classical distributed shared memory (left) and virtual shared memory (right).

vides better support for many legacy programs. For that reason,
DSM is still popular in distributed systems today, and like to re-
main so in the future.

In this paper we make the case for a DSM-like approach as a way
to manage many-core systems. We argue that, contrary to classical
DSM approaches, such as Ivy [14], Munin [4] or Treadmarks [13],
shared memory for many-core systems should not be implemented
as middleware (i.e. on top of the OS), but below the OS(es) inside
a system virtualization layer. This extends the classical OS notion
of virtual memory across the distributed system. To distinguish
it from DSM, we refer to this approach as virtual shared memory
(VSM). Figure 2 contrasts the architectures of DSM and VSM.

We have recently developed a prototype VSM system, called
vNUMA [5, 6] (“virtual NUMA”), on a conventional workstation
cluster. We argue that the vNUMA approach presents a promising
way of managing many-core chips, as it simplifies dealing with the
distributed nature of the hardware. It can do so without introducing
overheads to high-performance applications, as explicit message-
passing still works with full performance.

In the next section we will present a brief overview of vNUMA
as it is relevant to this discussion. In Section 3 we will discuss
specific advantages VSM provides to many-core chips, and in Sec-
tion 4 we will discuss the impact on applications. Section 5 presents
related work and Section 6 concludes the paper.

2. VNUMA OVERVIEW
vNUMA is a Type-I hypervisor which presents a shared-memory

multiprocessor to the (guest) operating system. Specifically, as
vNUMA is implemented on distributed-memory hardware, where
the cost of accessing remote memory is orders of magnitude
higher than for local memory, the virtual hardware provides cache-
coherent non-uniform memory access (ccNUMA). Hence, NUMA-
aware software will perform better on vNUMA than software that
assumes uniform memory-access costs.

Implementing shared memory inside the hypervisor has a num-
ber of advantages. For one, all the memory in the system becomes
part of the VSM, and therefore the OS can access all memory from
all nodes. (Of course, a side effect of this virtualization is that
the hypervisor can also partition the system, dividing the complete
physical memory into several virtual machines, each running a sep-
arate, isolated OS. Besides other advantages of virtualization, this
supports the deployment of OSes that will not scale to thousands of
processors.)

Another advantage is that running in the machine’s most privi-
leged mode gives a VSM system access to optimisations that are

beyond the reach of DSM middleware such as MPI. These include
the efficient emulation of individual instructions, and the use of the
performance-monitoring unit (PMU) to track the execution of spe-
cific instructions.

Implementing VSM inside the hypervisor also changes some of
the trade-offs compared to middleware systems, and as a result re-
quires different protocols. For example, software running on DSM
systems is typically aware of this, and specifically of the fact that
the unit of migration and coherency is a hardware page. This is
not the case for a multiprocessor OS, especially a NUMA-unaware
one, which expects data migration and coherency to have a cache-
line granularity.

vNUMA therefore includes a number of enhancements to estab-
lished DSM protocols to support efficient write-sharing within a
page [6]. For example, vNUMA supports three different modes
of write sharing of pages: write-invalidate, write-update/multiple
writer, and write-update/single writer. vNUMA adapts the write-
sharing mode based on the observed sharing patterns. In par-
ticular, vNUMA detects and efficiently handles atomic instruc-
tions (such as compare-exchange) used by the OS to implement
locks. For some optimisations (e.g. batching write-update mes-
sages), vNUMA makes use of the weak store order provided by
modern processors [11].

Evaluation of vNUMA running a multiprocessor version of
Linux on a small (8-node) cluster showed that scalability for HPC
workloads was generally better than Treadmarks, an example is
shown in Figure 3 (see our recent paper [6] for more details). For
coarse-grain parallelism represented by compiles matched the per-
formance of middleware solutions (dist-cc).

The evaluation also showed that vNUMA performance is highly
sensitive to network latency. It furthermore showed that in the
case of a database benchmark (PostgresSQL), performance was
severely degraded by the design to locking used in that system —
fine-grained locking using complex hierarchies of locks and assum-
ing uniform memory access. (Note that running PostgresSQL on a
DSM system would lead to worse results, if it could be done at all.)
No such performance issues with locks were found in the Linux
kernel, showing that this is not an inherent limitation of the VSM
approach. Nevertheless, the example showed that VSM will not
work well for every application—parallel applications with signif-
icant sharing will have to adapt. VSM does not promise a free
lunch!

3. VSM ON MANY-CORES
Compared to a cluster, a VSM implementation will benefit from

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
p

e
e
d

u
p

Number of nodes

vNUMA
TreadMarks

Figure 3: Scalability comparison of vNUMA and TreadMarks
using the Splash-2 [19] “water” benchmark.

a number of advantages a multi-core chip has over a traditional
cluster. For one, network latencies (measured in CPU-core cycles)
are orders of magnitude lower for an on-chip interconnect com-
pared to Ethernet.

