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Abstract

In this paper, we question whether hypervisors are really
acting as a disruptive force in OS research, instead argu-
ing that they have so far changed very little at a techni-
cal level. Essentially, we have retained the conventional
Unix-like OS interface and added a new ABI based on PC
hardware which is highly unsuitable for most purposes.
Despite commercial excitement, focus on hypervisor de-
sign may be leading OS research astray. However, adopt-
ing a different approach to virtualization and recognizing
its value to academic research holds the prospect of open-
ing up kernel research to new directions.

1 Introduction

Are hypervisors really a disruptive technology? Both the
IT industry and the academic OS research community
have devoted much attention recently to virtualization, in
particular the development of hypervisors for commodity
hardware, and commodity hardware support for them.

Virtualization has been touted in popular articles as a
disruptive technology, and indeed as “the new founda-
tion for system software” [6]. A recent spirited debate
has centered on the claim that the hypervisor-based ap-
proach to system software fixes most of the perceived
flaws of microkernels while retaining their apparent ad-
vantages [13,14].

While the importance of the current wave of virtual-
ization technology seems clear from a commercial stand-
point, in this paper we critically examine whether hyper-
visors represent an equally disruptive factor for the OS re-
search community. One might ask, to coin a phrase, “are
virtual machine monitors OS research done right?”

We argue that this is not the case at present, and that
most current research based around virtualization is not
very different (if at all) from the kinds of problems the
community has always worked on. However, wedo feel
that virtualization presents truly interesting directions for
academic research (as opposed to product development or
business models), both as an enabler for new ideas, and as
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a source of a new class of problem. We lay out some of
these directions towards the end of this paper.

A challenge with any technological development which
creates intense interest simultaneously in both academia
and venture capital circles is separating the long-term sci-
entific and engineering questions traditionally relegatedto
academic research from the short-term issues closely tied
to particular business models, contexts, and in some cases
individual companies.

This is an unashamedly academic paper, deliberately
bracketing short-term commercial pressures to concen-
trate instead on longer-term research questions in OS de-
sign. We do not wish to devalue short-term research
strongly embedded in current products and markets, but
we emphasize that it is not our concern here.

In the next section we compare hypervisors to other
kernels from a long-term research perspective (rather than
focusing on their short-term applications) and in Section 3
critique the new system interface offered by hypervisors.
In Section 4 we identify an approach to building and using
virtualization technology to move academic OS research
along by freeing it from some of the business-oriented
constraints that have dogged the field for some time. In
Section 5 we outline a few possibilities that this view of
virtualization opens up, and conclude in Section 6.

2 Much Ado

Current VM-related research falls into two areas: building
better hypervisors, and novel applications for them.

Our target in this paper is the former, though first we
remark in passing that a number of novel applications for
hypervisors are either (admittedly useful) tools for writing
existing operating systems, or ingenious workarounds for
the deficiencies of the guest OS – the ideas are important,
but a well-designed OS interface would make their imple-
mentation much easier, and they don’t investigate what a
radically new operating system design might achieve.

What the VMM is providing here is a means to get the
work done without changing an existing guest OS, per-
haps because such a job is beyond the capacity of a sin-
gle PhD student or does not fit into a time frame dictated
by upcoming publishing deadlines. These are important
practical considerations, but we should also explore the



long-term question of whether the combination of modi-
fied VMM and legacy operating system is a better solution
than simply building a better OS in the first place.

Rather than treating these application ideas as simply
neat VMM tricks, we should take them as newrequire-
mentsfor OS design and implementation. Resorting to
a hypervisor to implement replay debugging or sophisti-
cated security mechanisms, for instance, is a tacit admis-
sion that the current guest OS of choice cannot be practi-
cally evolved to support this functionality.

In the rest of this section, we critically examine the
canonical tasks of a kernel – resource sharing, protection,
abstraction of hardware, and communication – and try to
establish what is genuinely different in a hypervisor ver-
sus a conventional kernel.

Sharing and Protection

Sharing is about controlling how multiple clients, in this
case virtual machines, use the resources of the hardware.
Protection is about ensuring that these clients do not un-
duly interfere with each other – by accessing each others’
data, or affecting each others’ performance by acquiring
resources that system policy has not allocated to them.

