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Abstract a source of a new class of problem. We lay out some of
these directions towards the end of this paper.
In this paper, we question whether hypervisors are reallya challenge with any technological development which
acting as a disruptive force in OS research, instead argteates intense interest simultaneously in both academia
ing that they have so far changed very little at a techrind venture capital circles is separating the long-term sci
cal level. Essentially, we have retained the conventioraitific and engineering questions traditionally relegated
Unix-like OS interface and added a new ABI based on R{gademic research from the short-term issues closely tied
hardware which is highly unsuitable for most purpose® particular business models, contexts, and in some cases
Despite commercial excitement, focus on hypervisor dedividual companies.
sign may be leading OS research astray. However, adoptfhis is an unashamedly academic paper, deliberately
ing a different approach to virtualization and recognizingracketing short-term commercial pressures to concen-
its value to academic research holds the prospect of opgate instead on longer-term research questions in OS de-
ing up kernel research to new directions. sign. We do not wish to devalue short-term research
strongly embedded in current products and markets, but
. we emphasize that it is not our concern here.
1 Introduction In the next section we compare hypervisors to other
. ) , kernels from a long-term research perspective (rather than
Arg hypervisors really a dlsru_pt|ve technology? Both thf8cusing on their short-term applications) and in Section 3
IT industry and the acad_emlc 0s research comMunt¥tique the new system interface offered by hypervisors.
havt_a devoted much attention recently to V|rtual|zat|on,_|H Section 4 we identify an approach to building and using
particular the developmgnt of hypervisors for commodi rtualization technology to move academic OS research
hardware, and commodity hardware support for them. along by freeing it from some of the business-oriented

Virtualization has been touted in popular articles as .3 traints that have dogged the field for some time. In

disruptive technology, and indeed as “the new foundgg(ion 5 we outline a few possibilities that this view of
tion for system software_ [6]. A recent sp|_r|ted debatgi alization opens up, and conclude in Section 6.
has centered on the claim that the hypervisor-based ap-

proach to system software fixes most of the perceived
flaws of microkernels while retaining their apparenta® N uch Ado
vantages [13, 14].
While the importance of the current wave of virtualcurrent VM-related research falls into two areas: building
ization technology seems clear from a commercial stansktter hypervisors, and novel applications for them.
point, in this paper we critically examine whether hyper- Qur target in this paper is the former, though first we
visors represent an equally disruptive factor for the OS i@mark in passing that a number of novel applications for
search community. One might ask, to coin a phrase, “@igpervisors are either (admittedly useful) tools for vgfi
virtual machine monitors OS research done right?”  existing operating systems, or ingenious workarounds for
We argue that this is not the case at present, and that deficiencies of the guest OS — the ideas are important,
most current research based around virtualization is meit a well-designed OS interface would make their imple-
very different (if at all) from the kinds of problems thenentation much easier, and they don't investigate what a
community has always worked on. However, defeel radically new operating system design might achieve.
that virtualization presents truly interesting direc8dor ~ What the VMM is providing here is a means to get the
academic research (as opposed to product developmeri@rk done without changing an existing guest OS, per-
business models), both as an enabler for new ideas, anfl&ss because such a job is beyond the capacity of a sin-
“Now at ETH Zurich, Switzerland gle PhD student or does not fit into a time frame dictated
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long-term question of whether the combination of modéommunication they do need.
fied VMM and legacy operating system is a better solutionHowever, it seems that fast IPC performance is indeed
than simply building a better OS in the first place. important for hypervisors after all. A trend in hypervisor

Rather than treating these application ideas as simghysign is moving drivers into guest OS domains used as
neat VMM tricks, we should take them as nesquire- “driver servers”, mirroring microkernels.
mentsfor OS design and implementation. Resorting to For example, the early design of Xen [1] resembled an
a hypervisor to implement replay debugging or sophistixokernel, with low-level multiplexing of resources be-
cated security mechanisms, for instance, is a tacit admigeen relatively self-contained domains. Recently, Xen
sion that the current guest OS of choice cannot be pratitis morphed into an architecture where drivers run in sep-
cally evolved to support this functionality. arate domains [12] which function like driver servers in

In the rest of this section, we critically examine thenicrokernels [18]. There are compelling reasons to do
canonical tasks of a kernel — resource sharing, protectitinis, though they’re not particularly technical. In pattic
abstraction of hardware, and communication — and tryutar, Xen no longer needs device drivers since it can use
establish what is genuinely different in a hypervisor vethose written for another kernel by running them in copies
sus a conventional kernel. of that OS.

