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Abstract nal P11 Q and the newly added probabilistic choies Q.
So a semantic theory fqrCSP will have to provide a co-
In 1992 Wang & Larsen extended the may- and must pre-herent account of the precise relationships between these

orders of De Nicola and Hennessy to processes featuringoperators.

probabilistic as well as nondeterministic choice. They-con
cluded with two problems that have remained open through-
out the years, namely to find complete axiomatisations and
alternative characterisations for these preorders. Thas p
per solves both problems for finite processes with silent
moves. It characterises the may preorder in terms of simu-
lation, and the must preorder in terms of failure simulation

It also gives a characterisation of both preorders using a
modal logic. Finally it axiomatises both preorders over a
probabilistic version of CSP.

1. Introduction

A satisfactory semantic theory for processes which enco
pass both nondeterministic and probabilistic behaviosr ha
been a long-standing research problem [12, 35, 23, 17, 32
33, 30, 18, 27, 31, 13, 21, 26, 1, 19, 24, 3, 34, 7]. In 1992
Wang & Larsen posed the problems of finding complete ax-
iomatisations and alternative characterisations for araht
generalisation of the standard testing preorders [6] th suc
processes [35]. Here we solve both problems, at least for
finite processes, by providing a detailed account of both
may- and must testing preorders for a finite version of the
process calculus CSP extended with probabilistic choice.
For each preorder we provide three independent character
isations, using (i) co-inductive simulation relations,i) &
modal logic and (iii) sets of inequations.

Testing processes: Our starting point is the finite process
calculuspCSP [8] obtained by adding a probabilistic choice

m-X

As a first step, in Sec. 2 we provide an interpretation
of pCSP as aprobabilistic labelled transition systenin
which, following [32], transitions likes —— s’ from stan-
dard labelled transition systems are generalised to tme for
s % A, whereA is adistribution, a mapping assigning
probabilities to states. With this interpretation we obfai
Sec. 3 a version of the testing preorders of [6] pGISP
processes may andC,myse These are based on the abil-
ity of processes to padests the tests we use are simply
pCSP processes in which certastatesare marked asuc-
cess statesSee [8] for a detailed discussion of the power of
such tests.

The object of this paper is to give useful characterisations
of these testing preorders. This problem was addressed
previously by Segala in [31], but using testing preorders
L8 ey and it that differ in two ways from the ones in
[6, 14, 35, 8] and the present paper. First of all, in [31] the
success of a test is achieved by #utual executionf a pre-
definedsuccess actigmather than the reaching of a success
state. We call this aaction-based, as opposed tostate
based, approach. Secondly, [31] employs a countable num-
ber of success actions instead of a single one; we call this
vector-basedas opposed tecalar, testing. Segala’s results
in [31] depend crucially on this form of testing. To achieve
our current results, we need Segala’s preorders as a steppin
stone. We relate them to ours by considering intermediate
preorders pmay andC pmusthat arise from action-based but
scalar testing, and use a recent result [9] saying that for fi-
nite processes the preorders, ,, andC i, coincide with
C pmay andCpmyse Here we show that opCSP C,,y and
C pmust@lso coincide Withz pmay andCpmys

operator to finite CSP; like others who have done the same,

we how havehreechoice operators, externBl O @, inter-

*We acknowledge the support of the Australian Research Gounc
(ARC) Grant DP034557.

Simulation preorders: In Sec. 4 we use the transitions
s — A to define two co-inductive preorders, thienula-

IHowever in the presence of divergence they are slightleafit.



tion preorder—¢ [30, 24, 8], and the novdhilure simula-
tion preorder= pg overpCSP processes. The latter extends
the failure simulation preorder of [10] to probabilisticopr
cesses. Their definition uses a natural generalisatioreof th
transitions, first (Kleisli-style) to take the ford —— A/,
and then taveakversionsA == A’. The latter preorder
differs from the former in the use of failure predicate

we employ the vector-based tests of [31], so that we can
use different success actions in the separate probabilisti
branches. Therefore, we complete our proof by demonstrat-
ing that the state-based testing preorders imply the action
based ones (Sec. 5) and recalling the result from [9] that the
action-based scalar testing preorders imply the vecteedba
ones (Sec. 6).

s 24, indicating that in the state none of the actions in

X can be performed. . Equations: It is well-known that may- and must testing
Both preorders are preserved by all the operators infqr standard CSP can be captured equationally [6, 2, 14]. In
pCSP, and aresoundwith respect to the testing preorders; [g] we showed that most of the standard equations are no
thatis P Cs  implies P Cpmay @ @nd P Epg Q im- longer valid in the probabilistic setting @CSP; we also
plies P Cpmust Q- For Cs this was established in [8], and  provided a set of axioms which are complete with respect
the proofs for s are similar. Butompletenesshat the {4 (probabilistic) may-testing for the sub-languageGsP
testing preorders imply the respective simulation presrde \yithout probabilistic choice. Here we extend this resuft, b
requires some ingenuity. We prove it indirectly, involving showing, in Sec. 10, that both Cpmay @ aNdP Cpmust @
a characterisation of the testing and simulation preoriders .44 still be captured equationally over f@lCSP. In the

terms of a modal logic. may case the essential (in)equation required is

a.(P,&Q) C

Modal logic: Our modal logic, defined in Sec. 7, uses a.P,® a.Q
finite conjunction A, ; ¢;, the modality (a),> from the _ _ _ _
Hennessy-Milner Logic, and a novel probabilistic construc  The must case is more involved: in the absence of the dis-
@ie[ i i A satisfaction relation between processes and trIbUtIVIty of the external and internal choices over each
formulae then gives, in a natural mannelogical preorder other, to obtain completeness we require a complicated in-
between processe$? % @ means that everg-formula  equational schema.
satisfied byP is also satisfied by). We establish that*
coincides withZ s andCpay.

