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Abstract

In 1992 Wang & Larsen extended the may- and must pre-
orders of De Nicola and Hennessy to processes featuring
probabilistic as well as nondeterministic choice. They con-
cluded with two problems that have remained open through-
out the years, namely to find complete axiomatisations and
alternative characterisations for these preorders. This pa-
per solves both problems for finite processes with silent
moves. It characterises the may preorder in terms of simu-
lation, and the must preorder in terms of failure simulation.
It also gives a characterisation of both preorders using a
modal logic. Finally it axiomatises both preorders over a
probabilistic version of CSP.

1. Introduction

A satisfactory semantic theory for processes which encom-
pass both nondeterministic and probabilistic behaviour has
been a long-standing research problem [12, 35, 23, 17, 32,
33, 30, 18, 27, 31, 13, 21, 26, 1, 19, 24, 3, 34, 7]. In 1992
Wang & Larsen posed the problems of finding complete ax-
iomatisations and alternative characterisations for a natural
generalisation of the standard testing preorders [6] to such
processes [35]. Here we solve both problems, at least for
finite processes, by providing a detailed account of both
may- and must testing preorders for a finite version of the
process calculus CSP extended with probabilistic choice.
For each preorder we provide three independent character-
isations, using (i) co-inductive simulation relations, (ii) a
modal logic and (iii) sets of inequations.

Testing processes: Our starting point is the finite process
calculuspCSP [8] obtained by adding a probabilistic choice
operator to finite CSP; like others who have done the same,
we now havethreechoice operators, externalP 2 Q, inter-
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nalP ⊓Q and the newly added probabilistic choicePp⊕Q.
So a semantic theory forpCSP will have to provide a co-
herent account of the precise relationships between these
operators.

As a first step, in Sec. 2 we provide an interpretation
of pCSP as aprobabilistic labelled transition system, in
which, following [32], transitions likes

α
−→ s′ from stan-

dard labelled transition systems are generalised to the form
s α−→ ∆, where∆ is a distribution, a mapping assigning
probabilities to states. With this interpretation we obtain in
Sec. 3 a version of the testing preorders of [6] forpCSP

processes,⊑pmay and⊑pmust. These are based on the abil-
ity of processes to passtests; the tests we use are simply
pCSP processes in which certainstatesare marked assuc-
cess states. See [8] for a detailed discussion of the power of
such tests.

The object of this paper is to give useful characterisations
of these testing preorders. This problem was addressed
previously by Segala in [31], but using testing preorders
⊑̂Ω

pmay and⊑̂Ω
pmust that differ in two ways from the ones in

[6, 14, 35, 8] and the present paper. First of all, in [31] the
success of a test is achieved by theactual executionof a pre-
definedsuccess action, rather than the reaching of a success
state. We call this anaction-based, as opposed to astate-
based, approach. Secondly, [31] employs a countable num-
ber of success actions instead of a single one; we call this
vector-based, as opposed toscalar, testing. Segala’s results
in [31] depend crucially on this form of testing. To achieve
our current results, we need Segala’s preorders as a stepping
stone. We relate them to ours by considering intermediate
preorderŝ⊑pmay and⊑̂pmust that arise from action-based but
scalar testing, and use a recent result [9] saying that for fi-
nite processes the preorders⊑̂Ω

pmay and⊑̂Ω
pmustcoincide with

⊑̂pmay and⊑̂pmust. Here we show that onpCSP ⊑̂pmay and
⊑̂pmustalso coincide with⊑pmay and⊑pmust.1

Simulation preorders: In Sec. 4 we use the transitions
s

α
−→ ∆ to define two co-inductive preorders, thesimula-

1However in the presence of divergence they are slightly different.



tion preorder⊑S [30, 24, 8], and the novelfailure simula-
tion preorder⊑FS overpCSP processes. The latter extends
the failure simulation preorder of [10] to probabilistic pro-
cesses. Their definition uses a natural generalisation of the
transitions, first (Kleisli-style) to take the form∆

α
−→ ∆′,

and then toweakversions∆ α
=⇒ ∆′. The latter preorder

differs from the former in the use of afailure predicate
s 6X−→, indicating that in the states none of the actions in
X can be performed.

Both preorders are preserved by all the operators in
pCSP, and aresoundwith respect to the testing preorders;
that isP ⊑S Q impliesP ⊑pmay Q andP ⊑FS Q im-
pliesP ⊑pmust Q. For⊑S this was established in [8], and
the proofs for⊑FS are similar. Butcompleteness, that the
testing preorders imply the respective simulation preorders,
requires some ingenuity. We prove it indirectly, involving
a characterisation of the testing and simulation preordersin
terms of a modal logic.

Modal logic: Our modal logic, defined in Sec. 7, uses
finite conjunction

∧
i∈I ϕi, the modality〈a〉ϕ from the

Hennessy-Milner Logic, and a novel probabilistic construct⊕
i∈I pi ·ϕi. A satisfaction relation between processes and

formulae then gives, in a natural manner, alogical preorder
between processes:P ⊑L Q means that everyL-formula
satisfied byP is also satisfied byQ. We establish that⊑L

coincides with⊑S and⊑pmay.
To capture failures, we add, for every set of actionsX ,

a formularef (X) to our logic, satisfied by any process
which, after it can do no further internal actions, can per-
form none of the actions inX either. The constructs

∧
, 〈a〉

andref () stem from the modal characterisation of the non-
probabilistic failure simulation preorder, given in [10].We
show that⊑pmust, as well as⊑FS , can be characterised in a
similar manner with this extended modal logic.

Proof strategy: We prove these characterisation results
through two cycles of inclusions:

⊑L ⊆ ⊑S
[8]
⊆ ⊑pmay ⊆ ⊑̂pmay

[9]
= ⊑̂Ω

pmay ⊆ ⊑L

⊑F ⊆ ⊑FS ⊆ ⊑pmust ⊆ ⊑̂pmust
[9]
= ⊑̂Ω

pmust ⊆ ⊑F

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Sec. 7 Sec. 4 Sec. 3 Sec. 5 Sec. 6 Sec. 8

In Sec. 7 we show thatP ⊑L Q implies P ⊑S Q (and
henceP ⊑pmayQ), and likewise for⊑F and⊑FS ; the proof
involves constructing, for eachpCSP processP , a charac-
teristic formulaϕP . To obtain the other direction, in Sec. 8
we show how every modal formulaϕ can be captured, in
some sense, by a testTϕ; essentially the ability of apCSP

process to satisfyϕ is determined by its ability to pass the
testTϕ. We capture the conjunction of two formulae by a
probabilistic choice between the corresponding tests; in or-
der to prevent the results from these tests getting mixed up,

we employ the vector-based tests of [31], so that we can
use different success actions in the separate probabilistic
branches. Therefore, we complete our proof by demonstrat-
ing that the state-based testing preorders imply the action-
based ones (Sec. 5) and recalling the result from [9] that the
action-based scalar testing preorders imply the vector-based
ones (Sec. 6).