We should ask whether approaches to sharing and pro-
tection in the new generation of hypervisors are in any
sense novel. It is true that CPU resource allocation has
been given a new context by the possibility of selling re-
sources (packaged as VMs) in the form of “utility com-
puting”. However, almost all the solutions to this prob-
lem (mostly in the form of hypervisor scheduling algo-
rithms) are quite old, lifted from the now-moribund field
of multimedia systems (e.g. [8,17,23]). Data protection is
achieved via per-VM MMU state – hardware access aside,
essentially the same as address-space protection in a con-
ventional OS, even if it is abstracted differently.

Communication

Communication between VMM clients is addressed very
differently. Rather than borrowing solutions from mono-
lithic and micro-kernels, hypervisor designs appear to de-
fine the problem away.

The argument [13] goes as follows: since the communi-
cation principals are complete operating systems in them-
selves, they are largely self-contained, much like library
OSes over exokernels like Aegis [11] and Nemesis [17].
Consequently the VMM has little need to support the
equivalent of fast IPC in microkernels, since the system
as a whole has little need for shared servers. Furthermore,
the kernels inside VMs are expecting to communicate via
their own networking stack (since they assume they have
a machine to themselves), and hence an emulated Ether-
net should suffice for the small amount of local inter-VM

communication they do need.
However, it seems that fast IPC performance is indeed

important for hypervisors after all. A trend in hypervisor
design is moving drivers into guest OS domains used as
“driver servers”, mirroring microkernels.

For example, the early design of Xen [1] resembled an
exokernel, with low-level multiplexing of resources be-
tween relatively self-contained domains. Recently, Xen
has morphed into an architecture where drivers run in sep-
arate domains [12] which function like driver servers in
microkernels [18]. There are compelling reasons to do
this, though they’re not particularly technical. In partic-
ular, Xen no longer needs device drivers since it can use
those written for another kernel by running them in copies
of that OS.

Hypervisors hence now perform a lot of IPC in the nor-
mal execution of guest OSes. Fortunately, a wealth of
research in this area seems directly applicable, both for
synchronous IPC (useful for short, bounded-execution-
time calls such as driver invocations), e.g. [19], and asyn-
chronous messages (suitable for data transport), e.g. [2].

Abstraction

The key area where hypervisors differ from traditional
kernels is abstraction: how resources are presented to the
client. Rather than a view based on processes, threads,
and address spaces, hypervisors aim at an abstraction
which resembles the hardware enough to run guest OS
kernels written for the physical machine.

Compatibility aside, this abstraction has a clear advan-
tage: it can be made to correspond to a user-level applica-
tion. Ironically, both traditional microkernels and mono-
lithic systems lack an explicit kernel representation of a
complete application. For example, Unix applications
often span multiple processes (or even process groups),
while multiple applications can also share use of a single
process (as with the X server).

A VM, on the other hand, can both contain and isolate
an application, by bundling the guest OS with the applica-
tion – as one industry figure has put it, “operating systems
are the new middleware” [5]. We believe this is highly
significant, even if it has occurred in hypervisors almost
by accident. Software is now being sold on this basis in
the form of “virtual appliances”.

Aside from providing backward compatibility with ex-
isting operating systems, which from this paper’s perspec-
tive is commercially important but of little research inter-
est, this new interface is the salient feature of hypervisors:
it offers an explicit abstraction of an application, to which
one can apply security policies, resource allocation, etc.

However, as researchers thinking critically we must
ask: while this new interface might be a better abstrac-
tion, is it the best or most appropriate one?



3 Virtual Hardware as an API

Having looked at what might be different about hypervi-
sor design from an OS research standpoint, we now look
at the design of the interface that hypervisors provide to
their clients: VMs, and ultimately applications.

The interface provided by hypervisors was not designed
with applications in mind at all. It is based on hard-
ware, with modifications (paravirtualization) to address
the worst performance problems. Its use for virtual ap-
pliances came after hypervisors had been around for some
time, motivated by quite different reasoning (such as mak-
ing parallel programming tractable [4]).

In fact, we argue that a paravirtualizing hypervisor is a
bad choice for an OS interface, for a number of reasons.

Implementation complexity

A feature of the VMM-based approach isless coding,
since to support an existing application, one simply runs
the OS it expects underneath.

However, this simplicity comes at the cost ofmore
code. There’s now a lot of machinery on the path between
the application and the (real) hardware, not directly con-
tributing to the application’s functionality (or duplicated
in the stack).

