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Abstract

The flow-graph machine currently being developed by Wave Semiconductor is a com-

puter processor based on the dataflow model of computation, and has the potential to

provide more energy-efficient, resource-efficient and scalable computing than sequential

computer processors. In order to make the most of this potential, an operating system

must be created for the machine. Such an operating system would need to be designed

differently to traditional operating systems, and this area has not received much study in

the past. This project is a first step towards the creation of such an operating system. It

includes an exploration of the various ways such a machine might be used, an explanation

of how an operating system would support this, identification of challenges in the imple-

mentation, and suggestions for further development of the machine, the operating system,

and the software that will use it.
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Nomenclature

Application-specific integrated circuit (ASIC)

An integrated circuit designed for a specific purpose, with a large initial investment

but low unit cost.

Concurrency

A way of writing software in which multiple computations can be in progress at the

same time. The actual work behind all of these computations need not proceed in

parallel; it can be interleaved (i.e. limited processing resources can be time-shared

between several computations).

Dataflow computing

A computational model without a notion of a “currently active instruction” — in-

stead instructions activate once their inputs are available, and direct their outputs to

subsequent instructions.

Data structure

A system of organising information in a computer. Many data structures support

internal cross-references.

Distributed system

A computing system consisting of many independent computers arranged in a net-

work.
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Field-programmable gate array (FPGA)

An integrated circuit which can be reprogrammed to behave like an essentially ar-

bitrary digital circuit, useful for prototyping, with a relatively high unit cost.

Global

Involving the entirety of an arbitrarily large system.

Graph

A set of entities (nodes) and particular relationships that exist between pairs of these

entities (arcs) (see Section 2.4).

I/O

Input and output.

Local

Involving a strictly limited portion of an arbitrarily large system.

PE

See processing element.

Parallelism

A means of increasing computational efficiency by performing several tasks at the

same time (in parallel) using multiple processing elements.

Partial ordering

Partially specified ordering constraints on a set of items, e.g. “A comes before B,

and A comes before C, and C comes before D”, in which case the relative orders of

B and C, and of B and D, are not specified and any order is acceptable.

Processing element

A unit of hardware which performs computational work, generally one of several

similar units.
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Pointer

A memory address, usually an integer. A pointer is a type of reference.

Pointer arithmetic

Arithmetic operations on memory addresses, taking into account the relative place-

ments of items. One example is selecting an element from an array by taking ad-

vantage of the fact that array elements are in consecutive memory locations.

Reference

A name for an object, or some other way of locating it.

Tree

A data structure frequently used in computing where information is stored in a

hierarchical fashion, for example a directory structure in a file system.
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1. Introduction

Hardware wants to be parallel.

However, most of computer science is built on the assumption of sequential execution.

Users don’t care how the computer works, as long as they get good performance from

their applications. Processor manufacturers appease users by making their processors

ever more parallel, while appeasing computer scientists by preserving the illusion that

processing is done sequentially.

Processor clock frequencies plateaued years ago, and since then processors have de-

livered faster sequential execution by including more functional units and ensuring more

of them are exercised through many complicated techniques. It is easier to squeeze more

processor cores onto a chip than to improve sequential execution, however, and thus pro-

cessors now expose this kind of coarse-grained parallelism to software.

Unfortunately, the shared-memory multi-threaded model of parallel programming which

seems a natural fit for multicore hardware is in general difficult to use [Lee, 2006]. Syn-

chronisation is expensive, races and deadlocks are dangerously easy to introduce, and

scalability degrades as more cores contend to access a shared global memory. The fact

that parallelism is so easy in hardware but so difficult in software suggests that we are

doing something wrong.

[Hillis, 1988] has noted that the human brain has about 10 billion neurons, each with a

switching time of at least a millisecond. Compare this to an 8-core Nehalem chip, which
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has over 2 billion transistors, each with a switching time of less than a nanosecond. This

makes the theoretical limit for switchings per second about a million times higher in the

processor. Yet it is clear that despite this seemingly higher computational capacity, a

single computer is far from reaching human intelligence. While this argument is in no

way conclusive, it suggests that there are much better ways to wire transistors together

than the way it is done in a typical processor.

A major problem with existing computer architectures is the von Neumann bottleneck.

Many of the transistors sit idle because the bandwidth of internal communication channels

is easily saturated, and this gets worse as we try to scale our systems.

Performance is not the only important consideration. Energy efficiency, heat dissi-

pation, and fault tolerance are particularly important both in embedded computing and

high-performance computing.

Wave Semiconductor (Wave Semi) are working on a processor design that should ad-

dress all of these issues, and has the potential to revolutionise computer science. It is a

clockless dataflow processor, designed to be extremely scalable from the ground up, with

thousands of simple processing elements constantly interacting with each other rather than

a small number of complex cores. It allows very flexible power/performance trade-offs,

and has the potential to be more energy-efficient overall.

The first hardware implementation of this design is destined for use in embedded

systems as a replacement for field programmable gate arrays (FPGAs) and application-

specific integrated circuits (ASICs). However, Wave Semi expect the design to be widely

applicable, and plan to develop it for high performance computing, and ultimately as a

general-purpose processing fabric.

As the technology matures, the demands placed on it by software will become more

ambitious. Special software will be needed to help manage available resources, keep

order between programs and provide services that increase the utility of the processor —
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or in other words, an operating system (OS).

One aim of this project was to look at ways such a processor might be used, and inves-

tigate what an operating system would have to do to support these uses. Another aim was

to look into the differences between this processor and conventional processors, and the

impact these differences will have on the operating system. In particular I tried to identify

challenges that might be faced in the design of the OS and suggest how these challenges

might be overcome.

Since Wave Semi are keen to modify the design of the processor in order to better

support the work of an operating system, exploring how the hardware could be improved

was an important part of this project. This, coupled with the fact that the area has not been

explored much in the past, meant that the project was very exploratory. My intention was

to be inclusive rather than focussed, approaching the problem in its entirety so that future

work would rest on strong foundations.

As there is much to be discovered about the design of dataflow processors, the kinds of

problems they are suited for and how to write software for them, many such things were

found in the course of this project. Since an operating system has the role of integrating

diverse software and hardware components of a computer system into a coherent whole,

such considerations are certainly relevant.

I will refer to the hypothetical future computer on which a mature OS will run as

the FGM (flow graph machine). The current product being developed by Wave Semi

is branded the software-defined ASIC (SD-ASIC). It is impossible to specify exactly how

the FGM will work, however, the important aspects should be generally faithful to the

SD-ASIC.

In Chapter 2 I provide the motivations behind the FGM, provide a summary of related

work, give an overview of the design of the SD-ASIC, and give an overview of some

choices in OS architecture. In Chapter 3 I document my conceptual exploration of all the
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key issues of the FGM and of an OS in the context of the FGM which I have identified.

This includes an exploration of various approaches to how management is to occur in the

FGM, as well as motivations for adding graph manipulation capabilities to the FGM and a

discussion of how this might occur. In Chapter 4 I explain the more concrete investigation

I performed. This includes my implementation of an FGM simulator, assembly language

for the simulator, graph manipulation extensions to the design, and a simple compiler that

runs within the simulator, as well as an exploration of how programs might be loaded onto

the FGM by an OS. In Chapter 5 I bring everything together and discuss directions for

future work.
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2. Background and Related Work

2.1. The Consequences of Sequences

The concept of the sequential algorithm originated in the field of mathematics and was

picked up by computer engineers as a convenient model of computation. However, pro-

cessor designers quickly realised that sequential processing was not the way to get com-

putational work done efficiently. Performing several calculations in parallel allowed more

work to be done in less time, and the diminishing cost and size of transistors led to this

being cheap and practical. While computer processors develop longer pipelines and gain

more functional units and more cores, little progress has been made in moving away from

software interfaces based on sequential instructions.

To paraphrase [Silc et al., 1998], currently the path from inception to execution for a

program looks something like this:

1. A programmer conceives a partially ordered algorithm, but then expresses the algo-

rithm in total ordering because of the use of a sequential von Neumann language.

2. The compiler extracts a partial ordering from the program by analysing data depen-

dencies, and generates reordered “optimised” sequential machine code.

3. The microprocessor dynamically extracts a partial ordering from the machine code,

and executes it using micro dataflow, then reestablishes the arbitrary serial program
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order at the instruction completion stage.

One way of understanding this is that sequential programs are arbitrary and limited, and

though we do what we can to get around their limitations, we keep returning to a sequen-

tial formulation because that is the interface that was adopted long ago. Some computer

scientists respond to the increasing need for parallelism with more sequence! Parallel

execution is often modelled as interleaved sequences of instructions, or with multi-tape

Turing machines.

Modern processors work very hard to get parallelism out of sequential programs. The

techniques they use include pipelining, out-of-order execution, and speculative execution.

All this parallelism is hidden behind an illusion of sequential execution. The parallelism

is not exposed to software, except in the very coarse-grained form of multiple cores, and

this means there are some workloads which are very difficult to implement efficiently on

traditional processors.