To capture failures, we add, for every set of actiohs
a formularef(X) to our logic, satisfied by any process
which, after it can do no further internal actions, can per-
form none of the actions iX either. The construct§, (a)
andref () stem from the modal characterisation of the non-
probabilistic failure simulation preorder, given in [10)Ne
show that=, s, as well as_ g, can be characterised in a

similar manner with this extended modal logic.

2. Finite probabilistic CSP

Let Act be a finite set of actions, ranged over &y, - - -,
which processes can perform. Then the finite probabilistic
CSP processes are given by the following two-sorted syn-
tax:

P
S

S| P,®P
O |aP | PNP| SOS| S|aS
Proof strategy: We prove these characterisation results

through two cycles of inclusions:
8]

HereP ,& @, for0 < p < 1, represents arobabilistic
choicebetweenP and@: with probabilityp it will act like

CLC Cg C Comay € Epmay 9] E[?ma c C~ P and with probabilityl —p it will act like Q. Any process

F ~ O ~q Y F is a probabilistic combination of state-based process$es (t
5 € Eps © Epmust & Epmust = Epmust & & sub-sortS above) built by repeated application of the op-
——— —— Y e—— —— N— _ i _
Sec. 7 Sec.4 Sec. 3 Sec. 5 Sec. 6 Sec. g €rator,e. The state-based processes have a CSP-like syn

tax, involving the stopped proce8s action prefixinga._,
internal-andexternal choices! andd, and aparallel com-
position| 4 for A C Act.

The proces® M @ will first do a so-callednternal ac-
tion 7 & Act, choosinghondeterministicallypetweenP and
Q. Therefore, like a._, acts as guard, in the sense that it

In Sec. 7 we show thaP C* Q impliesP Cg @ (and
henceP Cpnay @), and likewise for_” andC rg; the proof
involves constructing, for eaghCSP processP, acharac-
teristic formulayp p. To obtain the other direction, in Sec. 8
we show how every modal formula can be captured, in
some sense, by a teb}; essentially the ability of aCSP converts any process arguments into a state-based process.
process to satisfy is determined by its ability to pass the The proces® O @ on the other hand does not perform
testT,. We capture the conjunction of two formulae by a actions itself, but merely allows its arguments to proceed,
probabilistic choice between the corresponding testsi-in 0 disabling one argument as soon as the other has done a vis-
der to prevent the results from these tests getting mixed up,ble action. In order for this process to start from a state



rather than a probability distribution of states, we regitis
arguments to be state-based as well; the same appligs to
Expressions® O @ andP |4 @ for processes’ and @

that arenot state-based are therefore syntactic sugar for an
expression in the above syntax obtained by distributing
and| 4 over,®.

Finally, the expressio® |4 Q, whereA C Act, repre-
sents processddand(@ running in parallel. They may syn-
chronise by performing the same action frehsimultane-
ously; such a synchronisation results-inn additionP and
@ may independently do any action framct\A) U {7}.

We write pCSP for the set of process terms defined by
this grammar, andCSP for the subset comprising only

a.P % [P]

PRQ =[P PRQ = Q]

s1 % A sy 4 A

s1 089 % A m
51— A Sg /= A

s1 089 T A O sy s1O0syg s O0A
s1 -5 A ag A s9 -5 A ag A
51 |as2 = Ala so s1las2 = s1|aA

SlLAl, so 2 Ay acA

S1 |A 52 L>Al |A AV

the state-based process terms. The full language of CSP

[2, 15, 29] has many more operators; we have simply cho-
sen a representative selection, and have added prohiabilist
choice. Our parallel operator is not a CSP primitive, but
it can easily be expressed in terms of them—in particular
P |4 Q = (P|laQ)\A, where||4 and\ A are the paral-

lel composition and hiding operators of [29]. It can also

be expressed in terms of the parallel composition, renam-

Figure 1. Operational semantics of pCSP.

We now give the probabilistic generalisation (pLTSs) of
labelled transition systems (LTSs):

Definition 1 A probabilistic labelled transition systeis a

ing and restriction operators of CCS. We have chosen thistriple (S, Act,, —), where

(non-associative) operator for convenience in defining the
application of tests to processes.

As usual we may elid®; the prefixing operatar._ binds
stronger than any binary operator; and precedence betwee
binary operators is indicated via brackets or spacing. We

will also sometimes use indexed binary operators, such asyq yith LTSs. we usually write —°- A for

@iel pi-P; with Ziel p; =1 and allpz > 0, and':liel P;.
The above intuitions are formalised by aperational
semanticsassociating with each process term a graph-like
structure representing its possible reactions to users’ re

(i) Sis a set of states

(i) Act, is a set of actiong\ct, augmented by ¢ Act;

n we leta range oveAct anda overAct..

