Introduction

Opponent
- Ansgar Fehnker

Affiliation
- National ICT Australia
- Managing Complexity
- Formal Methods

Research Interests
- Model checking and static analysis to support embedded software development (C/C++)
- Model checking to support protocol design in the wireless network domain

National ICT Australia
- Australian Government backed research institute
- 5 Laboratories:
 - ATP, Sydney
 - Canberra Research Laboratory
 - The Neville Roach Laboratory, Sydney
 - Queensland Research Laboratory
 - Victoria Research Laboratory

726 Staff
- PhD and Masters Students: 301
- Corporate Staff: 107
- Researchers: 244

Creating Correct Network Protocols

Thesis Oskar Wibling
Contents

- Networks
- Protocols
- Correctness
- Thesis
- Q&A

Networks

Applications

- Internet
- Home entertainment systems
- Power grid
- In-car network
- In-plane network
- Mobile phones
- WiFi
- Wireless sensor networks

Characteristics of Wireless Networks

- Ad-hoc
- Mobile
- Dynamic node creation
- Node failure
- Multi-hop communication
- Interference
- Resource constrained

Protocols
Protocols

Purpose
- Protocols define the proper interaction between multiple components/agents in a network.
- Protocols define the normal operating procedures
- Protocols should be resilient to most failures

Characteristics
- Protocols are typically organized in layers, the so-called protocol stack.
- Lower layers deal with the physical aspects of the network.
- Upper layers with more abstract applications.
- Upper layers assume that lower layers work correctly.

Protocols

Characteristics
- Protocols are typically organized in layers, the so-called protocol stack.
- Lower layers deal with the physical aspects of the network.
- Upper layers with more abstract applications.
- Upper layers assume that lower layers work correctly.

Routing Protocols

Aim
- Used to set up correct routes, to transmit data from one node to another.
- Needs to find a series of intermediate nodes if sender and receiver are not directly connected

Routers
- Traditional networks use routers, i.e. dedicated nodes.
- Routers provide a reliable “map” of the network.
- Ad hoc networks are more dynamic, no dedicated routers.
- Every node has to act as a router.
Routing Protocols

- Node S wants to transmit to node D

Where is D?
Routing Protocols

- Node S wants to transmit to node D

Where is D? Where is D?

Here is D!
Routing Protocols

- Node S want to transmit to node D

Send data

Routing Protocols

- Node S want to transmit to node D

Send data

Routing Protocols

- Node S want to transmit to node D

Send data

Routing Protocols

- Node S want to transmit to node D

Send data
Routing Protocols

Challenges
- Nodes can move
- Nodes can fail
- Messages can get lost
- Messages can interfere/collide

Protocols

Reactive protocols
- Create routing information as needed
- Examples are LUNAR and DYMO

Proactive
- Maintain routing information for later use.
- Examples are AODV, DSR, and OLSR

Correctness
We must not put mistakes into programs because of sloppiness, we have to do it systematically and with care.

(Edsger Dijkstra)

Definition 1
A system is correct if it cannot exhibit undesirable behaviour.

Definition 2
A system is correct if it exhibits only permissible behaviour.

How to achieve “Correctness”?

“Traditional” software engineering practice
- Given a spec start coding
- Run test cases
- Code review
- Run more tests

Informal spec validation system
How to achieve “Correctness”?

Model based design
- Given a spec build a model
- Run simulations
- Code/generate code
- Run tests

Or high-level description

Informal spec

Verification

Formal spec

Build first, model later

“Program testing can be used to show the presence of bugs, but never to show their absence!” (Edsger Dijkstra)
Creating Correct Network Protocols

Thesis Oskar Wibling

Algorithmic Verification

How to achieve “Correctness”?

Verification

Verification and Validation
• Given SPEC implement
• Derive formal SPEC
• Derive formal model
• Verify correctness

Build first, verify later

Verification

Formal spec

System

Informal spec

Model

Correctness

Verification

Formal spec

System

Informal spec

Model
LUNAR
- Lightweight Underlay Network Ad hoc Routing
- Discovers paths as needed
- Active paths are maintained
- Uses Propagating Localized Broadcast with Dampening (PLBD)
- Cross-platform implementation for Windows and Linux

Given
- User space implementation for Linux

Aim
- Kernel implementation for Windows and Linux

Approach
- Separate protocol logic from network and platform specific details
- Provide Windows versions of Linux kernel function calls

Benefits
- Clear distinction between protocol and platform
- Improved maintainability of the protocol
- Protocol is specified at high/model level
- Verification results translate to both platforms
- Helps with separation of concerns

Structured Live Testing
- Comparative study
 - Three different protocols: AODV, DSR and OLSR
 - Three different evaluation methods: Simulation, emulation, real world testing
 - Three different scenarios: End node swap, Relay node swap, Roaming node

 Identified three ad hoc routing protocol problems: TCP backlash, Self Interference and Link cache poisoning
Structured Live Testing

Simulation

- Simulating the protocol with ns-2
- No hardware
- Radio is simulated
- Mobility of nodes is simulated

Structured Live Testing

Emulation

- Emulating the protocol using the APE testbed on identically configured laptops
- Stationary setup
- Uses actual radio and hardware
- Mobility is emulated using MAC filters
- Useful to study radio propagation effects when compared to simulation