For applications that have the economic incentive to go into hardware, this is not a

problem. Implementing a workload in an FPGA or ASIC exposes a high degree of paral-

lelism to software. However, developing for and deploying these targets is expensive. It

would be good to have an option that is less expensive, that is about as easy to program

as a traditional processor, and that makes parallelism almost as accessible as an FPGA.

I do not claim that designing something with these characteristics is easy. General-

purpose graphical processing units (GPGPUs) are an affordable alternative to FPGAs and

ASICs, with a more familiar sequential programming model, but the programming model

is quite restrictive and a good understanding of the hardware is required to use it effec-

tively. This makes GPGPUs still quite difficult to write software for, and excludes certain

workloads from being implemented efficiently. The Intel Itanium processor attempted to

expose some parallelism at the assembly language level, but still with a very sequential

form, and pushing a lot of complex decisions into compilers. Maybe we need a new
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approach.

Most digital circuits, including processors, use a form of global synchronisation called

a clock. This is a signal that oscillates at the processor’s clock frequency, co-ordinating

electrical activity throughout the chip and introducing sequence points in the work done.

Even though clock frequencies have essentially stopped increasing, modern processors

continue to improve sequential execution speeds [Intel, 2010] using techniques like those

mentioned above, but this adds hardware complexity and increases the cost of certain

operations like context switches. I do not see how we can continue seeing performance

improvements indefinitely if we continue in this fashion.

The clock frequency of a digital circuit must be slow enough to encompass the worst-

case propagation and switching delay in the circuit. As transistors continue to become

smaller, the difference between average case and worst case increases. Consequently the

use of a clock is becoming more of a burden.

2.2. Scalability, Energy Efficiency and Fault Tolerance

Techniques which are ideal for small-scale problems can become unwieldy for problems

of a larger scale. As systems grow in size, bottlenecks between components tend to be-

come more prominent, and the ability of components to deal with more interactions is

tested. This is true of all manner of productive activities and systems, not just computing.

Designing scalable systems is challenging. Sometimes rearranging existing systems is

sufficient, but other times a complete redesign is required. One way to address bottlenecks

is to make the system decentralised. This is done by making multiple (or all) components

capable of fulfilling certain functions rather than relying on a single component for par-

ticular functions. A method of restricting the number of interactions between components

is to organise the system into a hierarchy. Often components within the hierarchy are re-
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sponsible for filtering information before it reaches the top of the hierarchy. Making the

components themselves more efficient and improving the capacity of the links between

them can help.

Parallelism in many forms is exploited to improve performance. Commodity computer

processors use instruction-level parallelism to improve the performance of sequential soft-

ware, and expose thread-level parallelism to software in the form of multiple cores. GPUs

are good at solving problems with massive data parallelism, and many commodity pro-

cessors include vector processing units which also take advantage of data parallelism,

allowing the same operation to be performed on many data items. The term “single in-

struction, multiple data” (SIMD) describes vector processing units, while “multiple in-

struction, multiple data” (MIMD) describes the use of multiple cores.

Some programs are very easy to implement for vector processors. These are typically

programs with frequently-used data-intensive operations like matrix operations. However,

vector processing units lack flexibility and it is difficult to use them for problems without a

regular structure. The obvious programming model for multi-core processors is a thread-

based shared memory programming model. However, when the threads perform non-

trivial communication, it can be extremely difficult to write bug-free programs in this

way. This is because threads interact non-deterministically and the programmer must

introduce determinism manually where necessary, which is a difficult task [Lee, 2006,

Fant, 2007].

[Amdahl, 1967] put forward the argument that most tasks have some components which

are strictly sequential and cannot be parallelised, and therefore increasing the amount of

parallel resources available will bring diminishing returns (this has become known as

Amdahl’s law). Others have criticised Amdahl’s assumptions as only applying to certain

sets of problems, such as [Gustafson, 1988] who argued that often we are not trying to

solve problems of a fixed size in less time, but rather trying to solve as large a problem
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as possible in a reasonable amount of time. Nonetheless, an important consequence of

Amdahl’s law is that slower sequential execution will slow many programs down, no

matter how large the increase in the availability of parallel resources.

For enterprise and high-performance computing (HPC), the demand for fault-tolerance,

energy efficiency and scalability of computing hardware is already strong and will con-

tinue to grow. As the cost of computing hardware decreases and businesses expand their

computing infrastructure, the cost of down time, failures, and cooling become quite signif-

icant, whilst scalability allows existing large-scale resources to be used more efficiently.

In the embedded and mobile computing space, fault-tolerance and energy efficiency

are important. Some embedded devices are used in critical systems (such as automo-

biles, spacecraft and medical implants) where fault-tolerance is paramount, and energy

efficiency is almost always important for mobile devices, either to conserve battery life or

to fit within a constrained energy budget.

Many processors provide facilities to adjust the performance of the processor in order

to reduce energy usage or heat dissipation. However, this is complicated because the safe

clock frequency, operating voltage and temperature of the chip are all linked, and the

range of performance scaling is limited. The trend is towards putting components to sleep

rather than adjusting performance [Le Sueur and Heiser, 2010].

2.3. The von Neumann bottleneck

The von Neumann architecture is a model of computer design characterised by a central

processor, and a separate memory that holds both instructions and data. It is generally

understood that the processor is powerful enough and the memory is large enough to

perform substantial computing tasks by itself. Adding more processors that share the

memory (as in multicore systems) is seen as a performance optimisation that introduces
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difficulties into the model.

The von Neumann bottleneck [Backus, 1978] refers to the limited speed with which

data in memory can be accessed compared with the much higher speed with which pro-

cessors can process data. This bottleneck becomes yet more strained as the number of

cores increases because the cores contend for the memory, which makes efficiently scal-

ing to hundreds of cores effectively impossible for a von Neumann architecture machine.

Shared-memory models are generally not used in large-scale computing with many

computers networked together. Instead, message-passing programming models are used,

where compute nodes must explicitly exchange messages with other compute nodes in

order to share data. Message passing exposes the burden of deciding which data needs

to be physically ferried around the system to software. While this may make program-

ming more difficult, it reduces or eliminates the von Neumann bottleneck. [Lauer and

Needham, 1978] showed that OSes based on shared memory are a dual of OSes based on

message passing.

In a Turing Award lecture, [Backus, 1978] describes the von Neumann bottleneck as

an “intellectual bottleneck” that keeps us reliant on “von Neumann languages”: program-

ming languages which operate on one machine word at a time, and which embody the

von Neumann bottleneck in the assignment statement. And conversely: “The dominance

of von Neumann languages has left designers with few intellectual models for practical

computer designs beyond variations of the von Neumann computer.”

Remarkable advancements have been made in the field of programming languages

since that time, many that seem in line with the claims made by Backus. Yet the von

Neumann architecture is still dominant. Perhaps the availability of mature non-von Neu-

mann languages and the mounting pressure to improve scalability will help us overcome

our reliance on the von Neumann architecture. The availability of FPGA technology is al-

lowing research into alternative hardware designs without huge investment, as in [Naylor
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and Runciman, 2010]. Yet the colossal investment that has been made into von Neumann

machines gives them a huge head start, and so to compete with them we need a model

that is inherently much superior. Backus did mention dataflow as an alternative model,

and the model seems attractive, but that doesn’t make it easy to implement well.

2.4. Dataflow Graphs

A graph is a collection of nodes (also called vertices) and arcs (also called edges), where

each arc connects two nodes. The salient features of a graph are the identities of the

nodes, and which nodes are connected to which. The positioning of the nodes and arcs is

not important. Two pictures of graphs represent the same graph precisely when the nodes

are the same and arcs join the same pairs of nodes.

Graphs can be used to model many kinds of systems. The world wide web has a graph

structure: web pages are nodes, and links between web pages are arcs. The Internet has

a graph structure: computers and routers are nodes, and the communication channels

connecting them are arcs. Social networks can be modelled using graphs in a similar

way. There is a graph structure to many forms of data. Hierarchically organised data,

such as files in a directory structure, is stored in a tree, which is a special kind of graph.

Information stored in a relational database has a graph structure, for instance, students

and classes could be the nodes, and enrolment information the arcs, in a database. Finally,

many data structures commonly used by software have either restricted or arbitrary graph

structures.

Computations can be represented as graphs where each node represents some kind of

computation (indicated by the node’s label), and each arc indicates a flow of data. Arcs

have a direction to show which way the data flows. Most computations combine multiple

input items together to produce one or more outputs, and often the identities of the inputs
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Figure 2.1.: Dataflow graph for evaluating ax2 +bx+ c2.

and outputs are significant. For example, reordering the inputs to a subtract operation

would change the meaning. So strictly speaking, each arc joins an output port of a node

to an input port of another node (possibly the same node). Figure 2.1 shows a simple

computation expressed as a dataflow graph.

A dataflow graph is similar to a data dependency graph, and similar analysis can take

place. However, sometimes multiple sources can fulfil a data dependency at different

times, which makes cyclic dataflow graphs sensible, as seen in Figure 2.2. This also

allows nondeterminism in the execution (which arises from variations in computation

times), in addition to any nondeterminism within the computations themselves. Cycles in

dataflow graphs are similar to loops on sequential processors.