(iii) relation — is a subset of x Act, x D(.9).

(s,, A) € —,

s % for3A : s - A ands — for Ja: s . An LTS
may be viewed as a degenerate pLTS, one in which only
point distributions are used.

quests: we use a generalisation of labelled transition sySye now define the operational semantics 6P by means

tems [25] that includes probabilities.

A (discrete) probability distribution over a sétis a
function A : S — [0,1] with 3~ _cA(s) = 1; the sup-
port of A is given by[A] = {se€S | A(s) > 0}. We
write D(.S), ranged over byA, ©, ®, for the set of all distri-
butions overS with finite support; these finite distributions
are sufficient for the results of this paper. We also wgite
to denote the point distribution assigning probability Isto
and 0 to all others, so th@s] = {s}.

For A a distribution ovelS and functionf: S — X into
a vector spac« (typically the real$) we write @, c g As- fo
or Expa(f) for - .5 A(s)-f(s), the weighted average
of the f,, or expected valuef f. Whenpe[0,1], we
also write f; ,@® fo for p-fi + (1—p)-f2. More gen-
erally, for functionF : S — P*(X) with P*(X) be-
ing the collection of non-empty subsets &f, we define
EXppr F' := {EXpa(f) | f € F'}, wheref € F means
that f is achoice functiorwith f(s) € F'(s) forall s€ S.

20ther possibilities are tuples of reals, or distributiomsrssome set.

of a particular pLTS(sCSP, Act,, —), constructed by tak-
ing sCSP to be the set of states and interpretp@SP pro-
cessed as distributions P| € D(sCSP) as follows:

[s] 5 forsesCSP
[P.e Q] [Pl QT -

Note that for eact” € pCSP the distribution] P] is finite,

i.e. it has finite support. The definition of the relatiofis is
given in Fig. 1. These rules are very similar to the standard
ones used to interpret CSP as an LTS [29], but modified so
that the result of an action is a distribution. We sometimes
write 7. P for P 1 P, thus givingr.P = [ P].

3. TestingpCSP processes

A testis apCSP process except that it may have subterms
w.P for freshw & Act,, a special action reporting success;
and the operational semantics above is extended by treat-
ing w like any other action fronfAct. To apply testl" to



processP we form the proces¥’ |a. P in which all visi-
ble actions ofP must synchronise witi’, and define a set
of testing outcomegl\ (T, P) where each outcome, [f, 1],

arises from a resolution of the nondeterministic choices in

T |act P and gives the probability that this resolution will
reach asuccess staf®ne in whichw is possible.

To this end, we inductively define @sults-gathering
functionV : S — P*([0,1)); it extends to typeD(S) —
P*([0,1]) via the conventioV/ (A) := Exp, V.

{1} if s <5,
V(s) == SULV(A) | s A} i s 24, 5 2o,
{0} if s/

Note that these choices are exhaustive bec@usag P has
only 7,w actions, and thaV¥ is well defined when applied
to finite, loop-free pLTSs, such as the ongaSP.

Definition 2 For anypCSP processP and testl’, define
A(T, P) := V[T |ac P] -

With this definition, the general testing framework of [6]
yields two testing preorders f@CSP, one based omay
testing, writtenP .y @, and the other omusttesting,
written P = pmyst Q.

Definition 3 Themay-andmustpreorders are given by

P Cpmay @ iff VtestsT: A(T, P) <uo A(T, Q)
P Comust@ iff VtestsT: A(T, P) <sm A(T, Q)

with <y, <sm the Hoare, Smyth preorders &[0, 1].3

4. Simulation and failure simulation

LetR C S x D(S) be arelation from states to distributions.
We lift it to a relationR C D(S)xD(S) by letting AR ©
whenever there is an index seandp € D(I) such that

(i) A= @ie[pi's_i )

(i) For eachi €I there is a distributio®; s.t.s; R @, ,
(i) © = Dye;pi-i .
For notational convenience, the lifted versions of thegiran
tion relations—=- for o € Act- are again denoted™.

We writes < A if eithers —— A or A = 5; again

A, -5 A, denotes the lifted relation. Thus e.g. we have

[[a%EB ((amb) 1D C)ﬂ [8].

We now define the weak transition relatiefs as the
transitive and reflexive closuré~* of =, while fora # 7
A =% A, denotes\; == -%=Ls A,. We writes 24
with X C Act whenVa € X U {7} : s %, andA X4
whenVs € [A] : s 24,

3The Hoare order is defined By <y, Yiff Ve € X: JyeY: z < v,
similarly the Smyth order b <g,,, Yiff Vy€Y: dz e X: z < y.

[(@nd)y® (@ne)] =

Definition 4 ArelationR C S x D(.5) is said to be dail-
ure simulationif for all s, 9, o, A we have that
e sROAs-% Aimplies30: 0 =% 0/ AAR O’
e sROAs 2 Aimplies30’: © == 0’ A 0" X4,

We write s &>, © to mean that there is some failure simu-
lation R such thats R ©. Similarly, we definesimulation
ands >, © by dropping the second clause in Def. 4.