Equations: It is well-known that may- and must testing
for standard CSP can be captured equationally [6, 2, 14]. In
[8] we showed that most of the standard equations are no
longer valid in the probabilistic setting ofpCSP; we also
provided a set of axioms which are complete with respect
to (probabilistic) may-testing for the sub-language ofpCSP

without probabilistic choice. Here we extend this result, by
showing, in Sec. 10, that bothP ⊑pmay Q andP ⊑pmustQ

can still be captured equationally over fullpCSP. In the
may case the essential (in)equation required is

a.(P p⊕ Q) ⊑ a.P p⊕ a.Q

The must case is more involved: in the absence of the dis-
tributivity of the external and internal choices over each
other, to obtain completeness we require a complicated in-
equational schema.

2. Finite probabilistic CSP

Let Act be a finite set of actions, ranged over bya, b, · · · ,
which processes can perform. Then the finite probabilistic
CSP processes are given by the following two-sorted syn-
tax:

P ::= S | P p⊕ P

S ::= 0 | a.P | P ⊓ P | S 2 S | S |A S

HereP p⊕ Q, for 0 < p < 1, represents aprobabilistic
choicebetweenP andQ: with probabilityp it will act like
P and with probability1−p it will act like Q. Any process
is a probabilistic combination of state-based processes (the
sub-sortS above) built by repeated application of the op-
eratorp⊕. The state-based processes have a CSP-like syn-
tax, involving the stopped process0, action prefixinga. ,
internal-andexternal choices⊓ and2, and aparallel com-
position|A for A ⊆ Act.

The processP ⊓ Q will first do a so-calledinternal ac-
tion τ 6∈Act, choosingnondeterministicallybetweenP and
Q. Therefore⊓, like a. , acts as aguard, in the sense that it
converts any process arguments into a state-based process.

The processP 2 Q on the other hand does not perform
actions itself, but merely allows its arguments to proceed,
disabling one argument as soon as the other has done a vis-
ible action. In order for this process to start from a state
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rather than a probability distribution of states, we require its
arguments to be state-based as well; the same applies to|A.
ExpressionsP 2 Q andP |A Q for processesP andQ
that arenot state-based are therefore syntactic sugar for an
expression in the above syntax obtained by distributing2

and|A overp⊕.
Finally, the expressionP |A Q, whereA ⊆ Act, repre-

sents processesP andQ running in parallel. They may syn-
chronise by performing the same action fromA simultane-
ously; such a synchronisation results inτ . In additionP and
Q may independently do any action from(Act\A) ∪ {τ}.

We write pCSP for the set of process terms defined by
this grammar, andsCSP for the subset comprising only
the state-based process terms. The full language of CSP
[2, 15, 29] has many more operators; we have simply cho-
sen a representative selection, and have added probabilistic
choice. Our parallel operator is not a CSP primitive, but
it can easily be expressed in terms of them—in particular
P |A Q = (P‖AQ)\A, where‖A and\A are the paral-
lel composition and hiding operators of [29]. It can also
be expressed in terms of the parallel composition, renam-
ing and restriction operators of CCS. We have chosen this
(non-associative) operator for convenience in defining the
application of tests to processes.

As usual we may elide0; the prefixing operatora. binds
stronger than any binary operator; and precedence between
binary operators is indicated via brackets or spacing. We
will also sometimes use indexed binary operators, such as⊕

i∈I pi·Pi with
∑
i∈I pi = 1 and allpi > 0, and

e
i∈I Pi.

The above intuitions are formalised by anoperational
semanticsassociating with each process term a graph-like
structure representing its possible reactions to users’ re-
quests: we use a generalisation of labelled transition sys-
tems [25] that includes probabilities.

A (discrete) probability distribution over a setS is a
function ∆ : S → [0, 1] with

∑
s∈S∆(s) = 1; the sup-

port of ∆ is given by⌈∆⌉ = { s∈S | ∆(s) > 0 }. We
writeD(S), ranged over by∆,Θ,Φ, for the set of all distri-
butions overS with finite support; these finite distributions
are sufficient for the results of this paper. We also writes

to denote the point distribution assigning probability 1 tos
and 0 to all others, so that⌈s⌉ = {s}.

For∆ a distribution overS and functionf : S→X into
a vector spaceX (typically the reals2) we write

⊕
s∈S∆s·fs

or Exp
∆

(f) for
∑
s∈S ∆(s)·f(s), the weighted average

of the fs, or expected valueof f . When p∈ [0, 1], we
also write f1 p⊕ f2 for p ·f1 + (1−p) ·f2. More gen-
erally, for functionF : S → P

+
(X) with P

+
(X) be-

ing the collection of non-empty subsets ofX , we define
Exp

∆
F := {Exp

∆
(f) | f ∈ F }, wheref ∈ F means

thatf is achoice functionwith f(s)∈F (s) for all s∈S.

2Other possibilities are tuples of reals, or distributions over some set.

a.P a−→ [P ℄
P ⊓ Q τ−→ [P ℄ P ⊓ Q τ−→ [Q℄
s1

a−→ ∆

s1 2 s2
a−→ ∆

s2
a−→ ∆

s1 2 s2
a−→ ∆

s1
τ−→ ∆

s1 2 s2
τ−→ ∆ 2 s2

s2
τ−→ ∆

s1 2 s2
τ−→ s1 2 ∆

s1
α−→ ∆ α 6∈A

s1 |A s2
α−→ ∆ |A s2

s2
α−→ ∆ α 6∈A

s1 |A s2
α−→ s1 |A ∆

s1
a−→ ∆1, s2

a−→ ∆2 a∈A

s1 |A s2
τ−→ ∆1 |A ∆2

Figure 1. Operational semantics of pCSP.