Dataflow graphs can be indefinitely composed to form larger dataflow graphs. Sub-

graphs can be collapsed into individual nodes, for example a graph which computes the

greatest common divisor of two numbers can be represented as a single node in a more

complex program. Groups of edges between two nodes can be collapsed into a single

edge, along with the node ports involved, for example, groups of 32 edges which can

each carry a single bit can be replaced with a single edge that represents a 32-bit machine

word. This allows an arbitrary level of abstraction to be applied, without any change in
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the representation we are using.

Dataflow is certainly an important part of how we think about software, but it tends to

appear at a coarse-grained level. Streams, sockets, pipes and message passing are exam-

ples of this. Some programming environments are entirely dataflow based, such as Na-

tional Instruments LabVIEW, and Yahoo! Pipes is a way to use dataflow to assemble the

data sources and data processors on the Internet into arbitrary computations. Spreadsheets

are a familiar programming model which is dataflow-oriented (and should be amenable to

efficient implementation on a dataflow processor). Electronic circuits can also be viewed

from a dataflow perspective. Circuit diagrams are essentially a specific type of dataflow

graph.

By exposing a dataflow-based instruction set, dataflow processors allow us to make

software dataflow much more fine-grained than it normally can be. The FGM allows

dataflow in the software to map onto dataflow in the machine’s circuits.

2.5. Dataflow Machines

There was a lot of interest in dataflow machines in the 1980s, with many implementations

produced [Silc et al., 1998]. [Kavi et al., 1986] give a definition of a dataflow model of

computation. The defining feature of a dataflow processor is that there is no “current in-

struction” (and therefore no program counter); instead instructions can execute whenever

they are ready, that is, when their inputs are available. Machine code takes the form of

dataflow graphs.

The obvious advantage of dataflow machines is that dataflow programs are easy to par-

allelise: the processor necessarily keeps track of which instructions are ready to run and

so multiple computations can occur in parallel across multiple functional units. In Fig-

ure 2.1, the horizontal groups can be executed in parallel. This is obviously faster than
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Figure 2.2.: Dataflow graph for calculating gcd(a,b) using Euclid’s algorithm. The ex-
plicit merge nodes are not necessary, but added for clarity.

computing the multiplication and addition operations one after another. Whilst on a se-

quential processor this computation would be described by a sequence of instructions,

modern sequential processors would reverse-engineer a similar dependency graph to Fig-

ure 2.1 from the instruction stream and use this to distribute the work between multiple

execution units, thus making them capable of achieving similar performance to dataflow

machines, at least on a simple example like this one.

Some dataflow processor designs only allow one data item (or token) per arc. The Wave

Semi design (see Section 2.9) follows this principle. [Silc et al., 1998] points out that this

limits the re-usability of code, since multiple iterations of a loop, or multiple invocations

of procedure cannot proceed independent of one another in parallel, and it is suggested

that this is a “serious drawback”. I disagree: if you hope to beat the von Neumann bot-

tleneck, then it is inevitable that you will need multiple copies of the program code in

physically different places.

The alternative design, whereby tokens travel with “tags”, as in the Manchester ma-

chine (see Section 2.6) seems to seal the von Neumann bottleneck into the implemen-

tation. Machines of this design are generally implemented with separate matching and
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processing units. The matching unit receives all incoming tokens, and, assuming it is

destined for a two-operand instruction, the unit attempts to locate a matching partner for

the token. If there is none, the item is stored in expectation of a partner arriving later. If a

match is found, the operands are combined with the instruction code and sent to the pro-

cessing unit, which will allocate a free execution unit to the instruction. After execution,

the outputs of the instruction would be sent back to the matching unit. In practice there

were usually more stages in this pipeline, as show in Figure 2.3.

There are several problems with such a design. There is a scalability problem: the

matching unit needs a global memory of tokens to check against, and the instruction

memory is also global. This is essentially the von Neumann bottleneck in another form.

The interconnects between the units may also have limited bandwidth — another bottle-

neck. The second problem is the length of the pipeline: the number of stages tokens have

to pass through, and the amount of time they take, limit the execution speed of algorithms

that are impossible to parallelise.

2.6. The Manchester Machine

One prominent experiment was conducted by the University of Manchester [Gurd, 1985].

Its pipeline contained a token queue, a matching unit with an attached overflow unit, an

instruction store, a processing unit, and an I/O switch that linked the dataflow processor

to the (sequential) host processor, shown in Figure 2.3.

As discussed in Section 2.5 we see bottleneck and performance issues with this ma-

chine, however, there is still much useful research behind this machine. Work was done

on the assembly language and programming models for the machine, in particular single-

assignment languages. The tagged dataflow model in the machine supported various types

of interesting behaviour. It may be worthwhile investigating these behaviours and attempt-
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Figure 2.3.: Design of the Manchester dataflow processor.

ing to translate them to the FGM if they seem useful.

2.7. The Connection Machine

The Connection Machine CM-2 [Hillis, 1988] was not a dataflow processor in the usual

sense. It had a sequential host processor that broadcast instructions to an array of process-

ing elements (PEs) so would probably be classified as a single instruction, multiple data

processor. However, these elements each had local memory and were part of a routing

network enabling them to exchange data with each other. The prototype had 65,536 PEs

each with 512 bytes of memory.

Hillis introduces the concept of active data structures — essentially graphs of pro-

cessing nodes each with some memory attached, but perhaps better thought of as data

structures with a degree of autonomy, or data structures where each component of the

data structure is capable of performing simple computations and communicating with its
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neighbours.

Hillis describes how such structures can be used to efficiently sort and perform matrix

operations and other data-intensive operations, and mentions that they can be used for

things like semantic networks. Trees seem a good encoding for many sorts of objects.

If one wants to find the maximum value or sum of an unsorted collection of numbers,

it is much faster if the collection is represented as a tree than if it is represented as a

linked list, for example. Trees provide a good trade-off between performance and space

consumption. With trees it is always possible to limit the memory required by each node

by limiting the fan-out and increasing the depth of the tree, which is important when each

PE has quite a limited amount of memory.

The primary programming language for the Connection Machine is a variant of Lisp,

with a new type of object called a “Xector” which can contain code or data, and interesting

operators for doing parallel work with them, somewhat reminiscent of pointer operations

in the C language.

The name “Connection Machine” derives from the importance to the machine’s design-

ers of being able to dynamically form essentially arbitrary connections between any pair

of PEs. The key to this was the machine’s hypercube structure and sophisticated routing

system, which guaranteed that a message could be sent from any PE to any other in a

maximum of 12 hops (assuming no faulty PEs).

I think this machine is better thought through than the Manchester machine and have

assimilated some of the motivations behind it. Hillis concludes with a commentary on

computer science as a science, and, among other things, predicts that computer science

will begin to look more like physics as we push the limits of computation. I think this pas-

sage captures the sentiment: “Machines will have three-dimensional connectivity because

space is three-dimensional. They will have limited propagation rates because space has a

finite speed of light. As less is wasted between function and implementation, the physics
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begins to show through.” [Hillis, 1988] Currently, processors are designed to hide phys-

ical considerations from software. Changing this seems like the way to more computing

power, but that doesn’t mean it is obvious how that change should be made.

2.8. NULL Convention Logic

The SD-ASIC is built out of an asynchronous circuit logic called NULL Convention Logic

(NCL) [Fant, 2005].

Instead of a global clock, circuit elements co-ordinate locally by interleaving data val-

ues with a special value called NULL. This introduces a distinction between the presence

of data and the lack of it, which enables circuit elements to distinguish successive presen-

tations of data from one another without relying on a clock line.

When NCL gates are connected together, every data path needs a corresponding ac-

knowledge (ack) path in the opposite direction to ensure that data items never collide.

Essentially a “wave” of data propagates through the circuit, followed by a “wave” of

NULL. The combination of data paths and ack paths results in a structure of partially

overlapping cycles, or coupled cycles, where the overlaps create synchronisation between

neighbouring cycles. One can imagine the cycles as interlocking cogs in a clockwork

mechanism.

This structure of coupled cycles suggests a more general framework for concurrent

computation [Fant, 2007], where elements co-ordinate with elements upstream and down-

stream and form part of cycles that are well-behaved, composable, and do not contain

timing assumptions. A loop built out of coupled cycles is itself a cycle which can itself be

coupled with other cycles, and this can be continued on even larger scales. Also, a new set

of “gates” can be built and linked together like NCL gates are, essentially forming a new

layer of a similar nature. The FGM is such a layer built out of NCL, and as such many of

18



the lessons learned at the circuit level also apply to programs that run on the FGM.

Timing assumptions are fundamental to a traditional processor, where all electrical

activity must stabilise within a single clock tick to be sampled. The clock frequency

is therefore limited by the worst-case propagation time on the chip. Improving process

technologies are leading to ever smaller transistors. As a result the variation in switching

times between individual transistors is increasing, and hence the worst-case switching

time is becoming larger as a proportion of average-case switching time.