Hypervisors hence now perform a lot of IPC in the nor-
mal execution of guest OSes. Fortunately, a wealth of
research in this area seems directly applicable, both for
Sharing is about controlling how multiple clients, in thisynchronous IPC (useful for short, bounded-execution-
case virtual machines, use the resources of the hardwtiree calls such as driver invocations), e.g. [19], and asyn-
Protection is about ensuring that these clients do not wironous messages (suitable for data transport), e.g. [2].
duly interfere with each other — by accessing each others’
data, or affecting each others’ performance by acqumﬁ%straction
resources that system policy has not allocated to them.

We should ask whether approaches to sharing and pfbe key area where hypervisors differ from traditional
tection in the new generation of hypervisors are in alkgrnels is abstraction: how resources are presented to the
sense novel. It is true that CPU resource allocation hdent. Rather than a view based on processes, threads,
been given a new context by the possibility of selling rend address spaces, hypervisors aim at an abstraction
sources (packaged as VMSs) in the form of “utility comwhich resembles the hardware enough to run guest OS
puting”. However, almost all the solutions to this probkernels written for the physical machine.
lem (mostly in the form of hypervisor scheduling algo- Compatibility aside, this abstraction has a clear advan-
rithms) are quite old, lifted from the now-moribund fieldage: it can be made to correspond to a user-level applica-
of multimedia systems (e.qg. [8,17,23]). Data protectionii®n. Ironically, both traditional microkernels and mono-
achieved via per-VM MMU state — hardware access asidighic systems lack an explicit kernel representation of a
essentially the same as address-space protection in a complete application. For example, Unix applications
ventional OS, even if it is abstracted differently. often span multiple processes (or even process groups),
while multiple applications can also share use of a single
process (as with the X server).

A VM, on the other hand, can both contain and isolate
Communication between VMM clients is addressed veay application, by bundling the guest OS with the applica-
differently. Rather than borrowing solutions from mondion — as one industry figure has put it, “operating systems
lithic and micro-kernels, hypervisor designs appear to dere the new middleware” [5]. We believe this is highly
fine the problem away. significant, even if it has occurred in hypervisors almost

The argument [13] goes as follows: since the commuilply accident. Software is now being sold on this basis in
cation principals are complete operating systems in thetie form of “virtual appliances”.
selves, they are largely self-contained, much like library Aside from providing backward compatibility with ex-
OSes over exokernels like Aegis [11] and Nemesis [173ting operating systems, which from this paper’s perspec-
Consequently the VMM has little need to support thiéve is commercially important but of little research inter
equivalent of fast IPC in microkernels, since the systeest, this new interface is the salient feature of hypersisor
as a whole has little need for shared servers. Furthermateffers an explicit abstraction of an application, to wiic
the kernels inside VMs are expecting to communicate vdéae can apply security policies, resource allocation, etc.
their own networking stack (since they assume they haveHowever, as researchers thinking critically we must
a machine to themselves), and hence an emulated Etlask: while this new interface might be a better abstrac-
net should suffice for the small amount of local inter-VMon, is it the best or most appropriate one?