We now give the probabilistic generalisation (pLTSs) of
labelled transition systems (LTSs):

Definition 1 A probabilistic labelled transition systemis a
triple 〈S,Actτ ,→〉, where

(i) S is a set of states

(ii) Actτ is a set of actionsAct, augmented byτ 6∈Act;
we leta range overAct andα overActτ .

(iii) relation→ is a subset ofS × Actτ ×D(S).

As with LTSs, we usually writes
α

−→ ∆ for (s, α,∆)∈→,
s α−→ for ∃∆ : s

α
−→ ∆ ands→ for ∃α : s

α
−→. An LTS

may be viewed as a degenerate pLTS, one in which only
point distributions are used.

We now define the operational semantics ofpCSP by means
of a particular pLTS〈sCSP,Actτ ,→〉, constructed by tak-
ing sCSP to be the set of states and interpretingpCSP pro-
cessesP as distributions[P ℄ ∈ D(sCSP) as follows:[s℄ := s for s∈ sCSP[P p⊕ Q℄ := [P ℄p⊕ [Q℄ .
Note that for eachP ∈ pCSP the distribution[P ℄ is finite,
i.e. it has finite support. The definition of the relationsα−→ is
given in Fig. 1. These rules are very similar to the standard
ones used to interpret CSP as an LTS [29], but modified so
that the result of an action is a distribution. We sometimes
write τ.P for P ⊓ P , thus givingτ.P τ−→ [P ℄.
3. TestingpCSP processes

A test is apCSP process except that it may have subterms
ω.P for freshω 6∈Actτ , a special action reporting success;
and the operational semantics above is extended by treat-
ing ω like any other action fromAct. To apply testT to
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processP we form the processT |Act P in which all visi-
ble actions ofP must synchronise withT , and define a set
of testing outcomesA(T, P ) where each outcome, in[0, 1],
arises from a resolution of the nondeterministic choices in
T |Act P and gives the probability that this resolution will
reach asuccess state, one in whichω is possible.

To this end, we inductively define aresults-gathering
functionV : S → P

+
([0, 1]); it extends to typeD(S) →

P
+
([0, 1]) via the conventionV(∆) := Exp

∆
V.

V(s) :=






{1} if s ω−→,
⋃
{V(∆) | s τ−→ ∆ } if s 6ω−→, s τ−→,

{0} if s 6→

Note that these choices are exhaustive becauseT |Act P has
only τ, ω actions, and thatV is well defined when applied
to finite, loop-free pLTSs, such as the one ofpCSP.

Definition 2 For anypCSP processP and testT , define

A(T, P ) := V[T |Act P ℄ .
With this definition, the general testing framework of [6]
yields two testing preorders forpCSP, one based onmay
testing, writtenP ⊑pmay Q, and the other onmusttesting,
writtenP ⊑pmustQ.

Definition 3 Themay-andmustpreorders are given by

P ⊑pmayQ iff ∀ testsT : A(T, P ) ≤Ho A(T,Q)
P ⊑pmustQ iff ∀ testsT : A(T, P ) ≤Sm A(T,Q)

with ≤Ho,≤Sm the Hoare, Smyth preorders onP+
[0, 1].3

4. Simulation and failure simulation

LetR ⊆ S×D(S) be a relation from states to distributions.
We lift it to a relationR ⊆ D(S)×D(S) by letting∆RΘ
whenever there is an index setI andp∈D(I) such that

(i) ∆ =
⊕

i∈I pi·si ,

(ii) For eachi∈ I there is a distributionΦi s.t. si R Φi ,

(iii) Θ =
⊕

i∈I pi·Φi .
For notational convenience, the lifted versions of the transi-
tion relations α−→ for α∈Actτ are again denotedα−→.

We write s τ̂−→ ∆ if either s τ−→ ∆ or ∆ = s; again
∆1

τ̂−→ ∆2 denotes the lifted relation. Thus e.g. we have[(a ⊓ b) 1
2
⊕ (a ⊓ c)℄ τ̂−→ [a 1

2
⊕ ((a ⊓ b) 1

2
⊕ c)℄ [8].

We now define the weak transition relationτ̂=⇒ as the
transitive and reflexive closureτ̂−→∗ of τ̂−→, while fora 6= τ

∆1

â
=⇒ ∆2 denotes∆1

τ̂
=⇒ a−→ τ̂

=⇒ ∆2. We writes 6X−→
with X ⊆ Act when∀α ∈ X ∪ {τ} : s 6α−→, and∆ 6X−→
when∀s ∈ ⌈∆⌉ : s 6X−→.

3The Hoare order is defined byX ≤Ho Y iff ∀x∈X: ∃y ∈Y : x ≤ y,
similarly the Smyth order byX ≤Sm Y iff ∀y ∈Y : ∃x∈X: x ≤ y.

Definition 4 A relationR ⊆ S×D(S) is said to be afail-
ure simulationif for all s,Θ, α,∆ we have that
• s R Θ ∧ s α−→ ∆ implies∃Θ′ : Θ

α̂
=⇒ Θ′ ∧ ∆ R Θ′

• s R Θ ∧ s 6X−→ ∆ implies∃Θ′ : Θ
τ̂

=⇒ Θ′ ∧ Θ′ 6X−→.

We write s �FS Θ to mean that there is some failure simu-
lationR such thats R Θ. Similarly, we definesimulation
ands �S Θ by dropping the second clause in Def. 4.

Definition 5 Thesimulation preorder⊑S andfailure sim-
ulation preorder⊑FS onpCSP are defined as follows:

P ⊑S Q iff [Q℄ τ̂
=⇒ Θ for someΘ with [P ℄ �S Θ

P ⊑FS Q iff [P ℄ τ̂
=⇒ Θ for someΘ with [Q℄ �FS Θ .

(Note the opposing directions.) The kernels of⊑S and⊑FS

are called(failure) simulation equivalence, denoted≃S and
≃FS , respectively.

We have already shown in [8] that⊑S is a precongruence
and that it implies⊑pmay. Similar results can be established
for ⊑FS as well. We summarise these facts as follows:

Proposition 1 Suppose⊑ ∈ {⊑S ,⊑FS}. Then⊑ is a pre-
order, and ifPi ⊑ Qi for i = 1, 2 thena.P1 ⊑ a.Q1 for
a∈Act andP1 ⊙P2 ⊑ Q1 ⊙Q2 for ⊙∈{⊓, 2, p⊕, |A}.