Definition 5 The simulation preordel_g andfailure sim-
ulation preorderC s on pCSP are defined as follows:

PCsQ iff [Q] == © for someO with [P] & ©
PCpsQ iff [P] = © forsome® with [Q] &, 6.

(Note the opposing directions.) The kernel$gf andC zg
are calledfailure) simulation equivalengeéenoted~s and
~ g, respectively.

We have already shown in [8] thats is a precongruence
and that it implies—,,y. Similar results can be established
for C g as well. We summarise these facts as follows:

Proposition 1 Supposé_ € {Cg,Crg}. ThenC is a pre-
order, and ifP; C Q; for: = 1,2 thena.P, C a.Q for
ac€ActandP, 0P, C Q1 0Q, foroe{n, O, ,®, [a}.

Proof: The caseCg was proved in [8, Cor. 6.10 and
Thm. 6.13]; the casg g is analogous. O

Theorem 1
1. If P Cs Q thenP Cymay Q.
2. If P Cps QthenP Cymust Q.

Proof: The first clause was proved in [8, Thm. 6.17]; the
second can be shown similarly. m|

The next four sections are devoted to obtaining the con-
verse.

5. State- versus action-based testing

Much work on testing [6, 35, 8] uses succetstesnarked

by outgoingw-actions; in other work [31, 9], however, it is
theactual executiorf w that constitutes success. The for-
mer, state-basedesting, leads to the preorders we defined
in Sec. 3; the latteraction-basedesting, leads to slightly
different preorders_may and Cpmuse Without probability
there is no difference betweei:may and Cyay; but pos-
sible divergence makes,g; strictly more discriminating
thanﬁmust, and in fact_stcoincides with CSP refinement
based on failures and divergences [2, 15, 29]. The action-
based approachis formalised as in the state-based approach
via a suitabléV:

(5) = {U{@(A) |s T AYU{L]s-5) ifs—

{0} otherwise

<)



Proposition 2 Q= {w} we have\A/Q = V,, and the convex-closing pre-
1. If P Cpmay @ thenP Epmay Q. orders based o‘{VIINI coincide with the simpler ones based
onv, V. Thus convex closure matters only for proper vec-

2. If P Cpmust@ thenP Comust Q- tors, as explained in the remark following Def. 6.

Proof: For any testl’ constructl’ by replacing each sub- In [9] the results-gathering functioV$® with @ =
termw.Q by 7.w; thenV[T |aee P] = V[T |ac P] for all {w1,ws, -} was called simply¥y (because action-based/
pCSP processed. O convex/vector-based testing was assumed there throughout

making the*-indicators superfluous); and it was defined in
In fact we use the action-based preorders in Thm. 2 below,terms of a formalisation of the notion of a resolution. The
a (quasi-, thus) converse of Thm. 1; but with Prop. 2 above inductive definition above yields the same results.
the two kinds of preorders become identified so that Thms. 1

and 2 are converse to each other. Definition 6 For anypCSP processP and(Q-testT’, let
Theorem 2 AT, P) := V[T |act P] .
1. If P Cpmay @ thenP Cs Q. Thevector-based mayandmustpreorders are given by

. £ C . . .
2. If P Comust@ thenP C g Q P cfmayQ iff v Q-testsT: AP(T, P) <no AP(T,Q)

We set this theorem as our goal in the next three sections. P EfmustQ iff Vv Q-testsT” AQ(T P) <sm AI (T,Q)

where <y, and <g,, are the Hoare- and Smyth preorders

6. Vector-based testing onP*[0, 1] generated fromx index-wise or0, 1]** itself.

This section describes another variation on testing, @&rich Remark: For proper vector-based testing, convex closure

testing framework due to Segala [31], in which countably matters, as it allows internal choice to simulate probstidi

many success actions exist: the application of a test to achoice [13]. Consider the following two processes

process yields a set @kctorsover the real numbers, rather

than a set of scalars. The resulting action-based testarg pr

orders will serve as a stepping stone in proving Thm. 2.
LetQ be asetof fresh success actions wifinAct, = 0.

An Q-test is again @CSP process, but this time allow-

ing subtermsw.P for any we ). Applying such a test

to a process yields a non-empty set of test outctupées

P:=anbN(a,®b) and Q:=allb.