NCL circuits do away with almost all timing assumptions1. The top-down style of

operation co-ordinated by a clock is replaced with a bottom-up style: essentially a web of

feedback loops interacting with each other.

Clocked circuits exhibit a metastability problem: when sampling an input from the

outside world or from a different clock domain, it can take an unbounded amount of time

for the sampled value to reach 0 or 1. Processing an input that has not settled can cause

metastability to propagate through a circuit, potentially leading to total failure. The proba-

bility can be rendered arbitrarily small by allowing settling time, but cannot be eliminated

entirely. By contrast, asynchronous logic (including NCL) waits however long it takes for

the input to settle [Bainbridge, 2002]. This not only removes the possibility of total fail-

ure (at the expense of sampling taking an unbounded period of time), but also decreases

average sampling time to the average case rather than adhering to a pessimistic but “safe”

time period.

NCL has some appealing properties from the perspective of energy management. NCL

circuits tolerate very large ranges of operating voltage, responding to voltage changes by

switching at different speeds. Reducing the operating voltage will reduce energy con-

sumption at the expense of performance. NCL circuits are also very energy-efficient, and

generate very little electromagnetic interference [Bailey et al., 2008].

1As far as I am aware, all timing assumptions are locally constrained within the NCL gate library and thus
their effect does not influence larger circuits.
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2.9. The Software-Defined ASIC

Wave Semi are currently developing the SD-ASIC for use in embedded computing, and an

important part of this is the ability to compile legacy hardware description code to efficient

flow graph programs. This will allow the SD-ASIC to take over the role of FPGAs and

ASICs, hopefully delivering a solution that combines good performance with low cost

and energy efficiency. They believe the SD-ASIC will in time be capable of fulfilling the

role of embedded processors as well. This would allow a single general-purpose chip to

perform the functionality currently spread over multiple chips. Wave Semi have indicated

that the FGM should not be treated as a computational resource subordinate to a host

processor (like a GPU or the machines previously discussed) but a host processor in its

own right. As I state in Chapter 3, I suspect that the FGM may actually be better for

controlling itself than using a separate processor to do this.

Further down the track, Wave Semi plan to move into high-performance computing,

where workloads are frequently very parallelisable and much work is invested in imple-

menting things efficiently. At this point it seems a usable operating system will become a

necessity. Beyond that, the further the FGM is able to spread, the better.

While it is very important to have a feel for how the SD-ASIC works, a detailed de-

scription of its design is not important here. After all, its design is in a state of flux and

this project is more concerned with what sort of software should be written for it, and how

it should be written, than with actually creating software for the SD-ASIC.

The SD-ASIC is a 2D grid of many thousands of processor elements (PEs) each con-

nected to its (eight or so) nearest neighbours. Each PE has a table where it can store a

few hundred instructions. Each instruction specifies where its outputs are sent after it

executes; the destination can be any instruction in one of the nearby PEs. Thus there is

essentially a 3D lattice in which multiple graphs of instructions can be stored, but data

flows between instructions can only cover spatially short distances. It is likely that there
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Figure 2.4.: Layout of instructions in the SD-ASIC.

will also be some longer links strategically placed, but clearly there will be limitations on

how long they are or how often they appear.

To illustrate, a group of 9 simplified PEs is shown in Figure 2.4. The PEs are distributed

along the x and y axes, and the instructions within the PEs are indexed by the s axis. In

an SD-ASIC program, data flows between instructions can extend a maximum of 1 step

in the x dimension and 1 step in the y dimension. Unlimited travel in the s dimension may

occur.

The limited length of flow graph links enforces a kind of metric on flow graph pro-

grams that reflects the underlying physics of the machine. This, combined with the use of

feedback loops rather than global timing seems like a partial response to Hillis’ prediction

(Section 2.7).

A few kilobytes of memory (SRAM) are attached to each PE. This is where the instruc-

tions and their inputs are stored. As inputs arrive, they “park” within the instruction they

are destined for. When all of an instruction’s inputs are present, it is ready and the PE will

execute it when it is not otherwise busy (subject to some kind of hardware scheduling

policy). After execution, the outputs of the instruction are immediately sent off to their
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destinations. At the assembly language level, the SD-ASIC is akin to a distributed system

with asynchronous unbuffered message passing.

The SD-ASIC currently has two data types: 16-bit words (signed or unsigned integers),

and Boolean predicates. This is due to the applications the SD-ASIC will be used for in

the immediate future and larger word sizes or floating-point support might be added to

the architecture as needed.

There is no global synchronisation (no clock). There is no assumption of a global mem-

ory or bus, and no global addresses. This helps make the processor inherently scalable. In

practice we may often want an off-chip memory and a bus in order to communicate with

other components, however I expect this will be more for economic reasons that technical

ones. The important thing is that the von Neumann bottleneck has been practically elimi-

nated: adding PEs means simultaneously adding processing power, memory capacity and

memory bandwidth. Access to external memory and device I/O would not be possible

from all PEs, but would probably be limited to the edges of an array and possibly some

special nodes within the array, since connecting all nodes to a bus or other communica-

tion channel would add complexity to the circuit, which seems unnecessary as the parts

of a program which might require access to external resources are usually known ahead

of time and so can be located appropriately.

The lack of global synchronisation means there is no sampleable state space. For in-

stance, at any one time some NCL gates may be in the process of switching. However

since traditional multiprocessors routinely violate expected state space transitions due to

out-of-order execution etc., this doesn’t seem like much of a problem.

As with NCL, SD-ASIC assembly programs need to be “wired” in such a way that

ensures data items will never collide. This is done through the use of coupled cycles and

not using timing assumptions. Malformed programs should not be executed. It seems best

for compilers etc. to work at the level of coupled cycles right until the last step of code
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generation.

The SD-ASIC allows nondeterministic choices to be made between multiple inputs,

essentially choosing the first that arrives. This is useful in decoupling the synchronisation

between multiple components that do not need to be synchronised. One example might

be for a subroutine that may be used in multiple places in a program.

[Silc et al., 1998] mention that token traffic is doubled in single-token-per-arc ma-

chines, due to every data flow needing an ack. This is not entirely true of the SD-

ASIC, which can encompass multiple instructions in a single cycle, thereby decreasing

the amount of effective ack traffic.

It is my hope that this design will expose the parallelism of hardware to software, mak-

ing it much easier for performance-critical software to benefit from parallelism, without

making software that is not performance-critical any more difficult to develop. Compile-

time optimisations should allow code written in a sequential style to still take advantage

of the parallelism of the hardware. However, programmers should be able to resort to a

dataflow style when the occasion calls for it.

I believe adopting a dataflow programming style when performance is necessary would

be easier than, say, writing assembly code for the Itanium. With the SD-ASIC, one may

resort to data flows at any level of a program. Concurrency and local co-ordination are

first-class citizens of the processor, and thus concurrent programming need not be the

difficult, dangerous activity we expect it to be.

[Fant, 2007] argues that concurrent software is not inherently difficult to write and rea-

son about, rather that our choice of initial assumptions makes it artificially difficult. If

one starts with a network of nodes that use communication both to exchange information

and for local synchronisation, rather than a global memory and clock, then concurrency

can become orderly and natural. [Lee, 2006] makes some similar arguments from a dif-

ferent viewpoint. The design of the SD-ASIC appears to be well adapted to executing
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concurrent programs written in the styles suggested by Fant and Lee.

There are instructions in the current architecture for reading and writing the local mem-

ory of a PE. This includes modifying the instructions that may be stored there. This means

that code that creates or modifies other code should be possible. There are no instructions

for accessing external memory, so pointers essentially don’t make sense beyond a single

PE.

The fact that the SD-ASIC is wired much more like a network of neurons than a von

Neumann computer suggests that we may be able to compete with human intelligence

with such a machine. It will certainly be useful to take inspiration from physics and

biology when trying to come up with OS techniques within the machine.

2.10. Operating System Architectures

Operating systems generally consist of a kernel, which is a trusted portion of software

with full control of the machine, and user-level components which are only trusted to

perform certain functions. Hardware protection features, for example memory protection

and certain instructions which can only be executed by the kernel, are usually used to

prevent untrusted programs from interfering with other programs or taking control of the

machine (but see [Wilkinson et al., 1981, Hunt et al., 2007] for examples of systems that

do not).

The kernel is completely trusted which means that bugs in the kernel can easily crash

the whole system, and security holes in the kernel allow malicious programs to take con-

trol of the system. A similar problem is also seen outside of the kernel: if a bug in a

program is triggered or the program is compromised, then anything the program has in-

fluence over might be affected. These problems are addressed by designing OSes with less

code in the kernel, and by separating programs into components which have limited in-
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fluence over each other (both inside and outside the kernel). The THE multiprogramming

system [Dijkstra, 1968] used a layered designed for the OS, and later MULTICS [Cor-

bató and Vyssotsky, 1965] used hardware protection to enforce such a layered model.

However, the hardware protection that is used to enforce the separation between compo-

nents can result in performance penalties, so taking this approach to the extreme can be

infeasible.