Proof: The case⊑S was proved in [8, Cor. 6.10 and
Thm. 6.13]; the case⊑FS is analogous. 2

Theorem 1
1. If P ⊑S Q thenP ⊑pmayQ.

2. If P ⊑FS Q thenP ⊑pmustQ.

Proof: The first clause was proved in [8, Thm. 6.17]; the
second can be shown similarly. 2

The next four sections are devoted to obtaining the con-
verse.

5. State- versus action-based testing

Much work on testing [6, 35, 8] uses successstatesmarked
by outgoingω-actions; in other work [31, 9], however, it is
theactual executionof ω that constitutes success. The for-
mer,state-basedtesting, leads to the preorders we defined
in Sec. 3; the latter,action-basedtesting, leads to slightly
different preorderŝ⊑pmay and⊑̂pmust. Without probability
there is no difference between̂⊑may and⊑may; but pos-
sible divergence makes⊑must strictly more discriminating
than⊑̂must, and in fact⊑mustcoincides with CSP refinement
based on failures and divergences [2, 15, 29]. The action-
based approach is formalised as in the state-based approach,
via a suitablêV:

V̂(s) :=

{⋃
{V̂(∆) | s

τ
−→ ∆} ∪ {1 | s

ω
−→} if s→

{0} otherwise

4



Proposition 2

1. If P ⊑pmayQ thenP ⊑̂pmayQ.

2. If P ⊑pmustQ thenP ⊑̂pmustQ.

Proof: For any testT̂ constructT by replacing each sub-
termω.Q by τ.ω; thenV[T |Act P ℄ = V̂[T̂ |Act P ℄ for all
pCSP processesP . 2

In fact we use the action-based preorders in Thm. 2 below,
a (quasi-, thus) converse of Thm. 1; but with Prop. 2 above
the two kinds of preorders become identified so that Thms. 1
and 2 are converse to each other.

Theorem 2

1. If P ⊑̂pmayQ thenP ⊑S Q.

2. If P ⊑̂pmustQ thenP ⊑FS Q.

We set this theorem as our goal in the next three sections.

6. Vector-based testing

This section describes another variation on testing, a richer
testing framework due to Segala [31], in which countably
many success actions exist: the application of a test to a
process yields a set ofvectorsover the real numbers, rather
than a set of scalars. The resulting action-based testing pre-
orders will serve as a stepping stone in proving Thm. 2.

LetΩ be asetof fresh success actions withΩ∩Actτ = ∅.
An Ω-test is again apCSP process, but this time allow-
ing subtermsω.P for any ω∈Ω. Applying such a test
to a process yields a non-empty set of test outcome-tuples
ÂΩ(T, P ) ⊆ [0, 1]Ω. Eachtuple arises from a resolution
within T |Act P of nondeterministic choices into proba-
bilistic choices, and itsω-component gives the probability
that this resolution will perform the success actionω.

For vectors we again inductively define a results-
gathering functionV̂Ω

l : S → P
+
[0, 1]Ω; it extends to

type D(S) → P
+
[0, 1]Ω via V̂Ω

l (∆) := Exp
∆

V̂Ω
l just as

V andV̂ did. First, for anyα defineα! : [0, 1]Ω → [0, 1]Ω

so thatα!o(ω) becomes 1 ifω=α but remainso(ω) other-
wise; this function lifts to setsO ⊆ [0, 1]Ω as usual, via
α!O := {α!o | o∈O}. Now we define

V̂Ω
l (s) :=

{
l
⋃
{α!(V̂Ω

l (∆)) | s
α

−→ ∆ } if s→

{~0} otherwise

where~0 ∈ [0, 1]Ω is given by~0(ω) = 0 for all ω ∈ Ω, and
theconvex closurelX of a setX is defined

lX := {
⊕

i∈I pi · oi | p∈D(I) ando : I → X } .

We extend our earlier results-gathering definitions so that
Vl(s) := lV(s) and V̂l(s) := lV̂(s). Note that in case

Ω := {ω} we haveV̂Ω
l = V̂l, and the convex-closing pre-

orders based onVl, V̂l coincide with the simpler ones based
on V, V̂. Thus convex closure matters only for proper vec-
tors, as explained in the remark following Def. 6.

In [9] the results-gathering function̂VΩ
l with Ω =

{ω1, ω2, · · · } was called simplyW (because action-based/
convex/vector-based testing was assumed there throughout,
making thê· Ωl -indicators superfluous); and it was defined in
terms of a formalisation of the notion of a resolution. The
inductive definition above yields the same results.

Definition 6 For anypCSP processP andΩ-testT , let

ÂΩ
l (T, P ) := V̂Ω

l [T |Act P ℄ .
Thevector-based may-andmustpreorders are given by

P ⊑̂Ω
pmayQ iff ∀Ω-testsT : ÂΩ

l (T, P ) ≤Ho ÂΩ
l (T,Q)

P ⊑̂Ω
pmustQ iff ∀Ω-testsT : ÂΩ

l (T, P ) ≤Sm ÂΩ
l (T,Q)

where≤Ho and≤Sm are the Hoare- and Smyth preorders
onP

+
[0, 1]Ω generated from≤ index-wise on[0, 1]Ω itself.

Remark: For proper vector-based testing, convex closure
matters, as it allows internal choice to simulate probabilistic
choice [13]. Consider the following two processes

P := a ⊓ b ⊓ (a 1
2
⊕ b) and Q := a ⊓ b.

It is obvious thatP ⊑S Q, and from Thm. 1 it therefore
follows thatP ⊑pmay Q. However if Ω = {ω1, ω2} and

we remove the convex closure in the definition ofV̂Ω
l , then

with the testT := a.w1 2 b.w2 we would have

ÂΩ(T, P ) = {(1, 0), (0, 1), (0.5, 0.5)}

ÂΩ(T,Q) = {(1, 0), (0, 1)}

and soÂΩ(T, P ) 6≤Ho ÂΩ(T,Q). However, their con-
vex closuresÂΩ

l (T, P ) andÂΩ
l (T,Q) are related under the

Hoare preorder. 2

The testing preorders of [31] are obtained by takingΩ
to be a countably infinite set, whereas the preorders⊑̂pmay

and⊑̂pmust of Sec. 5 were obtained by takingΩ to be the
singleton set{ω}. In [9] we established that for our finite
pCSP processes the two coincide:

Theorem 3 [9].