More importantly, if the VSM approach is adopted, support for it
will be designed into future many-core chips. This has the potential
to significantly reduce overheads on a number of operations that
we found expensive in vNUMA (on current COTS hardware). For
example, vNUMA traps all writes to multiple-writer shared pages
in order to determine when updates need to be distributed. While
this provides better performance than single-writer protocols in the
presence of a limited degree of false sharing, if such writes are
frequent, performance will suffer. Architectural support, e.g. in the
form of write protection at a cache-line granularity, could reduce
this bottleneck.

Furthermore, if the VSM paradigm is widely adopted, then soft-
ware will adapt to it, for example by changing OS data structures
to avoid false sharing. According to our (limited) experience with
vNUMA scalability, NUMA-aware software will generally work
well, and programs that do not share memory at all will not be af-
fected by VSM in their performance.

The VSM approach can provide some obvious benefits to pro-
cessor manufacturers:

• The hypervisor can transparently deal with a small amount of
message loss in the interconnect. This allows chipmakers to
more agressively optimise the network, to the degree where
it is no longer fully reliable. In fact, vNUMA, designed for
notionally unreliable Ethernet, makes use of the fact that in
a cluster environment, Ethernet is in reality “almost” reli-
able, losing or damaging messages very rarely. vNUMA
deals with this by using checksums and timeouts, rather than
more sophisticated protocols designed for really unreliable
networks.

• Cache coherence does not have to be provided by hardware.
With growing number of cores, hardware solutions become
more complicated and costly. High-performance applica-
tions do not need them, as they deal with distribution ex-
plicitly, reducing the benefit of providing coherence in hard-
ware. Shifting coherence protocols into the hypervisor has
the added benefit that software can easier adapt protocols to

access patterns.

• The hypervisor can transparently re-map memory addresses
and core IDs. This not only allows it to deal with unreliable
hardware, but also naturally supports turning off cores for
power management. The virtual-memory paradigm can be
taken to its logical conclusion by transparently swapping out
local memory to off-chip backing store.

• Core heterogeneity is easy to support, as individual cores or
groups of cores can run their own OS, with the hypervisor
simplifying access to remote memory. Heterogeneous OSes
are also easy to support, the main requirement is that each
core’s ISA supports the hypervisor.

It would be possible to implement VSM inside native OSes
running on many-cores. However, we expect virtualization to be
widely used in future systems anyway, for reasons of resource iso-
lation / quality of service, and for dynamic resource management,
in particular saving energy by shutting down unused cores. A single
chip will typically run multiple, heterogeneous operating systems,
each with varying allocations of physical resources.

Only the hypervisor has access to the whole system, and as such
is the ideal place to implement VSM. For example, it could use Ca-
pabilities [7] for controlling access to pages or coarser-gain mem-
ory regions by guest OSes.

4. VSM AND APPLICATIONS
It would obviously be a fallacy to expect a VSM to scale for

parallel applications utilising hundreds or thousands of nodes. On
the one hand, the latency of communication cannot be hidden
by presenting a shared-memory model. On the other hand, the
more nodes access the same data, the more coherency traffic is re-
quired, and for n nodes, the cost of this is O(n2). Communication-
intensive applications are best served by explicit message passing
as supported by MPI or similar middleware.

The real scalability test of a VSM system is whether it can sup-
port a large number of processors in the absence of contention.
More precisely, the system should not impose communication over-
head for applications that do not communicate [10]. It is precisely
designed to achieve this: The coherency protocols ensure that pages
which are only written by a single core will be owned exclusively
by that core, while read-only pages are shared. Coherency over-
heads only arise when pages are shared, or change their mode.

As such, the small-cluster scalability results we obtained from
our vNUMA prototype should be representative of parallel appli-
cations running on a small subset of cores of a large many-core sys-
tem; the main difference being that the many-core system should be
more VSM-friendly than a cluster for the reasons discussed in the
introduction.

Furthermore, the coherency protocols ensure that message-
passing middleware like MPI on top of VSM should be able to
perform as well as without the VSM layer: as it never shares data,
but copies it between nodes by explicit messaging, it does not cre-
ate coherency traffic.

Hence, the VSM stays out of the way of software that does not
need it, but is there to support software that benefits from a shared-
memory model.

5. RELATED WORK
VSM is based on the ideas of DSM, pioneered by Ivy [14]. Mi-

rage [9] moved DSM into the OS to improve transparency. Munin
[4] utilised weaker memory consistency to support simultaneous
writers.

Disco [3] carves a NUMA system into multiple virtual SMP
nodes for the benefit of existing operating systems that may not
support a NUMA architecture. This is, in a way, the opposite of
VSM, which combines separate nodes into a single virtual NUMA
system, allowing a single operating system instance to span multi-
ple nodes that do not share memory.