Monolithic kernel systems place many operating system components, including device

drivers, in the kernel. Microkernel systems reduce the size of the kernel to a minimum,

pushing various operating systems components to user level. The Linux kernel is mono-

lithic. Modern versions of Microsoft Windows and Mac OS X are based on so-called “hy-

brid kernels”, which are fairly large kernels that generally include device drivers, however

the kernels are internally componentised similarly to microkernel systems. Mach [Accetta

et al., 1986] and L4 [Härtig et al., 1997] are examples of microkernels. EROS [Shapiro,

1999], Mungi [Heiser et al., 1998], and MINIX 3 [Herder et al., 2006] are examples of

operating systems built on top of microkernels.

Component architectures make building an operating system easier, particularly on mi-

crokernel platforms. They allow the use of models and tools to help automate the as-

sembly of operating systems and other software components into complete systems and

analyse such systems [Heiser et al., 2007].

Capability systems are based on a security mechanism involving the use of capabili-

ties [Dennis and Van Horn, 1966]. A capability is both a reference to an object and the

right to perform certain operations on that object. EROS and operating systems based on

the seL4 microkernel [Klein et al., 2009] are capability systems, and there is prior and

ongoing work on building reliable systems using capability models.

Single-address-space operating systems (SASOSes) perform a pervasive unification

of the machine — in a SASOS, all tasks run in the same address space, and resources
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such as I/O are accessible through this address space. Data objects have a single name

(their memory address) across all tasks and all compute nodes in the system, and no

distinction is made between volatile memory and persistent storage — objects persist

until they are explicitly deleted. Examples of SASOSes include Mungi [Heiser et al.,

1998] and Opal [Chase et al., 1992].

It has been argued that a SASOS provides a good platform for programming distributed

systems, and some SASOSes designs considered the distribution of the OS across many

compute nodes which all shared the same address space [Skousen and Miller, 1999, Heiser

et al., 1993]. The view of the FGM as a special kind of distributed system suggests we

may be able to apply some SASOS principles.

In the FGM, it will be expensive (and perhaps impossible) for any part of the machine

to have direct control over every aspect of the machine. This raises questions about what

the word “kernel” actually means on such a system and whether it is appropriate at all.

Breaking a complex system into components seems very well suited to the FGM. More

will be said about capability systems in Chapter 5. SASOSes suggest a route for unifying

the FGM, by giving everything a unique global name. The use of fixed-width global

addresses doesn’t sit well with the FGM philosophy, though. I think that the parallelism

of the FGM will make cataloguing and searching very efficient, which will provide an

alternative route to managing the activity and information within the FGM.
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3. Exploration

Rather than picking out a small, well-defined problem and solving it, I chose to conduct

an extensive exploration of the problem domain at several levels, so as to help determine

what sort of problems there are to be solved, which are the most important, and what kind

of approaches might be taken to solve them. I hope this coverage gives a good starting

point for deciding how to approach further work.

I tried to identify things we might want to achieve, understand the resources we have,

and explore ways of using those resources to achieve those things. In searching for ap-

proaches to solving problems, I favoured those which could be done in the FGM and

which were true to the local-only philosophy underpinning the design of the FGM. Such

approaches are likely (but not guaranteed) to be scalable. I also looked for alternative

approaches.

Initially I suspected that many of the problems which might appear difficult about the

FGM, such as how to efficiently map multiple program graphs into the machine, might

be less difficult if we tried to solve them within the machine, taking advantage of the

massive parallelism it offers. For example, even though software for embedded systems

is normally compiled, assembled and linked on a more powerful computer, perhaps some

or all of that task would work far better on the embedded FGM being targeted, or on

a more powerful FGM, rather than on a sequential computer. During the course of this

project I have only become more convinced that this is the right approach.
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3.1. Potential Applications

It is hoped that the FGM will be able to take over the role of sequential processors (includ-

ing data-parallel processors like GPUs), as well as being able to compete with FPGA and

ASIC chips. If this is the case, then the FGM’s applications could extend to all types of de-

vices which contain any kind of processor or signal-processing hardware. The list would

include embedded, robotic, mobile, desktop, enterprise and scientific computing. Embed-

ded computing is a very broad category, including such things as automotive, aerospace

and military applications, household appliances, computer peripherals and medical im-

plants.

Probably a more pertinent thing to consider is the areas that the FGM will excel at. The

FGM is a multiple instruction, multiple data machine with significantly lower forking,

merging and communication costs than a multicore processor. Unlike vector processing

units, it does not require problems to have a regular (e.g. matrix-based) structure. This

should allow it to solve problems with irregular parallelism more efficiently than other ma-

chines can. Additionally, the FGM appears to be easier to write software for than FPGAs

and ASICs since less hardware understanding is required, and easier to write software for

than GPUs and vector processors since it has a more flexible programming model, sup-

porting instruction-level parallelism, thread-level parallelism and data parallelism while

GPUs and vector processors only excel at highly data-parallel tasks.

Functional languages are based on a graph-reduction computational model, and at-

tempts have been made to perform this more efficiently than can be done on sequential

processors using an FPGA [Naylor and Runciman, 2010]. It seems intuitively very dif-

ficult to use vector machines to parallelise graph-reduction problems. The manipulation

of symbol systems, for instance within interactive theorem provers, seems like it fits in a

similar category. I suspect the FGM would be a good platform for solving these kinds of

problems.
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The FGM seems like an ideal platform for implementing things with mainly short-

distance communication. Many signal processing problems, such as video processing,

and physical simulations, such as computational fluid dynamics, involve a lot of compu-

tations that only work with small pieces of the problem and hence are a perfect fit for the

FGM. Neural networks should also be easy to implement efficiently on the FGM. Graph

problems, such as finding the shortest path between two places, should also be easy to

solve on the FGM. By building a program that has the same shape as the graph being

explored, we can take advantage of the parallelism of the FGM.

Designing parallel algorithms can be difficult. Neural networks and genetic algorithms

are ways of letting the computer develop its own parallel algorithms through trial and

error. These sorts of techniques might become more important as machines like the FGM

allow us to scale up the amount of parallelism available in our computers.

Amdahl’s law tells us we need to worry about sequential execution speed. In the FGM,

sequential programs do not force many cores to sit idle, unlike vector hardware. Also,

since the FGM can take advantage of instruction-level parallelism, it does not seem to be

at a big disadvantage to sequential processors. Therefore sequential execution does not

seem to be an inherent problem.

3.2. Scope

We have seen that the FGM might find uses in many quite different environments. It

would be extremely beneficial if a single OS could be adapted to all these uses, rather

than requiring multiple separate OSes. The Linux kernel is capable of running on a huge

assortment of different hardware and is used in all of the categories mentioned in the

previous section, so this does not seem to be an unrealistic goal, and it is something I have

aimed for. However, all those potential applications make for a lot of things to consider,
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so it makes sense to define some more specific applications of the OS to concentrate on

whilst considering its design.

I think it is a good idea to focus on scientific computing, since scientific computing

needs the performance and scalability, many kinds of simulation are ideal for the FGM,

and Wave Semi are interested in expanding into this area. I think I should also keep

embedded computing as a secondary consideration, as this is Wave Semi’s focus at the

moment, and innovations that can be applied there might be rapidly tested and potentially

bring benefits quickly.

Considering both scientific and embedded computing will help us look at what we are

doing from two different perspectives. Scientific computing will place greater demands

on an operating system. Since problems are larger and often less well-defined than on

embedded systems, things like dynamic memory allocation and graph manipulation will

be more important. Since it is not known in advance what tasks will be run or how long

they will take, more will be required by way of task and resource management.

Since I believe that using the FGM to solve FGM problems is an appropriate tactic, I

want to also think about how determining program layout, loading programs, unloading

programs, and even compiling programs might be performed from within the FGM.

3.3. Understanding Flow Graphs

Understanding flow graphs and how they are put to use in the FGM is important to being

able to write low-level programs and ensure that suggested OS features actually meet all

the needs of programs and hardware. However, this understanding is difficult to develop

without hands-on experience with writing FGM programs, and does not need to be very

deep for most questions of OS design. In this section I will cover what I have learned

about flow graphs.
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Modern processors break up instruction execution into multiple stages, and the chain

of stages is called a pipeline. In one sense, the FGM can be thought of as a fully pro-

grammable pipeline. Acyclic (i.e. loop-free) dataflow programs can be thought of as a

series of stages, allowing multiple instances of data to be passing through at a time. For

example, in Figure 2.1, three separate instances of the variables (x, a, b and c) might be

provided as inputs before the first sum is output. Eventually all the sums will be output, in

the order corresponding to the order the input variables were presented in. Note that the

graph in Figure 2.1 does not directly correspond to the SD-ASIC’s assembly language,

which requires extra nodes and arcs to facilitate the co-ordination necessary to meet the

one-token-per-arc condition.

Graphs may contain cycles which can obviously be used for iteration, as in Figure 2.2,

but I also believe they will be important for active data structures (explained in Sec-

tion 2.7), for example a dictionary that can have items added, removed, and be queried,

which internally might use a balanced binary tree.