The resultant bloat comes with its own security prob-
lems, since the system’s trusted computing base increases
in size, and its correctness becomes even harder to ascer-
tain. Whereas previously an administrator had to be con-
cerned with vulnerabilities in the underling OS compro-
mising the application, now he or she needs to be worried
about the application’s guest OS, the VMM itself, device
drivers in driver domains, and the guest OSes supporting
these drivers: all of these components must now be kept
up-to-date, and vulnerabilities in any of these components
can jeopardize the application.

Interface complexity

It is sometimes claimed that the VMM approach leads to
better system design because the VM interface is simple
and low-level, leading to a more policy-free and verifi-
able system as a whole. This argument sounds appealing
– after all, the systems research community we have al-
ways valued “elegance” and “simplicity” in our designs.
Unfortunately, on close inspection there is absolutely no
evidence for this.

Part of the trouble is that we can’t say what we mean by
“simple” or “elegant” designs. There are no agreed-upon
metrics or definitions. This problem has been eloquently
pointed out recently in networking [22].

A good case can be made that the low-level interface
provided by hypervisors is more complex and harder to
specify than typical OS ABIs (or abstract virtual machines

like Java’s VM or Microsoft CIL), and is hardly a move
closer to formally-specified interfaces. PC-based virtual
machines vary widely in supported instruction set exten-
sions, available (virtual) hardware, physical memory lay-
out, MMU functionality, interrupt delivery semantics, etc.

Furthermore, we know of no attempts to even infor-
mally specify this interface. At best, paravirtualization
interfaces such as [24] attempt to capture thedifferences
between the VM’s ABI and that of the (unspecified) real
hardware.

In contrast, interfaces to operating systems (both mi-
crokernels and monolithic systems) and language-based
virtual machines have a long history of careful documen-
tation [16, 20], standardization [9, 15], and more recently,
formal specification [10].

An anonymous reviewer of an earlier version of this pa-
per suggested there might be something “almost magical”
about the PC hardware ABI responsible for its recent suc-
cess – an intriguing notion worthy of further study.

We conjecture that there are some features of the PC
ABI (for example, an upcall-based interface in the form
of interrupts) which are well-suited to supporting com-
plex applications, while other aspects (for example, the
ia32 MMU design) present serious obstacles to develop-
ment. Evidence for this comes in the form of which parts
of the interface have been redesigned by implementers of
paravirtualizing VMMs. The challenge is to take what we
can from this ABI, but design a better one.

Performance and scalability

Full virtualization, considered purely as an OS ABI, re-
sults in remarkable performance and scalability penalties
compared to more conventional kernel interfaces. Part of
this is due to the semantic bottleneck of the hardware-like
interface – it’s hard for a guest OS to express complex
requests efficiently across this interface, but part of the
problem is the overhead of running a complete copy of an
OS in each VM.

For example, Xen scales remarkably well considering
its aims, but in no way compares to vanilla Linux in terms
of the number of application processes runnable at a time,
due almost entirely to memory overhead. Even when
modified to support copy-on-write images of mostly-
identical VMs as in the Potemkin project [25], they still
come out as much more heavyweight than processes.

Paravirtualization addresses these problems, but only
slightly: paravirtualization starts from “pure” virtualiza-
tion and backs off the minimum necessary for roughly
correct execution and adequate performance. This works,
but only up to a point, since the structure of the OS inside
the VM still constrains the paravirtualized interface: the
extra functionality typically appears as device drivers, for
example.



In defence of hypervisors, we might say that the lack
of scalability is a deliberate and considered consequence
of providing performance isolation (through memory par-
titioning, etc.) between virtual machines. This argument,
of course, does not address our point here, namely that
a VM is a poor interface to an OS kernel. Moreover, it
also fails to acknowledge two additional points that we
feel are critical: firstly, we have no good metrics for mea-
suring isolation, and secondly, it is not clear how effective
VMMs can be at performance isolation in the presence of
cache contention, even on a uniprocessor. We return to
these below.

Discussion

It is ironic (and somewhat tragic) that after years of OS
research we should look to the designers of PC hardware
for guidance in formulating a kernel ABI. The new hyper-
visors have added to the traditional OS interface (POSIX
or Win32) a second: paravirtualized PC hardware at the
bottom. Neither is really new, nor are the designs of these
interfaces terribly interesting from a future research per-
spective.

4 The opportunity

In OS research, we should use virtualization for what it’s
good for. By virtualizing a commodity OS over a low-
level kernel, we gain support for legacy applications, and
devices we don’t want to write drivers for. Other than that,
we should avoid these interfaces and move on. Virtual-
ization presents us with an opportunity to return to basic
research in system organization.