Since our initial publication on vNUMA [5], systems using
similar ideas have emerged: Virtual Iron’s VFe hypervisor [18]
the Virtual Multiprocessor from the University of Tokyo [12].
While these systems demonstrate combining virtualization with
distributed shared memory, they are limited in scope and perfor-
mance. Virtual Iron attempted to address some of the performance
issues by using high-end hardware, such as InfiniBand rather than
Gigabit Ethernet, which effectively makes the network more sim-
ilar to what we expect from future many-cores. Virtual Iron has
since abandoned the product for commercial reasons, which largely
seems to stem from its dependence on such high-end hardware.
More recently, startup company ScaleMP started to market their
vSMP system [16], which seems similar in nature (also uses Infini-
Band). This supports our claim that there is on-going interest in
SMP as a programming model on distributed-memory hardware.

Catamount [2] partitions shared memory between nodes but
makes remote partitions available via virtual-memory mapping.
Work on many-core scheduling [8] is orthogonal to the VSM con-
cept. Barrelfish [17] deals with many-core resource heterogeneity
by making it explicit. While we agree that this is the best way to
achieve best performance, it only benefits applications that are de-
signed to deal with explicit heterogeneity.

6. CONCLUSIONS
We made a case for virtual shared memory, i.e., a virtual-memory

abstraction implemented over physically distributed memories by
a hypervisor, as an attractive model for managing future many-
core chips. Based on our experience with a cluster-based proto-
type, we argue that VSM provides a shared-memory abstraction
for software that needs it, without imposing significant overheads
on software that does not share (virtual) memory. We have argued
that the approach integrates well with the use of virtualisation for
resource management on many-cores, and simplifies dealing with
faulty cores, faulty interconnects and heterogeneity. It may allow
processor manufacturers to move cache coherence protocols from
hardware into software.

7. REFERENCES
[1] S. Borkar. Thousand core chips: a technology perspective. In

Proceedings of the 44th Design Automation Conference,
pages 746–749, San Diego, CA, USA, June 2007.

[2] R. Brightwell. Lightweight kernel support for direct shared
memory access on a multi-core computer. In Proceedings of
the 1st Workshop on Managed Many-Core Systems, Boston,
MA, USA, June 2008.

[3] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:
Running commodity operating systems on scalable
multiprocessors. ACM Transactions on Computer Systems,
15:412–447, 1997.

[4] J. B. Carter. Design of the Munin distributed shared memory
system. Journal of Parallel and Distributed Computing,
29:219–227, 1995.

[5] M. Chapman and G. Heiser. Implementing transparent
shared memory on clusters using virtual machines. In
Proceedings of the 2005 USENIX Technical Conference,
pages 383–386, Anaheim, CA, USA, Apr. 2005.

[6] M. Chapman and G. Heiser. vNUMA: A virtual
shared-memory multiprocessor. In Submitted to USENIX’09,
Jan. 2009.

[7] J. B. Dennis and E. C. Van Horn. Programming semantics for
multiprogrammed computations. Communications of the
ACM, 9:143–155, 1966.

[8] A. Fedorova, V. Kumar, V. Kazempour, S. Ray, and
P. Alagheband. Cypress: A scheduling infrastructure for a
many-core hypervisor. In Proceedings of the 1st Workshop
on Managed Many-Core Systems, Boston, MA, USA, June
2008.

[9] B. D. Fleisch and G. J. Popek. Mirage: A coherent
distributed shared memory design. In Proceedings of the
12th ACM Symposium on Operating Systems Principles,
pages 211–223, 1989.

[10] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximising locality and concurrency in a shared memory
multiprocessor operating system. In Proceedings of the 3rd
USENIX Symposium on Operating Systems Design and
Implementation, pages 87–100, New Orleans, LA, USA,
Feb. 1999.

[11] Intel Corp. A Formal Specification of Intel Itanium Processor
Family Memory Ordering, Oct. 2002.
http://www.intel.com/design/itanium2/documentation.htm.

[12] K. Kaneda. Virtual machine monitor for providing a single
system image. http://web.yl.is.s.u-tokyo.ac.jp/~kaneda/dvm/.

[13] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard
workstations and operating systems. In Proceedings of the
1994 Winter USENIX Technical Conference, pages 115–131,
1994.

[14] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7:321–59, 1989.

[15] Message Passing Interface Forum. MPI: A message-passing
interface standard, Nov. 2003.

[16] ScaleMP. http://www.scalemp.com. Accessed March 2009.
[17] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham,

T. Harris, and R. Isaacs. Embracing diversity in the
Barrelfish manycore operating system. In Proceedings of the
1st Workshop on Managed Many-Core Systems, Boston,
MA, USA, June 2008.

[18] A. Vasilevsky. Linux virtualization on Virtual Iron VFe. In
Proceedings of the 2005 Ottawa Linux Symposium, July
2005.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages
24–36, 1995.

http://www.intel.com/design/itanium2/documentation.htm
http://web.yl.is.s.u-tokyo.ac.jp/~kaneda/dvm/
http://www.scalemp.com

	Introduction
	vNUMA Overview
	VSM on Many-Cores
	VSM and Applications
	Related Work
	Conclusions
	References