It is obvious thatP Cg @, and from Thm. 1 it therefore
follows that P Cpnay @. However ifQ = {w;,ws} and
we remove the convex closure in the definitior‘i@ﬁf, then
with the testl’ := a.w; O b.w, we would have

A9(T, P) C [0,1]. Eachtuple arises from a resolution A2(T, P) = {(1,0), (0,1), (0.5,0.5)}
within T' |ac P of nondeterministic choices into proba- 5 ’ RN ’
bilistic choices, and its;-component gives the probability AT, Q) = {(1,0), (0, 1)}

that this resolution will perform the success actian
For vectors we again inductively define a results-
gathering funcUonVQ .S — PT[0,1]%; it extends to
Hoare preorder. |

type D£ ),_) :]),+[O’ 1] via V?(.A) = Expy VY just as The testing preorders of [31] are obtained by takihg
VandV did. First, for anya definea! : (0,11 — [0, 1] tg be a countably infinite set, whereas the preordgys,
S0 th.ata.!o(w) b‘?co”.‘es L ito=a but remgin&(w) other.- and Epmust of Sec. 5 were obtained by takirfg to be the
wise; this function lifts to sets) < [0,1] as usual, via singleton sef{w}. In [9] we established that for our finite
a0 := {alo [ 0 € O}. Now we define pCSP processes the two coincide:

and soﬁQ(T P) £Luo AQ(T Q). However, their con-
vex closuresd? (T, P) and A2 (T, Q) arerelated under the

o5 = JITULalVR@) [ s =AY ifs— Theorem 3 [9].
! {0} otherwise 1. P ESmayQ iff P ':pmayQ
where( € [0,1]? is given by0(w) = 0 for all w € Q, and 2. b EpmustQ it P Cpmust Q- o
theconvex closurg X of a setX is defined Thus, with theif -direction of Thm. 3, for Thm. 2 it will

suffice to show thatP I:fmayQ implies P Cg @ and

P I:pmust Q implies P Cgrs Q. The crucial characteris-
We extend ourearherresults gatherlng definitions so thattics of AQ needed for that implication are summarised in

Vi(s) :== JV(s) andVI = [V(s). Note thatin case this Iemma(proofomnted)

1X :={@,c;pi-0i | peDI)ando: I — X }.



Lemma 1 Let P be apCSP process, and’, T; be tests.

1. 0 € A%(w, P)iff o = &.

2. Suppose the actiandoes not occur in the tegt.
Theno € A%(wOa.T, P) with o(w) = 0 iff there is a

A € D(sCSP) with [P] =2 A ando € AX(T, A).
3.0 A (0,cx a-w, P) iff 3A: [P] = A X4,

4. 0€ ﬁf(@iel pi-Ti, P) iff o =3, pio; for certain
0; € A? (Tl, P)

5. 0€ A2([,, T3, P) iff for all i € I there argy; € [0, 1]
andA; € D(sCSP) suchthaf P] = @, pi-A; and
0 =Y,c;pio; for certaino; € AQ(TZ, Ay).

Herew € [0,1]% is given byw(w) = 1 and@(w’) = 0 for
W' # w. O

In writing ﬁ?(T, A) above we treat a distributio as
thepCSP expressioD, o7 As-s; and as usual we define

AQ(T, A) = Exppy AX(T, ).
7. Modal logic

Our next step towards Thm. 2 is to define a8edf modal
formulae, inductively, as follows:

(a)p € F wheny € F anda € Act,
ref(X) € FwhenX C Act,
Nicr wi € F wheng; € F forall i € I, with [ finite

o and@, ., pi-pi € F whenp; €[0,1] andyp; € F forall
i€ I, with I afinite index set, andl,_; p; = 1.

We often writep; ,& ¢o for @le{l o1 Dispi With p = py,
andy; A @ for /\le{1 51 i and flnalfy'l' for Ao wi-
Thesatisfaction relatiori= C D(sCSP) x F is given by:
A = (a)piffthereis aA’ with A =% A’ andA’ = o,
A E ref(X) iff there is aA’ with A == A’ and
A X
e A Nicpwiiff Al foralliel
andA = @, pi-yi iff there areA; € D(sCSP), for
alli e I, with A; |= ¢;, such thath == @, pi-A;.
Let £ be the subclass ¢f obtained by skipping theef (X)
clause. We write? C* @ just when[P] = ¢ implies
Q] E ¢forall pe L, andP =7 Q just when[P| = ¢

is implied by [Q] = ¢ for all o€ F. (Note the opposing
directions.)

Definition 7 Thecharacteristic formulap, or oA of a pro-
cesss € sCSP or A € D(sCSP) is defined inductively:

o s =N\, (a)pa Aref({a|s <4})if s T4,
o v, =\, 2, Al{a)pa NN\, _7. A @a Otherwise,
* o= Bcrar Als) s

Here the conjunctiong\ _a ., range over suitable pairs
a,A,and/\,_ 7, , ranges over suitabla.

Write ¢ = 1 with ¢, ¢ € F if for each distributionA one
hasA E ¢ impliesA | ¢. Then it is easy to see that
s &= psand\,.; pi = @; foranyieI.

The following property can be established by an easy in-
ductive proof.

Lemma 2 For anyA € D(sCSP) we haveA = pa. ad

It and the following lemma help to prove Thm. 4.

Lemma 3 For any processeB, Q € pCSP we have that
[Pl = @ror implies P Crs Q.

Proof: DefineR by s R © iff © = ¢,. We first show that
O = pa implies 30’ : 0 == @ AARO. (1)

Suppos® = pa With oa = @, pi-vs,, SO that we have
A = @, ; pi-5i and for alli € I there are9; € D(sCSP)
with ©; = ., suchtha® == ©’ with ©' := D, pi-Oi.
Sinces; R ©, for all i € I we haveA R ©'.