We should not conflate the facility of virtualizing hard-
ware with the decision to multiplex the hardware at this
level, even though current hypervisors do this. Instead,
we could design a simple, clear interface to a low-level
resource multiplexer in addition to the virtualization in-
terface in current monolithic hypervisors like Xen. This
would provide the benefits of a well-specified API to a
low-level kernel, combined with the optional ability to run
legacy OSes on top, rather than mandating the hardware-
emulation interface of current hypervisors.

We must be clear that we are proposing is to write new
operating systems which can virtualize existing ones as a
means to gain compatibility with legacy applications and
to reuse drivers for some hardware. We arenot proposing
new operating systems targetted at running inside virtual
machine monitors (though we agree VMMs can be useful
as hardware emulators in the early stages of kernel devel-
opment). The latter is of dubious value in understanding
how to effectively multiplex machine resources, the basic
reason for an OS in the first place. The former allows us to

concentrate on this fundamental research problem without
the distractions of compatibility.

This could be done in two ways. A monolithic hyper-
visor like Xen could be extended so as to provide a more
direct interface to the Xen kernel’s facilities via hyper-
calls. Alternatively, a modular approach would split off
hypervisor functionality into an optional hardware virtu-
alization layer running as a library over a small resource
multiplexer with a clean, well-specified interface. This
latter component might be described without irony as a
“microkernel”.

Punting support for legacy applications and device
drivers to a virtualized guest OS might raise performance
concerns, but from a research perspect these issues are
illusory. A research operating system project can demon-
strate good native device performance by simply not vir-
tualizing drivers for the devices that the researchers care
about, and writing drivers for enough devices to demon-
strate to the community that the design is sound. An anal-
ogous argument applies to applications: all legacy appli-
cations can be run with acceptable performance (if not,
this calls into question much of the value of virtualiza-
tion), but more importantly we can allow very different
applications to emerge, and port applications to the new
design where maximum performance is important.

All this allows the research community to finally es-
cape the straitjacket of POSIX or Windows compatibility,
both in drivers and applications. Rob Pike [21] has es-
timated that about 90-95% of Plan9’s development effort
was occupied with compatibility (excluding drivers). We
have the opportunity to concentrate on OS design with-
out further concern for backward compatibility. The re-
sult might be research kernels which are actually usable
for real work, a rare sight these days.

5 Disruptive virtualization

Done right, virtualization removes the problems of driver
support and legacy application compatibility, leaving
open the questions of what the low-level kernel looks like
and what its API is. Research kernels can experiment and
obtain practical experiencewith a number of different ap-
proaches in this space.

Many systems research directions, and hypervisors are
no exception, are characterized by what one assumes to be
fixed (for example, the hardware and the processor archi-
tecture) and what can conversely be changed. Virtualiza-
tion gives us the opportunity to redefine OS interfaces at
any level above the physical hardware, allowing many ar-
eas of OS design to be rethought. Here we make a present
a few of the possible avenues to investigate.



Kernel and API design

Many kernel interfaces are designed for single-threaded
C programs using explicit memory management. These
interfaces are in many respects a poor match for modern
high-level programming languages.

For example, a well-known problem is how to integrate
garbage collection with virtual memory: a copying collec-
tor can page in large amounts of memory from disk only
to deallocate it. Exposing control of hardware page tables
to the garbage collector can greatly improve matters, but
is hard to achieve in a Unix-like system. The design of a
suitable, shared interface to the MMU is a challenge.

There is also an opportunity to rethink API design (par-
ticularly with regard to I/O and concurrency) in the light
of transactional memory, concurrent hardware, and high-
level language constructs such as parallel combinators.

It is hard or impossible to attack these problems effec-
tively either above a virtual hardware layer, or inside a hy-
pervisor that supports such a layer, since the virtual hard-
ware interface gets in the way. A more appropriate use
of virtualization is enable a radical redesign of the low-
est layer in the system while preserving compatibility for
legacy devices and applications.

A final open question is whether a modular
microkernel-based virtualization design can be as
efficient at virtualization as a monolithic hypervisor. Note
that situation is different from traditional microkernel
issues, since it’s more about vertical communication
between the guest OS and microkernel, rather than
horizontal IPC between processes (which is much the
same in both cases).