There is an interesting connection between the study of dataflow graphs and process

management. Process management involves trying to efficiently co-ordinate processes

which transform inputs to outputs within resource constraints (finances, capital, labour,

space, time). Dependency analysis is one of the problems of process management, cf.

Gantt charts.

Many formal models for concurrency exist. The FGM is a partial order machine, in

other words we cannot always decide the order in which two instructions are executed.

Some interesting models seem to be Petri nets, trace theory, the actor model, and some

process calculi [Baeten, 2005], in particular join calculus [Fournet and Gonthier, 2002].

Communicating Sequential Processes is a process calculus that seems rather inappropriate

given the FGM design. Fant proposes a language for describing concurrent systems [Fant,

2007] which is heavily related to FGM principles, but little is provided in terms of formal
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semantics or reasoning. [Kavi et al., 1986] give a definition of the dataflow model.

At the assembly level, FGM programs rely on a cycle structure where a cross-section of

each cycle is initialised with data (I say “cross-section” since cycles can contain branches

and merges), and this condition is maintained for the life of the program.

An abstract view of this (as used in Figure 2.1 and Figure 2.2) can hide the acknowl-

edge paths and presents each “forward” arc as a buffer which can either be empty or hold

a single data item. If more buffering is required, buffer nodes can be added. Other ab-

stractions might be possible and potentially more efficient. More abstract graphical views

of computation are possible, for instance where each node represents an entire program

and arcs represent communication in between programs as well as with the outside world.

There are many choices for means of co-ordination and buffering.

Mathematically proving that a “pipeline” graph does what it is supposed to do seems

as easy as converting the graph to a mathematical function that it is equivalent to. Prov-

ing that more general graphs behave correctly, for instance proving that loops eventually

produce output, requires a consideration of the evolution of program execution. In the

most general case, I think, one would want to reason about a partial ordering of the inputs

and outputs of the graph, because you may only be able to derive a partial ordering of the

outputs of one graph, which may then be used as inputs to another graph, or even influ-

ence future inputs to the same graph! Because of the piece of data that must be present

in every cycle, graphs can quite easily have state-holding behaviour, even if we assume

that instructions cannot read and write local memory. However, it should be possible to

assume that a graph cannot modify any external state (except as a result of producing an

output).

If we think of a pipeline, it is clear that for maximum efficiency all stages of the pipeline

should take a similar length of time. If one stage is significantly slower, it will form a

bottleneck, with inputs banking up against it, leaving prior and later stages under-utilised.
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Introducing multiple parallel copies of the offending stage might alleviate the problem.

Additionally, if consecutive stages are misaligned, horizontal sets of data may be delayed.

Consider that in Figure 2.1 the input a cannot progress until x2 has been computed, which

means a’s source might stall with a on the output arc. The solution to such a problem is

to add a buffer node. Problems like these have been studied in queueing theory.

Given the implicit buffering each edge provides as well as any explicit buffer nodes, a

pipeline computation has some “slack” — if input is presented on its inputs faster than

it is consumed on its outputs, then the computation starts to accumulate more in-process

data; if data is consumed on the outputs faster than input is presented, the data in the

pipeline will drain out. This can help smooth out fluctuating levels of inflow or outflow

on the computation.

The kanban system, invented by Ohno for Toyota [Ohno, 1988], appears to be a real-

world implementation of the initialised-cycles system. It is a form of distributed process

control, where parts are produced if a kanban card is present, and the card travels with the

parts to the consumer of the parts, and when the parts are consumed the kanban is sent

back to the producer.

One of the driving design principles in NCL and the FGM is no timing assumptions.

However, this does not equate to no timing analysis. Indeed for the purposes of pipeline

optimisation, timing analysis is important. However this is generally concerned with the

average case rather than the worst case.

If we unroll an execution of a dataflow program into a data dependency graph (the

equivalent of an instruction trace), we can easily find the longest path through the graph

and this becomes our worst-case execution time. This assumes we know how long each

instruction takes (which we can perhaps come up with a worst case for, but the worst case

will probably be quite bad), and that instructions are executed as soon as they are ready,

or at least some kind of fair scheduling where we can bound how long it will take for an
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instruction to be executed (which will probably be extremely pessimistic). Additionally,

due to nondeterminism, the space of possible trace graphs may be huge. This becomes

more complicated under voltage scaling.

In process management, one does not have complete guarantees on how long elements

of a process take, and usually one needs to be able to cope with failures. Still, one opti-

mises for the common case and uses estimates of duration to do a best-effort arrangement

of tasks and an estimate of how long the entire process takes.

3.4. Rethinking the Role of an Operating System

In this section I will discuss the things an operating system is typically responsible for,

and examine their relevance to the FGM and explore what form they might take, in light

of the FGM hardware and the applications it may be used for. The radically different

hardware has a significant impact on many things, and will open up new possibilities. In

a sense we are returned to the infancy of operating systems: the rules are not yet written

and we have the opportunity to shape the next generation of computing.

The output of a dataflow program must flow somewhere — to another program, into

some OS code such as a device driver, or directly out of the processor. If it flows into

another program, then there is at least one arc between the two programs. If it flows into

the OS, then there is an arc between it and the OS code. This means that a dataflow graph

can conceivably encompass all the user programs and system software on the processor.

Thus that the boundaries between programs and the operating system will be blurred. This

suggests that the kernel/user mode privilege distinction may be too simplistic, and that the

notions of system calls, services and libraries may need to be extended or replaced.

Also, the fact that software has an explicit graph structure rather then being stored

as a formless blob means that there may be more opportunities for optimisations and
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security checks at the point of program compilation or loading. Loading programs into

the processor and laying out their instructions so as to make the best use of resources,

as well as halting and unloading programs, and instrumentation, debugging, and code

generation, all seem to involve graph manipulation. I believe that graph manipulation will

be an important activity in the machine (I expand on this in Section 3.7) and it may be

a very appropriate OS “service”, not to mention a tool used by the OS to manage other

programs.

Specifically the ability of instructions to modify PE memory in the SD-ASIC makes

me wonder if it would be possible to relocate instructions belonging to a program while

the program is running in the FGM, or even dynamically add new ones. When it would

be beneficial to move a computation, either to take advantage of underutilised PEs, or to

bring it closer to a resource it needs to access, it would be convenient if the OS or hardware

could do that transparently. This would effectively make all code position-independent.

We have a rare chance to start from scratch, to leave behind some of the legacy of bad

decisions (such as bad instruction sets), and to rethink things and challenge assumptions.

At the same time we must not make it too difficult for people to transition to this technol-

ogy, which means we must consider compatibility with existing systems, and must not be

so arrogant as to reject sequential programming languages and the like.

3.4.1. Hardware management

Device drivers

To provide a hardware-independent interface for other software, an operating sys-

tem provides device drivers to interface with the other devices in the machine.

Perhaps in time such devices will adopt NCL and dataflow! Perhaps they will inte-

grate directly into the array of PEs. However, for the moment the OS will definitely

need to be able to communicate with legacy devices over some kind of shared bus.
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This does not seem like a big challenge, though some issues like timing might need

careful consideration.

Interrupt handling

Hardware interrupts fit naturally into an asynchronous data flow model, particularly

as most hardware platforms include an interrupt-acknowledge procedure. However

the word “interrupt” becomes a misnomer, as they no longer interrupt anything.

They would simply be hardware notifications that the OS responds to. The FGM

may even be able to fulfil the role of an interrupt controller (see Section 3.5).

Fault tolerance

Dealing with hardware failures in a way that causes minimum software disruption

is an important role of an OS. Since dataflow programs do much in parallel, they

may accumulate long pipelines of work that needs to be discarded if, for instance,

a network connection closes abruptly.

Given the thousands of homogeneous PEs on a chip, and the flexibility of flow

graphs, it is conceivable that faulty PEs will be tolerable (provided they can be

detected and routed around). The ability to cope with a small number of faulty PEs

would bring down the cost of manufacturing the FGM. The OS might need to help

support such fault tolerance.

Resource management

Two common OS activities become quite different in the dataflow processor, namely

processor scheduling and memory management.

Processor scheduling becomes more of a spatial than a temporal problem. The

OS does not need to time-multiplex PEs as they do this themselves. However, the

machine requires communicating computations to be spatially proximate.

Memory management becomes tied to processor scheduling and becomes a largely
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local problem. Virtual addresses are not really necessary because addresses are

local, and in Section 3.7 I suggest making references opaque, which would make

memory addresses entirely inaccessible.

To allow arbitrary data structures to be created, some form of memory allocation

will be necessary. In Section 3.6 I discuss approaches for controlling allocations.

Management of external resources such as external RAM, flash memory, disk space,

human-computer interfaces, and networking will probably involve a combination of

traditional methods like file systems and access rights and new abstractions which

are appropriate for the FGM like presenting external data as graphs or data flows.

Questions of how graphs and data flows are represented on external media will need

to be addressed.

Hardware protection

Hardware protection mechanisms such as kernel mode and memory protection may

be unnecessary. The OS loader could ensure that a program contains no “sensitive

instructions” when it is loaded, and if the machine does not have addressable mem-

ory then no memory protection is required either. This question will be discussed

further in later sections.