Sharing and Protection
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3 Virtual Hardwareasan API like Java’s VM or Microsoft CIL), and is hardly a move
_ . . closer to formally-specified interfaces. PC-based virtual
Having looked at what might be different about hypervinachines vary widely in supported instruction set exten-
sor design from an OS research standpoint, we now logikns, available (virtual) hardware, physical memory lay-
at the design of the interface that hypervisors provide ¢at, MMU functionality, interrupt delivery semantics, etc
their clients: VMs, and ultimately applications. . Furthermore, we know of no attempts to even infor-
‘The interface provided by hypervisors was not designgthlly specify this interface. At best, paravirtualization
with applications in mind at all. It is based on hardnterfaces such as [24] attempt to capturediféerences
ware, with modifications (paravirtualization) to addregsetween the VM's ABI and that of the (unspecified) real
the worst performance problems. Its use for virtual apgrdware.
pliances came after h_yper_visors had begn around for somg, contrast, interfaces to operating systems (both mi-
time, motivated by quite different reasoning (such as makokernels and monolithic systems) and language-based
ing parallel programming tractable [4]). ~_ virtual machines have a long history of careful documen-
In fact, we argue that a paravirtualizing hypervisor is@tion [16, 20], standardization [9, 15], and more recently
bad choice for an OS interface, for a number of reasongsrmal specification [10].
An anonymous reviewer of an earlier version of this pa-
I mplementation complexity per suggested there might be something “almost magical”
A feature of the VMM-based approach lisss coding about the PC .har_dware_ABI responsible for its recent suc-
. e L ; cess — an intriguing notion worthy of further study.
since to support an existing application, one simply runs .
: We conjecture that there are some features of the PC
the OS it expects underneath. : :
ABI (for example, an upcall-based interface in the form

However, this simplicity comes at the cost ofore . . . .
code There’s now a lot of machinery on the path betweeor’ interrupts) which are well-suited to supporting com-

the application and the (real) hardware, not directly COPI-:; i\ﬂphrjtcztlons, while otther gspects Eforl ex?mdple, Ithe
tributing to the application’s functionality (or duplicat a esign) present serious obstacles to develop-

in the stack). ment. Evidence for this comes in the form of which parts

The resultant bloat comes with its own security prol?—f the interface have been redesigned by implementers of

: ) : ; ravirtualizing VMMs. The challenge is to take what we
lems, since the system’s trusted computing base mcrea%%?from this ABI, but design a better one.

in size, and its correctness becomes even harder to ascar-
tain. Whereas previously an administrator had to be con-

cerned with vulnerabilities in the underling OS comprd?er formance and scalability
mising the application, now he or she needs to be worried o )
about the application’s guest OS, the VMM itself, devidg!ll virtualization, considered purely as an OS ABI, re-

drivers in driver domains, and the guest OSes supportﬂﬂts in remarkable performance and S(_:alabmty penalties
these drivers: all of these components must now be kgﬁfnpared to more conventional kernel interfaces. Part of

up-to-date, and vulnerabilities in any of these componeH?? is due to the semantic bottleneck of the hardware-like
can jeopardize the application. interface — it's hard for a guest OS to express complex

requests efficiently across this interface, but part of the
Inter face complexity proplem is the overhead of running a complete copy of an
OSin each VM.
It is sometimes claimed that the VMM approach leads to For example, Xen scales remarkably well considering
better system design because the VM interface is simfikeaims, but in no way compares to vanilla Linux in terms
and low-level, leading to a more policy-free and verifief the number of application processes runnable at a time,
able system as a whole. This argument sounds appeating almost entirely to memory overhead. Even when
— after all, the systems research community we have @iedified to support copy-on-write images of mostly-
ways valued “elegance” and “simplicity” in our designddentical VMs as in the Potemkin project [25], they still
Unfortunately, on close inspection there is absolutely mome out as much more heavyweight than processes.
evidence for this. Paravirtualization addresses these problems, but only
Part of the trouble is that we can’t say what we mean klightly: paravirtualization starts from “pure” virtuah-
“simple” or “elegant” designs. There are no agreed-uption and backs off the minimum necessary for roughly
metrics or definitions. This problem has been eloquentgrrect execution and adequate performance. This works,
pointed out recently in networking [22]. but only up to a point, since the structure of the OS inside
A good case can be made that the low-level interfattee VM still constrains the paravirtualized interface: the
provided by hypervisors is more complex and harder ¢xtra functionality typically appears as device driveos, f
specify than typical OS ABIs (or abstract virtual machinescample.