Now we show thaR is a failure simulation.

e Supposes R © ands —— A. Thenyp; = pa, SO
O = ¢a. Now apply (1).

e Supposes R © ands <+ A with a € A. Theny, =
{a)pa, SO0 E (a)pa. Henced®' with © = ©' and

©’ &= pa. Now apply (1).

e Supposes R O ands %4 with X C A. Thenp, =
ref(X), s0O k ref(X). Henced®' with © = ©’
and®’ X4,

Thus we have® = ¢, impliess >, ©. Using (1) with
[P] = ¢rq) givesP Crs Q via Def. 5. ]

Theorem 4
1. If PC*QthenP Cg Q.
2. If P E]:Q thenP Crs Q

Proof: SupposeP C7 . By Lem. 2 we havéQ] F e
and hencg P| = ¢ro1. Lem. 3 givesP Cps Q.

For theC* case, omitref(X) from the definition of a
characteristic formula and begin wittP[ = ¢;p:. The

counterpart of Lem. 3 now says tha[ = ¢:p1 implies
PLCsQ. ]



8. Characteristic tests

Our final step towards Thm. 2 is taken in this section, where

we show that every modal formula can be characterised

by a vector-based te$t, such that anpCSP process satis-

fiesy just when it passes the tekg.

Lemma 4 For everyp € F there exists a paifl,, v,,) with

T, anQ-testandv, € [0,1]?, such that
Ay & Joe AXT,.A): )

0 < vy
forall A € D(sCSP), and in case» € £ we also have
AEy & Joe AXT,,A): ©)

T, is called echaracteristic tesof ¢ andv,, its target value

02y, .

Proof: First of all note that if a pai(7,, v,) satisfies the
requirements above, then any pair obtained fi@ip, v,,)
by bijectively renaming the elements 6f also satisfies
these requirements. Hence a characteristic test can always
be chosen in such a way that there is a success actiof
that does not occur in (the finitd),. Moreover, any count-
able collection of characteristic tests can be assumed to be
Q-disjoint, meaning that na € Q occurs in two different
elements of the collection.

The required characteristic tests and target values are ob-
tained as follows.

o Lety=T. TakeT, := w for somew € ), andv,, := &.

e Lety = (a)1. By induction, has a characteristic test
Ty, with target valuevy,. TakeT,, := wOa.T,;, where
w € Q does not occur iy, andv,, := vy.

Let ¢ ref(X) with X C Act. TakeT,
0,.c x a.w for somew € Q, andv,, = 0.

Leto = A,c; i With I a finite and non-empty index
set. Choose &-disjoint family (T3, v;);c; of charac-
teristic testsl; with target values); for eachy;. Fur-
thermore, lep; € (0,1] for ¢ € I be chosen arbitrarily
such thaty ., p; = 1. TakeT, := @,.,; pi-T; and
Vp = Zie[ pivi.

Let ¢ = @,c;pipi- Choose a-disjoint family
(T3, v )icr Of characteristic test$; with target values
v; for eachy;, such that there are distinct success ac- 1
tionsw; for i € I that do not occur in any of those tests. |
LetT! :=T; 10 w; andv] := fv; + ;. Note that for
alliel alsoT’ is a charactenstlc test of; with target

e Letp = (a)y with a € Act. SupposeA = ¢. Then
there is aA’ with A = A’ andA’ = 4. By in-
duction,30 € A(Ty, A) : o < v,. By Lem. 1(2),
OEA\?(T A).

Now supposétoeAQ(T A): o< v,. Th|S|mpI|es
o(w) = 0, so by Lem. 1(2) there isA’ with A == A’
ando € A2(T,, A'). By induction,A’ =4, SOA = .

Let ¢ = ref(X) with X C Act. Supposel = .
Then there is &\’ with A == A’ andA’ £4. By
Lem. 1(3),0 € AX(T,, A).

Now supposétoeﬁQ(T A): o < w,. Thisimplies
o = 0, so by Lem. 1(3) there is A’ with A == A’
andA’ ££4. HenceA = o.

Lety = A,c; i with I afinite and non-empty index
set. Supposé = ¢. ThenA | ¢; forallie I, and
hence, by inductiorjo; € ﬁ?(Ti,A) : 0; < ;. Thus
0:=Y",c; Pi0; € AX(T,, A) by Lem. 1(4), and < v,.
Now supposéloeﬁ?(Tw,A) : 0 < v,. Then, using
Lem. 1(4),0 = }_,; pio; for certaino; eﬁ?(Ti,A).
One haso; < w; for all i eI, for if o;(w) > v;(w)
for someiel andw €, thenw must occur inT;
and hence cannot occur ify for j#4. This implies
vj(w) = 0forall j # ¢ and thus)(w) > v, (w), in con-
tradiction with the assumption. By inductiod, |= ¢;
forall i € I, and hence\ |= .