Perhaps some form of hardware protection would simplify OS implementation.

However I am not sure what such protection might look like.

3.4.2. Multiplexing and abstraction

Procedures, system calls and libraries

Procedure calls, and, by extension, system calls, are not first class operations in

a dataflow processor. Rather, the invoked code must form part of the data flow

— akin to being inlined. Obviously a request can be serviced concurrently with a
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program’s continued execution. Perhaps a system service should be viewed as part

of the program.

Of course, programming languages can provide the appearance of synchronous sys-

tem calls, either by inserting explicit sequencing or by attempting to preserve the

appearance of synchronicity whilst taking advantage of parallel hardware.

Inlining procedures, system calls and libraries everywhere they are used wastes

space if they are not heavily utilised. Instead, instances of procedures or libraries

could be shared between an appropriate number of clients that require them, and

the OS could be responsible for creating new copies, and cleaning up and merging

existing ones according to demand. Choosing the right granularity for this may

be challenging. I see this as something of an analogue to hardware and software

caching on traditional multicore and distributed systems.

Tasks, processes and threads

In order to control and manipulate computational work and the resources allocated

to it, users and the OS need a “unit” of computation by which to delineate a logical

grouping of instructions and data that is coarse-grained enough to be manageable,

something like a “task” or “job”.

This is of particular import in a machine where the boundaries between interacting

programs, libraries, and the OS can be very blurry. For example, a program is not

only a graph in itself — it is a subgraph of a larger graph. The program, including

any OS glue code right up to the point where data is sent to and received from out-

side the processor, as well as all programs it directly and indirectly communicates

with — in other words, possibly all instruction is in the FGM — together form a

graph. There are many ways to divide this graph up into subgraphs — most of them

useless.
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It is doubtful that we need threads, which imply a unit of sequential execution, as

an abstraction, although it would be best if threaded programming models could be

adapted to run on whatever abstractions will be provided.

One idea is to summarise the tasks in the FGM in terms of their important compo-

nents and the data flows and dependencies between them. This might be represented

as a hierarchy of components. The hierarchy might be organised into logical group-

ings of code, building up from subroutines to modules to processes to the tasks

within the machine. The hierarchy could be stored as a data structure in the FGM,

possibly going all the way down to the program’s actual instructions. This could be

particularly useful for instrumentation and debugging.

Separation and virtualisation

Most operating systems present the illusion that a program is running in a machine

of its own. What does this actually mean? It means that the program has a private

memory address space and set of registers. In the FGM it seems that as long as

programs cannot conspire to direct their data flows into other programs, and any

use of local memory is somehow kept restricted to a single program, separation is

enforced.

The Burroughs B6700 computer used trusted compilers to ensure that programs

were incapable of interfering with each other by construction, however such a sys-

tem required only a small flaw somewhere in the system in order to gain control

over the system. A successful attack is described by [Wilkinson et al., 1981]. The

problem with this system is that there is no mechanism to verify that a program is

trustworthy — it is either trusted or it is not.

The Singularity operating system [Hunt et al., 2007] uses programs which are guar-

anteed by construction not to interfere with each other in order to remove the
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need for expensive hardware protection and complicated management of shared

resources. Singularity uses cryptographic techniques to verify that a program was

generated by a trusted compiler, which is a big improvement in trustworthiness but

still relies in the compiler being correct.

In the FGM, it could well be possible to inspect the entire program graph of a

program when it is loaded and ensure it has no instructions that could be used in a

dangerous way. This requires the instruction set to be designed in a way that makes

this plain. This will be developed further.

The FGM should be fairly good at executing programs with different instruction

sets — dynamic binary translation seems like an efficient way to do things. The

machine should be able to efficiently simulate NCL and probably electrical circuits

by building programs that take the shape of these circuits.

Virtual memory, swapping and persistence

If it is possible for the OS to move individual instructions around in the processor

without disrupting a program’s execution, it should be possible for the OS to seri-

alise a graph and save it to external memory. Thus an entire program state can be

saved and loaded without any fuss. If data structures are represented as graphs then

swapping data to external memory (in order to free up more processing nodes) can

be done more intelligently as it is possible to examine the distance between a com-

putation and its data, perhaps in a similar way to that described by [Mazzola Paluska

et al., 2011]. This means that memory scheduling may not be the problem it is on

von Neumann machines [Denning, 1968].

Shared memory

Shared PE-local memory without synchronisation is downright dangerous. Any

sharing of memory should be synchronised in the same way that use of shared code
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is synchronised. When it comes to external memory we might resort to classical

techniques like file locking.

Events

Event-based programming fits naturally within the dataflow processor, but events

do not need to be handled sequentially. Asynchronous notifications, which have

traditionally been clumsy, are a fundamental feature of the hardware.

Periodic or time-delay events would be important for certain applications. This

might involve providing an abstraction over an external timing source, or regulating

access to timing sources in the FGM.

Files, pipes and sockets

These seem like timeless abstractions. Certainly pipes and sockets can fit very

well in the dataflow model. Files are traditionally seekable, which is a bit more

complicated but certainly achievable.

A stream of data can be sent around serially (as a single dataflow) or in parallel

(as many parallel dataflows of one data item), or something in between. The ap-

propriate choice depends on whether it can be processed in parallel, and how many

resources we wish to dedicate to it.

I think graphs should be a different type of primitive object that can be stored and

retrieved.

The FGM fabric might not provide a convenient way for spatially remote programs

to communicate with each other. The OS might be responsible for providing a

routing network as an abstraction over whatever long-range links the FGM might

offer. This might tie in with a socket abstraction of some sort.

I/O caching and prefetching

Caching becomes more challenging as programs that wish to access the cache may
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need to be located closer to it. Perhaps caches will be subjected to the same treat-

ment as other components which can service multiple components as mentioned

above.

When I/O is asynchronous, prefetching seems like something that could potentially

be exported to a language runtime.

Heterogeneous hardware

Operating systems provide abstractions over hardware that provide a common in-

terface to hardware despite the details of the hardware differing.

Different areas of the human brain appear to be dedicated, or at least better suited,

to certain tasks. Perhaps in the FGM we will see different domains of the proces-

sor better suited to different tasks — some domains might be faster, some might

have more memory, some might consume less power, some might not have sup-

port for floating-point arithmetic. The OS might migrate programs around and even

translate them to make the best use of resources.

Another option would be to scatter heterogeneous PEs throughout the array. This

approach seems to make it easier to arrange programs in a way that suits their needs

dynamically, since decisions about moving a program to where available resources

are would be based on local information.

On the other hand, many programs exhibit a tendency to use particular resources.

Consider that a program with large memory usage and low needs for processing

power would do best if it were running only on PEs with more memory, or that

a numerical simulation would make extensive use of floating-point arithmetic op-

erations, while a web server would use virtually none. Thus creating domains of

similar PEs might be sensible.
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3.4.3. Services

Inter-process communication

The hardware is built for allowing communication by passing messages between

software components. What sort of abstractions will be presented to help take ad-

vantage of this needs further investigation, however there is sure to be a lot we can

learn from distributed systems and component systems.

Debugging, instrumentation and auditing

Without sequential execution, debugging becomes more difficult. This is a neces-

sary consequence of embracing parallelism at all levels of a program. The ability

to single-step a program written in a sequential language, even when it has been

optimised to exploit concurrency, seems desirable.

However, presumably copying the entire state of a program is fairly cheap in terms

of time, because the act of copying can take advantage of parallel hardware. This

suggests that checkpoint-based debugging could make a lot of sense.

Instrumentation will also be very important, particularly as it is more difficult to

reason about timing in the FGM. Collecting and summarising information from all

over a flow graph is something that needs further exploration.

The ability to measure PE utilisation, activation counts and so on will also be useful

in terms of laying out dataflow graphs efficiently, and for auditing and accounting

purposes.

Methods of annotating code could be quite important for the purposes of debugging

and instrumentation. Instructions may form part of a larger data structure.

I would like to mention that the operation of the human brain is investigated by

measuring activation with MRI and similar machines. This kind of visual approach

to debugging or instrumentation might sound too impractical to be of much use, but
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it might be useful for large-scale problems, such as large self-modifying programs,

and resource allocation for the entire collection of programs in the machine.

Energy management

The OS should assist in taking advantage of the energy/performance flexibility of

NCL (see Section 2.8) to balance energy consumption and heat dissipation with

performance.

The usefulness of single-ISA heterogeneous multicore architectures for energy man-

agement have been demonstrated [Kumar et al., 2003]. An array of PEs (which do

not need to have uniform performance characteristics) whose energy usage and per-

formance can be scaled in whole or in part, quite possibly with the option of putting

large domains of the array to sleep, sounds like an even more flexible solution.

Presumably the OS would be able to take advantage of that.

Namespaces

Although the hardware tries to avoid global addresses and the like, the OS will need

to have some kind of control over the entire machine. Users and administrators will

want to list tasks, and refer to them by some kind of name to start, stop, debug, and

manipulate them.