1. P ⊑̂Ω
pmayQ iff P ⊑̂pmayQ

2. P ⊑̂Ω
pmustQ iff P ⊑̂pmustQ. 2

Thus, with theif -direction of Thm. 3, for Thm. 2 it will
suffice to show thatP ⊑̂Ω

pmayQ implies P ⊑S Q and
P ⊑̂Ω

pmust Q impliesP ⊑FS Q. The crucial characteris-

tics of ÂΩ
l needed for that implication are summarised in

this lemma (proof omitted):
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Lemma 1 Let P be apCSP process, andT, Ti be tests.

1. o ∈ ÂΩ
l (ω, P ) iff o = ~ω.

2. Suppose the actionω does not occur in the testT .
Theno ∈ ÂΩ

l (ω2 a.T, P ) with o(ω) = 0 iff there is a
∆∈D(sCSP) with [P ℄ â

=⇒ ∆ ando ∈ ÂΩ
l (T,∆).

3. ~0 ∈ ÂΩ
l (

e
a∈X a.ω, P ) iff ∃∆ : [P ℄ τ̂

=⇒ ∆ 6X−→.

4. o ∈ ÂΩ
l (

⊕
i∈I pi·Ti, P ) iff o =

∑
i∈I pioi for certain

oi ∈ ÂΩ
l (Ti, P ).

5. o∈ ÂΩ
l (

d
i∈ITi, P ) iff for all i∈ I there arepi ∈ [0, 1]

and∆i ∈D(sCSP) such that[P ℄ τ̂
=⇒

⊕
i∈I pi·∆i and

o =
∑
i∈I pioi for certainoi ∈ ÂΩ

l (Ti,∆i).

Here~ω ∈ [0, 1]Ω is given by~ω(ω) = 1 and~ω(ω′) = 0 for
ω′ 6= ω. 2

In writing ÂΩ
l (T,∆) above we treat a distribution∆ as

thepCSP expression
⊕

s∈⌈∆⌉ ∆s·s; and as usual we define

ÂΩ
l (T,∆) := Exp

∆
ÂΩ

l (T, ).

7. Modal logic

Our next step towards Thm. 2 is to define a setF of modal
formulae, inductively, as follows:

• 〈a〉ϕ ∈ F whenϕ∈F anda∈Act,

• ref(X) ∈ F whenX ⊆ Act,

•
∧
i∈I ϕi ∈ F whenϕi ∈F for all i∈ I, with I finite

• and
⊕

i∈I pi·ϕi ∈ F whenpi ∈[0, 1] andϕi ∈F for all
i∈ I, with I a finite index set, and

∑
i∈I pi = 1.

We often writeϕ1 p⊕ ϕ2 for
⊕

i∈{1,2} pi·ϕi with p = p1,
andϕ1 ∧ ϕ2 for

∧
i∈{1,2} ϕi and finally⊤ for

∧
i∈∅ ϕi.

Thesatisfaction relation|=⊆ D(sCSP)×F is given by:

• ∆ |= 〈a〉ϕ iff there is a∆′ with ∆
â

=⇒ ∆′ and∆′ |= ϕ,

• ∆ |= ref(X) iff there is a∆′ with ∆
τ̂

=⇒ ∆′ and
∆′ 6X−→,

• ∆ |=
∧
i∈I ϕi iff ∆ |= ϕi for all i∈ I

• and∆ |=
⊕

i∈I pi·ϕi iff there are∆i ∈ D(sCSP), for
all i∈ I, with ∆i |= ϕi, such that∆ τ̂

=⇒
⊕

i∈I pi·∆i.

LetL be the subclass ofF obtained by skipping theref(X)
clause. We writeP ⊑L Q just when[P ℄ |= ϕ implies[Q℄ |= ϕ for all ϕ∈L, andP ⊑F Q just when[P ℄ |= ϕ

is implied by[Q℄ |= ϕ for all ϕ∈F . (Note the opposing
directions.)

Definition 7 Thecharacteristic formulaϕs orϕ∆ of a pro-
cesss∈ sCSP or ∆∈D(sCSP) is defined inductively:

• ϕs :=
∧
s
a−→∆

〈a〉ϕ∆ ∧ ref ({a | s 6a−→}) if s 6τ−→,

• ϕs :=
∧
s
a−→∆

〈a〉ϕ∆ ∧
∧
s
τ−→∆

ϕ∆ otherwise,

• ϕ∆ :=
⊕

s∈⌈∆⌉ ∆(s)·ϕs.

Here the conjunctions
∧
s
a−→∆

range over suitable pairs
a,∆, and

∧
s
τ−→∆

ranges over suitable∆.

Write ϕ ⇛ ψ with ϕ, ψ ∈F if for each distribution∆ one
has∆ |= ϕ implies ∆ |= ψ. Then it is easy to see that
ϕs ⇚⇛ ϕs and

∧
i∈I ϕi ⇛ ϕi for anyi∈ I.

The following property can be established by an easy in-
ductive proof.

Lemma 2 For any∆∈D(sCSP) we have∆ |= ϕ∆. 2

It and the following lemma help to prove Thm. 4.

Lemma 3 For any processesP,Q ∈ pCSP we have that[P ℄ |= ϕ[Q℄ impliesP ⊑FS Q.

Proof: DefineR by s R Θ iff Θ |= ϕs. We first show that

Θ |= ϕ∆ implies ∃Θ′ : Θ
τ̂

=⇒ Θ′ ∧ ∆ R Θ′. (1)

SupposeΘ |= ϕ∆ with ϕ∆ =
⊕

i∈I pi·ϕsi
, so that we have

∆ =
⊕

i∈I pi·si and for alli∈ I there areΘi ∈D(sCSP)
with Θi |= ϕsi

such thatΘ τ̂
=⇒ Θ′ with Θ′ :=

⊕
i∈I pi·Θi.

Sincesi R Θi for all i∈ I we have∆ R Θ′.
Now we show thatR is a failure simulation.

• Supposes R Θ ands τ−→ ∆. Thenϕs ⇛ ϕ∆, so
Θ |= ϕ∆. Now apply (1).