In defence of hypervisors, we might say that the ladoncentrate on this fundamental research problem without
of scalability is a deliberate and considered consequetite distractions of compatibility.

of providing performance isolation (through memory par- Thjs could be done in two ways. A monolithic hyper-
titioning, etc.) between virtual machines. This argumeRjsor like Xen could be extended so as to provide a more
of course, does not address our point here, namely thakct interface to the Xen kernel's facilities via hyper-
a VM is a poor interface to an OS kernel. Moreover, 55, Alternatively, a modular approach would split off
also fails to acknowledge two additional points that Wepervisor functionality into an optional hardware virtu-
feel are critical: firstly, we have no good metrics for megyization layer running as a library over a small resource
suring isolation, and secondly, it is not clear how effeetiyyytiplexer with a clean, well-specified interface. This

VMMs can be at performance isolation in the presence gfter component might be described without irony as a
cache contention, even on a uniprocessor. We returny{@icrokernel”.

these below. Punting support for legacy applications and device

drivers to a virtualized guest OS might raise performance
Discussion concerns, but from a research perspect these issues are

o _ illusory. A research operating system project can demon-
It is ironic (and somewhat tragic) that after years of Og,4te good native device performance by simply not vir-

research we should look to the designers of PC hardwgigiizing drivers for the devices that the researchers care
for guidance in formulating a kernel ABI. The new hypels,oyt, and writing drivers for enough devices to demon-
visors have added to the traditional OS interface (POSE ate to the community that the design is sound. An anal-
or Win32) a second: paravirtualized PC hardware at tggqy,s argument applies to applications: all legacy appli-
bottom. Neither is really new, nor are the designs of theggiions can be run with acceptable performance (if not,
interfaces terribly interesting from a future research pgf;s calls into question much of the value of virtualiza-

spective. tion), but more importantly we can allow very different
applications to emerge, and port applications to the new
design where maximum performance is important.

All this allows the research community to finally es-
. cape the straitjacket of POSIX or Windows compatibility,
. - . tbsoth in drivers and applications. Rob Pike [21] has es-
good for. By wrtuallzmg a commodity OS over a IOW'ti ated that about 90-95% of Plan9’s development effort
Ieve_l kernel, we, gain suppo_rt for_ legacy applications, ar\}égs occupied with compatibility (excluding drivers). We
devices we don twant tolwrlte drivers for. Otherthan_th I'ave the opportunity to concentrate on OS design with-
we should avoid these interfaces and move on. Vmu%ﬁt further concern for backward compatibility. The re-

ization presents us with an opportunity to return to baséﬁlt might be research kernels which are actually usable

research in system orgamzatlon._ ) ) . for real work, a rare sight these days.
We should not conflate the facility of virtualizing hard-

ware with the decision to multiplex the hardware at this

level, even though current hypervisors do this. Instead,

we could deS|_gn a smple, pl_ear mterfac_e to a Io_w—lgvg Disruptive virtualization

resource multiplexer in addition to the virtualization in-

terface in current monolithic hypervisors like Xen. This

would provide the benefits of a well-specified API to Rone right, virtualization removes the problems of driver

low-level kernel, combined with the optional ability to rursupport and legacy application compatibility, leaving

|egacy OSes on top, rather than mandating the hardwd&Ben the questions of what the low-level kernel looks like

emulation interface of current hypervisors. and what its API is. Research kernels can experiment and
We must be clear that we are proposing is to write nedfptain practical experienceith a number of different ap-

operating systems which can virtualize existing ones a@@aches in this space.

means to gain compatibility with legacy applications and Many systems research directions, and hypervisors are

to reuse drivers for some hardware. We aogéproposing no exception, are characterized by what one assumes to be

new operating systems targetted at running inside virtdixled (for example, the hardware and the processor archi-

machine monitors (though we agree VMMs can be usetfaktture) and what can conversely be changed. Virtualiza-

as hardware emulators in the early stages of kernel devi&ln gives us the opportunity to redefine OS interfaces at

opment). The latter is of dubious value in understandiagy level above the physical hardware, allowing many ar-

how to effectively multiplex machine resources, the bastas of OS design to be rethought. Here we make a present

reason for an OS in the first place. The former allows usadew of the possible avenues to investigate.