Structured Live Testing

Real World Testing

- Running the protocol using the APE testbed on identically configured laptops
- Uses actual radio and hardware
- Mobility is achieved by humans carrying laptops
- To ensure repeatability carefully choreographed and scripted

Structured Live Testing

Scenarios

1. End node swap
Structured Live Testing

Scenarios

1. End node swap
2. Relay node swap

Structured Live Testing

Scenarios

1. End node swap
2. Relay node swap
3. Roaming node

Structured Live Testing

Results

- Comparing Simulation and Real-World points to sources for routing problems
- Simulation for relay swap and DSR

Structured Live Testing

Results

- Comparing Simulation and Real-World points to sources for routing problems
- Real world result for relay swap and DSR

Link cache poisoning
Summary

- Used three different approaches to compare protocols
- Found three previously unreported problems
- Cross-environment comparison help to identify problems

Verification of LUNAR using SPIN and Uppaal

- Study protocol for network with finite number of nodes
- Subject to changes in topology,
- Correctness defined as guarantee that (1) the route will be set up and (2) the initial packet will be delivered
- Use time model in Uppaal to derive upper bounds for initial packet delivery

LUNAR

- The sender sends out a route request with Propagating Localized Broadcast with Dampening (PLBD)
 1. The initiating node tags the broadcast message with a unique ID
 2. Nodes ignore packets that they have received before
 3. Otherwise, if the node is not the destination, it will propagate the broadcast message.
- Once the destination node receives the request, it will send a unicast route reply along the discovered path.
- If the initiator receive the route reply it starts sending along the discovered path

Correctness property

- If there at one point in time exists a path between two nodes, then the protocol must be able to find some path between the nodes.
- When a path has been found, it is possible to send packets along the path from the source node to the destination node, as long as the path remains valid.
Automata-based protocol verification

Changes in topology

Prove that the protocol is resilient to changes in topology, due to link and/or node failure.

Broadcast Abstraction

- Improving the performance of model-checking by modelling PLBD as primitive operation, discarding many intermediate states and interleaving.
- Proving that the so-called “broadcast abstraction” is sound by provided
 - There exists a PLBD path
 - The PLBD path is unique
- Paper 3 gives proof that this is the case.

Summary

- Formalized correctness operation of an ad hoc routing protocol
- Modelled changing topology
- Verified protocol for all instances after broadcast abstraction

Graph Transformation System Verification

Verification of DYMO and Heap operations using GBT

- A technique for modelling and verification based on graph transformation systems
- System configurations are modelled as hypergraphs
- Actions are modelled as graph rewrite rules
- Specification modelled as patterns
- Use backward reachability semi-algorithm to prove correctness
- Implemented as tool GBT
Hypergraphs

- A hypergraph is a set of nodes with a set of hyperedges.
- A hyperedge is a pair of an action label and an ordered tuple of nodes.

Patterns

- A pattern is a hypergraph, and represents all hypergraphs that have it as a subgraph.
- A pattern may include negative application conditions, which exclude all hypergraphs that have it as subgraph.
- Introduction of summary nodes, to represent a non-empty set of nodes that have the same node type.

Example

- Given a pattern representing all bad configurations (e.g., networks with loops).
- Compute the predecessor patterns, given all actions.
- Check if predecessor pattern is subsumed by a previously explored pattern.
- Stop if the initial configuration matches a predecessor pattern => Bad configurations are reachable.
- Stop if reachability analysis reaches a fix-point, i.e., find no new patterns => Bad configurations not reachable.
Verification Results

- Used the tool GBT to verify that the protocol DYMO guarantees absence of routing loops.
- Verification took less than an hour.
- Result holds for a network with an arbitrary number of network nodes.
- Verified the correctness of a heap-operation.
- Made possible by introduction of summary nodes.
- Verification took less than 20 minutes.
- Demonstrates the general use of verification via Graph Transformation Systems.

Summary

The thesis achieved the following:

- Cross-platform implementation of the LUNAR protocol.
- Structured testing of 3 routing protocols.
- Verification of bounded instances of a routing protocol using existing tools.
- Developed a new tool to verify unbounded instances.

Questions
Re: Verification results of paper II, III, V, VI.

Re: Correctness property in Definition 1, paper II and III.

Informal spec
- If there at one point in time exists a path between two nodes, then the protocol must be able to find some path between the nodes.
- When a path has been found, it is possible to send packets along the path from the source node to the destination node, as long as the path remains valid.

Formal spec
- $A \leftrightarrow$ Lunar0.unic_rep_rec
- $A \leftrightarrow$ Lunar1.ip_rep_ok

Re: Results for GBT, table 5.3, p83.

Re: Correctness property for DYMO as hypergraph

Figure 5.10: Pattern φ, with node labels added.
Re: Paper IV, p 8. “The real world experiments suffer from (...) logging”.

Re: Page 40, Model checking, Classification of SPIN

Re: Paper III, p 3. “When using PLBD, the only possible paths (...) are disjoint.”

Re: p 90, paper VI, p15, CEGAR for GTS.
Re: Gap between simulation and real world experiment, p 57

Re: S/W development, p 25

Re: Impact of Network failure, p 15. "Driving to work or school"

Thanks