• Supposes R Θ ands a−→ ∆ with a∈A. Thenϕs ⇛

〈a〉ϕ∆, soΘ |= 〈a〉ϕ∆. Hence∃Θ′ with Θ
â

=⇒ Θ′ and
Θ′ |= ϕ∆. Now apply (1).

• Supposes R Θ ands 6X−→ with X ⊆ A. Thenϕs ⇛

ref (X), soΘ |= ref (X). Hence∃Θ′ with Θ
τ̂

=⇒ Θ′

andΘ′ 6X−→.

Thus we haveΘ |= ϕs implies s �FS Θ. Using (1) with[P ℄ |= ϕ[Q℄ givesP ⊑FS Q via Def. 5. 2

Theorem 4

1. If P ⊑LQ thenP ⊑S Q.

2. If P ⊑FQ thenP ⊑FS Q.

Proof: SupposeP ⊑F Q. By Lem. 2 we have[Q℄ |=ϕ[Q℄
and hence[P ℄ |= ϕ[Q℄. Lem. 3 givesP ⊑FS Q.

For the⊑L case, omitref(X) from the definition of a
characteristic formula and begin with[P ℄ |= ϕ[P ℄. The
counterpart of Lem. 3 now says that[Q℄ |= ϕ[P ℄ implies
P ⊑S Q. 2
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8. Characteristic tests

Our final step towards Thm. 2 is taken in this section, where
we show that every modal formulaϕ can be characterised
by a vector-based testTϕ such that anypCSP process satis-
fiesϕ just when it passes the testTϕ.

Lemma 4 For everyϕ∈F there exists a pair(Tϕ, vϕ) with
Tϕ anΩ-test andvϕ ∈ [0, 1]Ω, such that

∆ |= ϕ ⇔ ∃o ∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ (2)

for all ∆∈D(sCSP), and in caseϕ ∈ L we also have

∆ |= ϕ ⇔ ∃o ∈ ÂΩ
l (Tϕ,∆) : o ≥ vϕ . (3)

Tϕ is called acharacteristic testofϕ andvϕ its target value.

Proof: First of all note that if a pair(Tϕ, vϕ) satisfies the
requirements above, then any pair obtained from(Tϕ, vϕ)
by bijectively renaming the elements ofΩ also satisfies
these requirements. Hence a characteristic test can always
be chosen in such a way that there is a success actionω∈Ω
that does not occur in (the finite)Tϕ. Moreover, any count-
able collection of characteristic tests can be assumed to be
Ω-disjoint, meaning that noω ∈Ω occurs in two different
elements of the collection.

The required characteristic tests and target values are ob-
tained as follows.

• Letϕ=⊤. TakeTϕ := ω for someω ∈Ω, andvϕ := ~ω.

• Letϕ = 〈a〉ψ. By induction,ψ has a characteristic test
Tψ with target valuevψ. TakeTϕ := ω2 a.Tψ where
ω ∈Ω does not occur inTψ, andvϕ := vψ .

• Let ϕ = ref (X) with X ⊆ Act. Take Tϕ :=e
a∈X a.ω for someω∈Ω, andvϕ = ~0.

• Let ϕ =
∧
i∈I ϕi with I a finite and non-empty index

set. Choose aΩ-disjoint family (Ti, vi)i∈I of charac-
teristic testsTi with target valuesvi for eachϕi. Fur-
thermore, letpi ∈ (0, 1] for i∈ I be chosen arbitrarily
such that

∑
i∈I pi = 1. TakeTϕ :=

⊕
i∈I pi·Ti and

vϕ :=
∑
i∈I pivi.

• Let ϕ =
⊕

i∈I pi·ϕi. Choose aΩ-disjoint family
(Ti, vi)i∈I of characteristic testsTi with target values
vi for eachϕi, such that there are distinct success ac-
tionsωi for i∈ I that do not occur in any of those tests.
Let T ′

i := Ti 1
2
⊕ωi andv′i := 1

2
vi + 1

2
~ωi. Note that for

all i∈ I alsoT ′
i is a characteristic test ofϕi with target

valuev′i. TakeTϕ :=
d
i∈I T

′
i andvϕ :=

∑
i∈I piv

′
i.

Note thatvϕ(ω) = 0 wheneverω ∈Ω does not occur inTϕ.
By induction onϕ we now check (2) above.

• Let ϕ = ⊤. For all∆ ∈ D(sCSP) we have∆ |= ϕ as
well as∃o ∈ ÂΩ

l (Tϕ,∆) : o ≤ vϕ, using Lem. 1(1).

• Let ϕ = 〈a〉ψ with a∈Act. Suppose∆ |= ϕ. Then
there is a∆′ with ∆

â
=⇒ ∆′ and∆′ |= ψ. By in-

duction,∃o∈ ÂΩ
l (Tψ,∆

′) : o ≤ vψ. By Lem. 1(2),
o∈ ÂΩ

l (Tϕ,∆).

Now suppose∃o∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ. This implies

o(ω) = 0, so by Lem. 1(2) there is a∆′ with ∆
â

=⇒ ∆′

ando∈ ÂΩ
l (Tψ,∆

′). By induction,∆′ |=ψ, so∆ |=ϕ.

• Let ϕ = ref(X) with X ⊆ Act. Suppose∆ |= ϕ.
Then there is a∆′ with ∆

τ̂
=⇒ ∆′ and∆′ 6X−→. By

Lem. 1(3),~0∈ ÂΩ
l (Tϕ,∆).

Now suppose∃o∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ. This implies

o = ~0, so by Lem. 1(3) there is a∆′ with ∆
τ̂

=⇒ ∆′

and∆′ 6X−→. Hence∆ |= ϕ.

• Let ϕ =
∧
i∈I ϕi with I a finite and non-empty index

set. Suppose∆ |= ϕ. Then∆ |= ϕi for all i∈ I, and
hence, by induction,∃oi ∈ ÂΩ

l (Ti,∆) : oi ≤ vi. Thus
o :=

∑
i∈I pioi ∈ ÂΩ

l (Tϕ,∆) by Lem. 1(4), ando≤vϕ.

Now suppose∃o∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ. Then, using

Lem. 1(4),o =
∑
i∈I pioi for certainoi ∈ ÂΩ

l (Ti,∆).
One hasoi ≤ vi for all i∈ I, for if oi(ω) > vi(ω)
for somei∈ I and ω ∈Ω, then ω must occur inTi
and hence cannot occur inTj for j 6= i. This implies
vj(ω) = 0 for all j 6= i and thuso(ω) > vϕ(ω), in con-
tradiction with the assumption. By induction,∆ |= ϕi
for all i∈ I, and hence∆ |= ϕ.