Let ¢ = @, piwi- SupposeA = . Then
for all i € I there areA; € D(sCSP) with A; = ¢;
such thatA = @, ; pi-Ai. By induction, there

are oieﬁl (Al,Tl’) with o; < o). By Lem. 1(5),
0=, Pi0; EAI (Ty, A), ando < v,,.
Now supposelo € A(T,,A) : o < v,. Then, by

Lem. 1(5), there arg e D(/) and A;, for i € I, such
thatA = @, ¢:-A; ando = >, ¢;0; for some
oieﬁ?( i T7). Now Vi @ o;(w;) = vi(w;) = 2, o)
%Qi = gioi(wi) = o(w;) < vy(wi) = pivi(wi) = gp’L

AS Y, ;i = >, pi = 1, itmust be that; = p; for

all e I. Exactly as in the previous case one obtains
o; < vj allieI. By induction,A; |= ¢; forall i eI,
and hence\ = .

In casep € L, a straightforward induction yields thiat,| =

and for all A € D(pCSP) and o€ AX(T,, A) we have

o| = 1. Here|o| denotes) |, o(w). Thereforep < v iff
o > v iff o = v, yielding (3).

O

valuevy. TakeT, :— =[Nie; T} andv, := Y., piv}. Theorem 5
e et p T Laer P CIf PER . Qthen[P] C£[Q].
Note thatv,, (w) = 0 whenevet € 2 does not occur iff,. ?2 y -
By induction ony we now check (2) above. P ER @ then[P] C7[Q].
e Lety = T. ForallA € D(sCSP) we haveA = ¢ as Proof: Suppose® C omust @ @nd[Q] = ¢ for somep € F.

well as3o € AX(T,, A) : o < v, using Lem. 1(1).

Let T, be a characterlstlc test @f with target valuev,,.



(P1) P,oP =P

(P2) PeQ =Q.,&P

(P3) (PPEB Q)qEBR = Pp'q® (Q%@R)

(1) PAP =P o

(12) P =Qn°P

(I3) (PN MNMR=PN(QMNR)

(E1) rPOO0="P

(E2) POQ =QOP

(E3) (POQ)OR=PO(QOR)

(EI) a.PO0a@Q = a.PMNaQ

(D1) PO(Q,®R) =(POQ),®(POR)

(D2) a.PO(QMNR) = (a.POQ)MN(a.POR)

(D3) POQ=(P0OQ)N(POQ)
MNP OQ) M (PBQ,

providedP:PlrIP27 Q:Qll_lQQ

Figure 2. Common equations

Then Lem. 4yie|d§oeﬁ1( ,1Q]). o < w,, and hence,
given thatP T, @ andA”( ,[R]) = AX(T,,, R) for
any R € pCSP, we havedo’ € AQ w [P]) 0 0 < v,
Thus[P] = .

The may-case goes likewise. O

Combining Thms. 3-5 we obtain Thm. 2, the goal we set
ourselvesin Sec. 5. Thus, with Thm. 1 and Prop. 2, we have
shown that the may preorder coincides with simulation and

that the must preorder coincides with failure simulati@n.

9. Equational theories

May:

(May0) a.POb.Q =a.P1bQ
(May1) P CPMNQ
(May2) 0 CP
(May3) a.(P,®Q) Ca.P,®aQ
Must:
(Must1) PNQ CQ
(Must2) RN I_liel Pz C Die[ ai.Qi,

P; = @;e,, pi(ai-Qi; O Pyj)
Qi = @jeji ijij
inits(R) C {ai}ier

provided

Figure 3. Inequations

Note that this result also meafs=g Q impliesP ~g Q.

Despite the weakness of this equational theory, it does
allow us to reduce terms to a form in which the external
choice operator is applied to prefix terms only.

Definition 8 [Normal forms] The set ofiormal formsN is
given by the following grammar:

N:=Ni, &Ny | My Ny | []aiN.
el

Proposition 4 For everyP € nCSP there is a normal form
N such thatP =g N.

Proof: A fairly straightforward induction, heavily relying

In order to focus on the essentials we now consider juston (D1)-(D3). O

those processes that do not use the parallel opergtare
call the resulting sub-languag€SP. For a discussion of
the axiomatisation for terms involvirijg and the other par-
allel operators commonly used @6P see Sec. 11.

Let us writeP =g @ to denote thaf” = @) can be de-

10. Inequational theories

In order to characterise the simulation preorders, and the

rived using the equations given in Fig. 2. Given the way we associated testing preorders, we introdineguations We

defined the syntax gsCSP, axiom (D1) is merely a case

write P Cg,,, Q@ whenP C Q is derivable from the inequa-

of abbreviation-expansion. Many of the standard equationstional theory obtained by adding the fomayinequations

for CSP [15] are missing; they are not sound fefrg, as
shown in Sec. 4 of [8]. Typical examples include:

a.(PNQ)=aPMNaQ

P=POP
PO(QQNR)=(POQ)N(POR)
PNn(QOR)=(PNQ)O(PMNR)

Proposition 3 Suppose® =g Q. ThenP ~ps Q.