Implementation techniques

A related problem is building an assured kernel, that is,
one where we are reasonably certain the interface and im-
plementation conform to a set of well-specified behaviors.
It is famously hard to formally specify the behavior of ex-
isting OS APIs, let alone verify that a C or C++-based
implementation results in the specified behavior.

However, it is hard to either gain traction with a new
language in the context of an existing kernel written in
C, or conversely validate a language by building a new
kernel with little chance of deployment. The approach in
Section 4 allows kernel design and language research to
proceed together and result in a deployable OS.

A number of groups are working on better language
support for systems programming. For example, Ivy [3]
aims at evolving C with safe and checkable extensions.

The sel4 project is investigating an alternative ap-
proach: build a prototype model of a kernel in Haskell
[7,10]. The model can be combined with a machine simu-
lator to execute real application binaries under simulation
to gain experience with the API design, while the use of a

high-level language facilitates clean implementation and
rapid design iteration. A machine-checkable formal spec-
ification in higher-order logic can also be extracted from
the model and used to verify API properties. The final de-
sign can then be executed on real hardware via a port of
the Haskell runtime or translated semi-automatically into
a low-level systems programming language for a high-
performance implementation.

Applications

A principal justification to perform research into different
designs of OS (rather than improvements to Unix or Win-
dows) is to enable new user-visible functionality. A large
portion of this is new applications. Given the opportunity
to radically rethink kernel and API design, it is natural to
ask what applications might be enabled by such research.

This is a difficult question, since “killer apps” tend
to emerge unexpectedly from new enabling technologies,
and the current state of the art often frames thinking about
new applications. There are classes of applications (for
example, rich QoS-based multimedia applications) which
motivated considerable OS-related research in the past,
but which arguably failed because of the difficulty of inte-
grating the techniques with existing mainstream systems.

At the very least, virtualizing a legacy guest OS and
redefining the underlying kernel interfaces does strictly
increase the space of feasible applications.

The need for metrics

As mentioned above, there are no good OS benchmarks
for isolation or VMM scalability. In other areas of com-
puter systems research (such as databases and filing sys-
tems) benchmarks have demonstrated benefit in evaluat-
ing solutions and comparing approaches.

Benchmarks are problematic in kernel design, in part
because it is hard to devise metrics which are not tied
to a particular interface, and an important aspect of what
we do as OS researchers is devise better interfaces. But
without objective measures of how well isolation kernels
(VMMs, monolithic kernels, or raw microkernels) do their
job, we cannot make meaningful comparisons.

More significantly, in the absence of well-designed
benchmarks it will be hard to gauge whether perfor-
mance isolation is feasible at all without hardware sup-
port. Anecdotal evidence suggests that contention for
cache lines between processes can have a serious effect
on application progress. As multiprocessors become the
norm, this effect will become more pronounced and con-
tention for main memory will become important as well.
Any argument that VMMs (or any other isolation technol-
ogy) is an improvement on the previous state of the art
must be set in this context.



Another benefit of benchmarks and metrics is less
quantitative: it prompts discussion of which performance
dimensions are actually important. A wider question is,
what kinds of metrics are suitable for research kernels,
whether monolithic hypervisors or microkernel-based?

In the absence of metrics, OS research often appeals
to notions of simplicity. But as we have seen, these are
highly ambiguous: from one perspective, a paravirtual-
ized hardware interface represents a new “narrow waist”
in system software, but from another is maddeningly com-
plex, ill-specified, and poorly designed for programmers.

6 Conclusion

This paper has argued that OS researchers these days face
a choice. On the one hand, we can investigate better ways
to implement existing interfaces, i.e. further tweaks to
Unix, better hypervisor implementation, and better par-
avirtualization techniques in the guest OS. This is short-
term, immediately applicable, commercially relevant, but
cannot be described as disruptive, since it leaves most
things completely unchanged.

On the other hand, we can recognize that virtualiza-
tion techniques do not necessarily mandate a hardware-
like VM interface or a (para)virtualized conventional OS
above, even if this is all that current hypervisors sup-
port. As researchers thinking long-term, virtualization
techniques might give us the freedom to look at alterna-
tives to these two interfaces without having to give up ex-
isting application and hardware support.

This opens up a variety of avenues in OS research, in-
cluding novel engineering methodologies, application for
formal methods, better support for modern programming
languages and processor architectures, and discussion of
appropriate metrics for evaluating future systems. We
have tried to suggest a few of these in this paper.
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