• Let ϕ =
⊕

i∈I pi·ϕi. Suppose∆ |= ϕ. Then
for all i∈ I there are∆i ∈D(sCSP) with ∆i |= ϕi
such that∆ τ̂

=⇒
⊕

i∈I pi·∆i. By induction, there

are oi ∈ ÂΩ
l (∆i, T

′
i ) with oi ≤ v′i. By Lem. 1(5),

o :=
∑

i∈I pioi ∈ ÂΩ
l (Tϕ,∆), ando ≤ vϕ.

Now suppose∃o∈ ÂΩ
l (Tϕ,∆) : o ≤ vϕ. Then, by

Lem. 1(5), there areq ∈D(I) and∆i, for i∈ I, such
that∆ τ̂

=⇒
⊕

i∈I qi·∆i ando =
∑

i∈I qioi for some

oi ∈ ÂΩ
l (∆i, T

′
i ). Now ∀i : oi(ωi) = v′i(ωi) = 1

2
, so

1

2
qi = qioi(ωi) = o(ωi) ≤ vϕ(ωi) = piv

′
i(ωi) = 1

2
pi.

As
∑
i∈I qi =

∑
i∈I pi = 1, it must be thatqi = pi for

all i∈ I. Exactly as in the previous case one obtains
oi ≤ v′i all i∈ I. By induction,∆i |= ϕi for all i∈ I,
and hence∆ |= ϕ.

In caseϕ∈L, a straightforward induction yields that|vϕ| =

1 and for all ∆∈D(pCSP) and o∈ ÂΩ
l (Tϕ,∆) we have

|o| = 1. Here|o| denotes
∑

ω∈Ω
o(ω). Therefore,o ≤ v iff

o ≥ v iff o = v, yielding (3). 2

Theorem 5
1. If P ⊑̂Ω

pmayQ then[P ℄ ⊑L [Q℄.
2. If P ⊑̂Ω

pmustQ then[P ℄ ⊑F [Q℄.
Proof: SupposeP ⊑̂Ω

pmustQ and[Q℄ |= ϕ for someϕ∈F .
Let Tϕ be a characteristic test ofϕ with target valuevϕ.
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(P1) P p⊕ P = P

(P2) P p⊕ Q = Q 1−p⊕ P

(P3) (P p⊕ Q) q⊕ R = P p·q⊕ (Q (1−p)·q
1−p·q

⊕ R)

(I1) P ⊓ P = P

(I2) P ⊓ Q = Q ⊓ P

(I3) (P ⊓ Q) ⊓ R = P ⊓ (Q ⊓ R)
(E1) P 2 0 = P

(E2) P 2 Q = Q 2 P

(E3) (P 2 Q) 2 R = P 2 (Q 2 R)
(EI) a.P 2 a.Q = a.P ⊓ a.Q

(D1) P 2 (Q p⊕ R) = (P 2 Q)p⊕ (P 2 R)
(D2) a.P 2 (Q ⊓ R) = (a.P 2 Q) ⊓ (a.P 2 R)
(D3) P 2 Q = (P1 2 Q) ⊓ (P2 2 Q)

⊓ (P 2 Q1) ⊓ (P 2 Q2),
provided P = P1 ⊓ P2, Q = Q1 ⊓ Q2

Figure 2. Common equations

Then Lem. 4 yields∃o∈ ÂΩ
l (Tϕ, [Q℄). o ≤ vϕ, and hence,

given thatP ⊑̂Ω
pmustQ andÂΩ

l (Tϕ, [R℄) = ÂΩ
l (Tϕ, R) for

anyR ∈ pCSP, we have∃o′ ∈ ÂΩ
l (Tϕ, [P ℄) : o′ ≤ vϕ.

Thus[P ℄ |= ϕ.
The may-case goes likewise. 2

Combining Thms. 3-5 we obtain Thm. 2, the goal we set
ourselves in Sec. 5. Thus, with Thm. 1 and Prop. 2, we have
shown that the may preorder coincides with simulation and
that the must preorder coincides with failure simulation.2

9. Equational theories

In order to focus on the essentials we now consider just
those processes that do not use the parallel operator|A; we
call the resulting sub-languagenCSP. For a discussion of
the axiomatisation for terms involving|A and the other par-
allel operators commonly used inCSP see Sec. 11.

Let us writeP =E Q to denote thatP = Q can be de-
rived using the equations given in Fig. 2. Given the way we
defined the syntax ofpCSP, axiom(D1) is merely a case
of abbreviation-expansion. Many of the standard equations
for CSP [15] are missing; they are not sound for≃FS , as
shown in Sec. 4 of [8]. Typical examples include:

a.(P ⊓ Q) = a.P ⊓ a.Q

P = P 2 P

P 2 (Q ⊓ R) = (P 2 Q) ⊓ (P 2 R)

P ⊓ (Q 2 R) = (P ⊓ Q) 2 (P ⊓ R)

Proposition 3 SupposeP =E Q. ThenP ≃FS Q.

Proof: Because of Prop. 1 it is sufficient to exhibit witness
failure-simulations for axioms in Fig. 2. 2

May:
(May0) a.P 2 b.Q = a.P ⊓ b.Q

(May1) P ⊑ P ⊓ Q

(May2) 0 ⊑ P

(May3) a.(P p⊕ Q) ⊑ a.P p⊕ a.Q

Must:

(Must1) P ⊓ Q ⊑ Q

(Must2) R ⊓
d
i∈I Pi ⊑

e
i∈I ai.Qi,

provided Pi =
⊕

j∈Ji
pj(ai.Qij 2 Pij)

Qi =
⊕

j∈Ji
pjQij

inits(R) ⊆ {ai}i∈I

Figure 3. Inequations

Note that this result also meansP =E Q impliesP ≃S Q.
Despite the weakness of this equational theory, it does

allow us to reduce terms to a form in which the external
choice operator is applied to prefix terms only.

Definition 8 [Normal forms] The set ofnormal formsN is
given by the following grammar:

N ::= N1 p⊕ N2 | N1 ⊓ N2 |
m

i∈I

ai.Ni

Proposition 4 For everyP ∈ nCSP there is a normal form
N such thatP =E N .