Proof: Because of Prop. 1 it is sufficient to exhibit withess
failure-simulations for axioms in Fig. 2. O

in Fig. 3 to the equations in Fig. 2. The first three additions,
(May0)—(May2), are used in the standard testing theory
of CSP [15, 6, 14]. For themustcase, in addition to the
standard inequatiofiMust1), we require an inequational
schema(Must2); this uses the notatidnits(P) to denote
the (finite) set of initial visible actions dP. Formally,

inits(0) = 0
inits(a.P) = {a}
inits(P,® Q) = inits(P) U inits(Q)
inits(P 0O Q) = inits(P) U inits(Q)
inits(P M Q) = inits(P) U inits(Q)



The side conditions ofMust2) entail that]P;] 2= [Q;] to probabilistic-choice outcomes that had not yet occurred
and that there exists sonfe such thatR == A <4 with Mislove addressed this problem in [26] by presenting a de-
X = Act\{a;}ic;. Note that(Must2) can be used, to- notational model in which internal choice distributed out-
gether with(I1), to derive the dual ofMay3), that is wards through probabilistic choice. However, the distribu
a.P,® a.Q C a.(P,® Q). We writeP Cg,, ., @ when tivities of both [27] and [26] constitute identificationsath

P C @ is derivable from the resulting inequational theory. cannot be justified by our testing approach; see [8].

An important inequation that follows froifMay1) and In Jou and Smolka [20], as in [23, 33], probabilistic
(P1)is equivalences based on traces, failures and readies are de-
P,®Q Cg,,, PT1Q fined. These equivalences are coarser thgg,y,. For let
saying that any probabilistic choice can be simulated by an P:=a.((bdOce) 1 (b.f Ocg))

internal choice. Likewise, we have
Q:=a.((b.dOc.g)1® (b.f Oc.e)).

PnQ C P . e .
@ Ebns P, Q These two processes cannot be distinguished by the equiv-
Theorem 6 For P, @ in nCSP, it holds that alences of [20, 23, 33]. However, we can tell them apart by

() PCsQifandonlyifP Cp,, Q the test
(i) PCps QifandonlyifP Cp, . Q
Proof: Omitted due to lack of space. O

T:=a((bdwi® cew)N(b.fwi®cgw))

since A(T, P) = {0, 3,1} and A(T, Q) = {1}, that is,
P meay Q

Probabilistic extensions of testing equivalences [6] have
been widely studied. There are two different proposals on
how to include probabilistic choice: (i) a test should benon
In this paper we continued our previous work [8, 9] in probabilistic, i.e., there is no occurrence of probabdist
our quest for a testing theory for processes which exhibit chojce in a test [22, 4, 17, 21, 11]; or (i) a test can be prob-
both nondeterministic and prObab”iStiC behaviour. Weehav abi”sticy i'e', probab”istic choice may occur in testshad|

studied three different aspects of may- and must testing pre g5 processes [5, 35, 28, 18, 31, 19, 3]. This paper adopts the
orders for finite processes: (i) we have shown that the maygecond approach.
preorder can be characterised as a co-inductive simulation gome work [22, 4, 5, 28] does not consider nondetermin-
relation, a.nd the must preorder as a failure Simu|ati0n- rela ism but deals exc'usive'y Wn_fu”y probabi"sticprocesses_
tion; (ii) we have given a characterisation of both preosder |n, this setting a process passes a test with a unique proba-
in a finitary modal logic; and (iii) we have also provided pjlity instead of a set of probabilities, and testing presed
complete axiomatisations for both preorders over a proba-in the style of [6] have been characterised in termprob-
bilistic version of recursion-free CSP. Although we omit- abilistic traces[S] and probabi"stic acceptance trqu8]
ted our parallel operatdy from the axiomatisations, itand  cazorla et al. [3] extended the results of [28] with nondeter
similar CSP and CCS-like parallel operators can be handledminism, but suffered from the same problems as [27].
using standard techniques, in the must case at the expense The work most closely related to ours is [18, 19]. In
of introducing auxiliary operators. In future work we hope [18] Jonsson and Wang characterised may- and must-testing
to extend these results to recursive processes. preorders in terms of “chains” of traces and failures, respe

We believe these I’esultS, in each of the three areas, tQiVer, andin [19] they presented a“substantia”y |mpm’{/e
be novel, although a number of partial results along similar characterisation of their may-testing preorder using @not
lines exist in the literature. These are detailed below. of simulation which is weaker than s (cf. Def. 5). They

only considered processes withadinoves. In [8] we have

Related work: Early additions of probability to CSP in- shown that tests with internal moves can distinguish more
clude work by Lowe [23], Seidel [33] and Morgan et al. processes than tests without internal moves, even when ap-
[27]; but all of them were forced to make compromises of plied to processes that have no internal moves themselves.
some kind in order to address the potentially complicated Segala [31] defined two preorders called trace distribu-
interactions between the three forms of choice. The lagt[27 tion precongruenceXrp) and failure distribution precon-
for example applied the Jones/Plotkin probabilistic pewer gruence Crp). He proved that the former coincides with
domain [16] directly to the failures model of CSP [2], the an infinitary version ofif,’may (cf. Def. 6) and that the latter
resulting compromise being that probability distributedto ~ coincides with an infinitary version oi_tf}must In [24] it has
wards through all other operators; one controversial tesul been shown thdt -, coincides with a notion of simulation
of that was that internal choice was no longer idempotent, akin to Cg. Other probabilistic extensions of simulation
and that it was “clairvoyant” in the sense that it could adapt occurring in the literature are reviewed in [8].

11. Conclusions and related work
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