4 The opportunity



Kernel and API design high-level language facilitates clean implementation and

Many kernel interfaces are designed for single—threac{ﬁlgld design iteration. A machine-checkable formal spec-

C . licit ¢ Th ation in higher-order logic can also be extracted from
- programs using explicit memory management. & model and used to verify API properties. The final de-
interfaces are in many respects a poor match for modg

high-level gl f&n can then be executed on real hardware via a port of
\gh-level programming languages. - . the Haskell runtime or translated semi-automatically into
For example, a well-known problem is how to integra

b llect ith virtual ) X 1 tg low-level systems programming language for a high-
garbage collection with virtual memory: a copying co ecFerformance implementation,

tor can page in large amounts of memory from disk only
to deallocate it. Exposing control of hardware page tables
to the garbage collector can greatly improve matters, Hgplications

's hard to achieve in a Unix-like system. The design O%‘principal justification to perform research into diffeten

suitable, shared interface to the MMU is a challenge. . . . )
There is also an opportunity to rethink API design (pag_e5|gns of OS (rather than improvements to Unix or Win-

ticularly with regard to /0 and concurrency) in the Iigh?ows) is to enable new user-visible functionality. A large

of transactional memory, concurrent hardware, and hig?_Iortlon of this is new applications. Given the opportunity

. o radically rethink kernel and API design, it is natural to
level language constructs such as parallel combinators.

It is hard or impossible to attack these problems effe%§k vyha}t appl!cgtlons mlght be e.nablt‘a‘d- by such r:asearch.
This is a difficult question, since “killer apps” tend

tively either above a virtual hardware layer, or inside a hi/— tedlv f bling technologi
pervisor that supports such a layer, since the virtual ha {.cmerge unexpectedly from new enabling technologies,

ware interface gets in the way. A more appropriate qud the cyrre_nt state of the art often frames thl_nk|r_19 about
new applications. There are classes of applications (for

of virtualization is enable a radical redesign of the low- le. rich O0S-based multimedi licati hich
est layer in the system while preserving compatibility foqxatmpte(’jr'c Q.c(; - glseogu Ilmtedla app 'C?]'Qniglw ic ¢
legacy devices and applications. motivated considerable OS-related research in the past,

A final open question is whether a mc)dulaki)utwhicharguablyfailedbecauseofthedifficultyofinte—
microkernel-based virtualization design can be ggatingthetechniqueswithexisting mainstream systems.

efficient at virtualization as a monolithic hypervisor. Mot At _th_e very least, V|_rtual|zmg a legacy guest OS fmd
that situation is different from traditional microkerneﬁeOlefInIng the underlying kernel interfaces does strictly

issues, since it's more about vertical communicatidicrease the space of feasible applications.

between the guest OS and microkernel, rather than
horizontal IPC between processes (which is much tiiée need for metrics

same in both cases).
As mentioned above, there are no good OS benchmarks

for isolation or VMM scalability. In other areas of com-
puter systems research (such as databases and filing sys-
A related problem is building an assured kernel, that igms) benchmarks have demonstrated benefit in evaluat-
one where we are reasonably certain the interface and ing solutions and comparing approaches.
plementation conform to a set of well-specified behaviors.Benchmarks are problematic in kernel design, in part
It is famously hard to formally specify the behavior of exsecause it is hard to devise metrics which are not tied
isting OS APIs, let alone verify that a C or C++-based a particular interface, and an important aspect of what
implementation results in the specified behavior. we do as OS researchers is devise better interfaces. But
However, it is hard to either gain traction with a newvithout objective measures of how well isolation kernels
language in the context of an existing kernel written ifYMMs, monolithic kernels, or raw microkernels) do their
C, or conversely validate a language by building a ngob, we cannot make meaningful comparisons.
kernel with little chance of deployment. The approach in More significantly, in the absence of well-designed
Section 4 allows kernel design and language researclbémchmarks it will be hard to gauge whether perfor-
proceed together and result in a deployable OS. mance isolation is feasible at all without hardware sup-
A number of groups are working on better languagmrt. Anecdotal evidence suggests that contention for
support for systems programming. For example, Ivy [8hche lines between processes can have a serious effect
aims at evolving C with safe and checkable extensionson application progress. As multiprocessors become the
The sel4 project is investigating an alternative apnorm, this effect will become more pronounced and con-
proach: build a prototype model of a kernel in Hasketéntion for main memory will become important as well.
[7,10]. The model can be combined with a machine simany argument that VMMs (or any other isolation technol-
lator to execute real application binaries under simutatiogy) is an improvement on the previous state of the art
to gain experience with the API design, while the use ofnaust be set in this context.

Implementation techniques
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