Proof: A fairly straightforward induction, heavily relying
on (D1)–(D3). 2

10. Inequational theories

In order to characterise the simulation preorders, and the
associated testing preorders, we introduceinequations. We
writeP ⊑Emay QwhenP ⊑ Q is derivable from the inequa-
tional theory obtained by adding the fourmay inequations
in Fig. 3 to the equations in Fig. 2. The first three additions,
(May0)–(May2), are used in the standard testing theory
of CSP [15, 6, 14]. For themustcase, in addition to the
standard inequation(Must1), we require an inequational
schema,(Must2); this uses the notationinits(P ) to denote
the (finite) set of initial visible actions ofP . Formally,

inits(0) = ∅
inits(a.P ) = {a}

inits(P p⊕ Q) = inits(P ) ∪ inits(Q)
inits(P 2 Q) = inits(P ) ∪ inits(Q)
inits(P ⊓ Q) = inits(P ) ∪ inits(Q)
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The side conditions of(Must2) entail that[Pi℄ ai−→ [Qi℄
and that there exists some∆ such thatR τ̂

=⇒ ∆ 6X−→ with
X = Act\{ai}i∈I . Note that(Must2) can be used, to-
gether with(I1), to derive the dual of(May3), that is
a.P p⊕ a.Q ⊑ a.(P p⊕ Q). We writeP ⊑Emust Q when
P ⊑ Q is derivable from the resulting inequational theory.

An important inequation that follows from(May1) and
(P1) is

P p⊕ Q ⊑Emay P ⊓ Q

saying that any probabilistic choice can be simulated by an
internal choice. Likewise, we have

P ⊓ Q ⊑Emust P p⊕ Q .

Theorem 6 ForP, Q in nCSP, it holds that

(i) P ⊑S Q if and only ifP ⊑Emay Q

(ii) P ⊑FS Q if and only ifP ⊑Emust Q

Proof: Omitted due to lack of space. 2

11. Conclusions and related work

In this paper we continued our previous work [8, 9] in
our quest for a testing theory for processes which exhibit
both nondeterministic and probabilistic behaviour. We have
studied three different aspects of may- and must testing pre-
orders for finite processes: (i) we have shown that the may
preorder can be characterised as a co-inductive simulation
relation, and the must preorder as a failure simulation rela-
tion; (ii) we have given a characterisation of both preorders
in a finitary modal logic; and (iii) we have also provided
complete axiomatisations for both preorders over a proba-
bilistic version of recursion-free CSP. Although we omit-
ted our parallel operator|A from the axiomatisations, it and
similar CSP and CCS-like parallel operators can be handled
using standard techniques, in the must case at the expense
of introducing auxiliary operators. In future work we hope
to extend these results to recursive processes.

We believe these results, in each of the three areas, to
be novel, although a number of partial results along similar
lines exist in the literature. These are detailed below.

Related work: Early additions of probability to CSP in-
clude work by Lowe [23], Seidel [33] and Morgan et al.
[27]; but all of them were forced to make compromises of
some kind in order to address the potentially complicated
interactions between the three forms of choice. The last [27]
for example applied the Jones/Plotkin probabilistic power-
domain [16] directly to the failures model of CSP [2], the
resulting compromise being that probability distributed out-
wards through all other operators; one controversial result
of that was that internal choice was no longer idempotent,
and that it was “clairvoyant” in the sense that it could adapt

to probabilistic-choice outcomes that had not yet occurred.
Mislove addressed this problem in [26] by presenting a de-
notational model in which internal choice distributed out-
wards through probabilistic choice. However, the distribu-
tivities of both [27] and [26] constitute identifications that
cannot be justified by our testing approach; see [8].

In Jou and Smolka [20], as in [23, 33], probabilistic
equivalences based on traces, failures and readies are de-
fined. These equivalences are coarser than≃pmay. For let

P := a.((b.d 2 c.e) 1
2
⊕ (b.f 2 c.g))

Q := a.((b.d 2 c.g) 1
2
⊕ (b.f 2 c.e)).

These two processes cannot be distinguished by the equiv-
alences of [20, 23, 33]. However, we can tell them apart by
the test

T := a.((b.d.ω 1
2
⊕ c.e.ω) ⊓ (b.f.ω 1

2
⊕ c.g.ω))

sinceA(T, P ) = {0, 1

2
, 1} andA(T,Q) = { 1

2
}, that is,

P 6⊑pmayQ.
Probabilistic extensions of testing equivalences [6] have

been widely studied. There are two different proposals on
how to include probabilistic choice: (i) a test should be non-
probabilistic, i.e., there is no occurrence of probabilistic
choice in a test [22, 4, 17, 21, 11]; or (ii) a test can be prob-
abilistic, i.e., probabilistic choice may occur in tests aswell
as processes [5, 35, 28, 18, 31, 19, 3]. This paper adopts the
second approach.

Some work [22, 4, 5, 28] does not consider nondetermin-
ism but deals exclusively withfully probabilisticprocesses.
In this setting a process passes a test with a unique proba-
bility instead of a set of probabilities, and testing preorders
in the style of [6] have been characterised in terms ofprob-
abilistic traces[5] andprobabilistic acceptance trees[28].
Cazorla et al. [3] extended the results of [28] with nondeter-
minism, but suffered from the same problems as [27].

The work most closely related to ours is [18, 19]. In
[18] Jonsson and Wang characterised may- and must-testing
preorders in terms of “chains” of traces and failures, respec-
tively, and in [19] they presented a “substantially improved”
characterisation of their may-testing preorder using a notion
of simulation which is weaker than⊑S (cf. Def. 5). They
only considered processes withoutτ -moves. In [8] we have
shown that tests with internal moves can distinguish more
processes than tests without internal moves, even when ap-
plied to processes that have no internal moves themselves.

Segala [31] defined two preorders called trace distribu-
tion precongruence (⊑TD ) and failure distribution precon-
gruence (⊑FD ). He proved that the former coincides with
an infinitary version of̂⊑Ω

pmay (cf. Def. 6) and that the latter
coincides with an infinitary version of̂⊑Ω

pmust. In [24] it has
been shown that⊑TD coincides with a notion of simulation
akin to ⊑S . Other probabilistic extensions of simulation
occurring in the literature are reviewed in [8].
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