Some kind of namespace of software components might be useful so that systems

can compose themselves dynamically. Namespaces of users and devices seem use-

ful as well.

The obvious namespace provided by most operating systems is a file system. We

must take into account that fast searching of vast amounts of data could be practical,

and that semantic connections and classifications might be more easily stored in the

machine. Possible choices include a flat address space as in SASOSes, a hierarchi-

cal file system structure, a more complex graph-based namespace, perhaps based
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on semantic relations, or a formless easily searchable space of objects.

Keeping these namespaces and operations on their referents coherent across the

processor without introducing unnecessary delay or inconsistency might be a chal-

lenge. Replicated copies of objects will be a must. Established distributed systems

techniques like two-phase commit [Gray, 1978] are likely to be useful and the ex-

perience of SASOSes may help us.

Security

Dataflow programs that do not access PE-local memory are unable to interfere with

other programs. I think it would be possible to extend this even to programs that

modify themselves, so that they are secure by construction rather than due to hard-

ware security enforcement. Changes to the instruction set may be necessary to make

this work. However, perhaps it would be easier if some kind of hardware privilege

enforcement were provided. This is further discussed in later sections.

There is no reason why things like filesystem security policies and sandboxing can-

not be implemented in the OS for a dataflow processor. Further, things like fine-

grained taint tracking should be possible to implement where the dataflow structure

of programs is so plainly exposed to the OS.

3.5. The Outside World

While most programs accept some form of input when they begin and many continually

accept input during operation, every single useful computer program produces some kind

of output. It can take many forms, including text, graphics, sound, network packets, or

control signals to a robotic system.

The FGM is a system of interlinked feedback loops. Some of these loops include

elements that are outside the FGM, for example a loop that passes through an electric
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motor to a shaft encoder before returning to the FGM.

This view seems conceptually more challenging than a view where the outside world is

subordinate to the computer, where the computer pulls in data when it is ready (by reading

device registers) and pushes data out as it calculates it (by writing to device registers).

Instead, inputs can arrive at any time. Nothing stays fixed for a predictable clock cycle.

There is nothing to “stand” on while contemplating the behaviour of the system.

Of course, it is possible to emulate the behaviour of a traditional computer: an FGM

program can be constructed so that the entire program requires a special signal to progress

— a clock done in software rather than in the hardware. Hardware inputs can be synchro-

nised as soon as they enter the FGM. This is not an efficient way to operate but it shows

that the FGM is at least as general as a traditional computer.

In a traditional computer, sometimes external devices do send notifications to the pro-

cessor without being asked: interrupts. Traditionally these are handled by a device called

an interrupt controller which prioritises and masks incoming interrupt signals. Since the

FGM can deal with asynchronous inputs, using nondeterministic choices, to my under-

standing it is possible for the FGM to perform the functions normally performed by an

interrupt controller. In other words, the FGM is general enough to implement an interrupt

controller in software!

I believe that having an understanding of the role of input and output for the FGM is

important for the design of an operating system, as the OS will have to mediate access to

the outside world. In particular it may need to place device drivers between programs and

the outside world, and the edge of the chip is also probably where programs are loaded

and saved, and where commands from the user such as commands to terminate programs,

enter the FGM. Developing such an understanding will probably require actually con-

structing software that has to deal with I/O.

A program may not send its output directly to the outside world, but instead send it to
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another program. The interfaces between different programs, and between programs and

the outside world, seem like places where the OS will need to be active, and might turn

out to be good places for the OS to base its control over programs.

3.6. Management

An operating system needs to manage hardware resources and software which uses those

resources. The challenge with the FGM is that each instruction has a small area of influ-

ence. How do you manage something that is beyond your reach?

In most real-world management structures like government and corporate management,

no single person collects all the information, nor makes all the decisions, nor commands

everyone else. Instead, information is collected and summarised by various people before

being passed on, decisions are made at an appropriate level of management — sometimes

by consensus, sometimes by individuals — and high-level commands often fan out to

several individuals and gain detail as they travel to their points of implementation. Duties

are delegated, appeals are made to higher levels when necessary. Some management

structures are strictly hierarchical, while others are decentralised (involving a separation

of powers) and operate on consensus.

These are exactly the kinds of approaches that can be applied in the FGM. Choosing

the right sort of arrangement requires a good deal of analysis and experimentation, how-

ever there is no fundamental barrier to managing a system where each component of the

management structure only has a small area of influence and a limited working capac-

ity. The FGM is perhaps simpler than real-world management structures since we can be

confident that all PEs will follow the rules.

Possible shapes for management structures that I have identified are broadcast, directed,

hierarchical, and distributed. They are not all mutually exclusive and different approaches
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can apply at different scales. For instance, a hierarchy can be used to broadcast a message

to all nodes at the bottom of the hierarchy, or it can be used to direct the message to some

parts of the hierarchy. A distributed approach could rely on the fact that starting from one

instruction in a flow graph, one can follow data flows and eventually reach all the other

instructions in the graph.

Distributed approaches seem most desirable as they can often function using nothing

more than a program’s internal structure, that is, no auxiliary control structure is needed.

Information on where all the instructions of a program are located can be found within the

program itself, so duplicating that information creates a potential inefficiency. Directed,

hierarchical and broadcast approaches require either hardware support or extra structures

to be constructed and maintained at the software level.

Two questions are quite illustrative of the resource management and task management

problems that we would like to solve: “How can a running program be terminated?” and

“In the presence of dynamic allocation, how can we control each program’s allocations,

or at the least, prevent a runaway program from bringing other programs to a halt?”

Consider the question of terminating a running program, and let us seek a distributed

solution to the problem. A solution that sounds sensible is to start deleting the program’s

instructions from the boundary of the program. Each time an instruction is deleted, this

triggers the deletion of each of the instructions that are specified as its outputs in a sort

of domino effect. The instruction slots occupied by the deleted instructions may then be

used for other purposes.

However, since part of the program is still running, a data word may be sent to a deleted

instruction by an upstream instruction that has not yet been deleted. If the deleted instruc-

tion has by this time been allocated to another program, the stray data word can cause

undesirable behaviour.

To avoid this problem, we can terminate a program in two passes: first a “halt” sig-
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nal is sent out, starting from the program boundary and following the outputs of each

instruction, putting each instruction in the program into a frozen state (e.g. by changing

the instruction to a NOP, or setting a flag, or changing the priority to zero), and after this

is completed, the deletion proceeds as described above.

How can we determine that the “halt” process has completed? We need to wait for

some kind of signal to come back out of the program, indicating that every single node in

the instruction graph has been visited. We want an algorithm that achieves a similar result

to the propagation of information with feedback algorithm described by [Segall, 1983].

Looking at Segall’s assumptions, we see some that are quite strong for our purposes:

• each link is bidirectional,

• all messages received at a node are stamped with the identification of the link from

which they came, and

• each node has an identification; before the protocol starts, each node knows the

identity of all nodes that are potentially in the network.

Such information might be very useful for housekeeping operations, but such opera-

tions are performed infrequently and it does not make sense to incur substantial costs

during times when such information is unnecessary.

In the SD-ASIC, an instruction can have a large number of input flows since the instruc-

tion does not store the addresses of upstream instructions. This means that one cannot

trace “backwards” through a flow graph based only on the information within the instruc-

tions. Adding space to each instruction for the addresses of its inputs would considerably

increase the memory consumption of each program. This seems a high price to pay for

something that needs to occur rarely or never.

Figure 3.1 illustrates an instruction (the child) and all instructions which contain a

reference to it (the parents). Since the sources of an instruction’s inputs must be located
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Figure 3.1.: Parents of an instruction.

on the PE itself, or one of its neighbours, locating all such instructions involves a scan

of maybe a few thousand memory locations. I shall refer to this operation as a parent

search. Since this would not need to be done very often, the cost seems reasonable, and

the operation could be assisted by hardware optimisations.

It would also be very rare for an instruction to care where its input came from. Adding

extra bandwidth between PEs so that this information can be sent around seems wasteful.

Perhaps, when this is needed, it can be implemented in software by using an extra data

word.

Can we design a distributed propagation of information with feedback algorithm with-

out any significant changes to the SD-ASIC? If we assume there is a little spare book-

keeping space in each instruction, and that there is a path from every instruction to every

other in an FGM program (which is reasonable because each instruction is part of a cy-

cle and we can assume a program’s graph is connected) then I suspect a system based

on counting branches and merges would work, though I have not verified this. If each

instruction included a count of how many upstream instructions reference it (a reference

count), a simpler algorithm might be possible.
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A hierarchical approach to the propagation of information with feedback is far simpler:

if we have all the instructions in the program as leaves of a tree, we simply broadcast a

message along the tree and let the acknowledgements filter back to the root.

Now let us consider the second question: in the presence of dynamic allocation, how

can we limit a program’s allocations? Let us frame this as a real-world problem to try to

understand it better. If a man walks into a bank branch and withdraws some money, then

quickly travels to the next town and withdraws more money from another branch, how

does the bank prevent him from withdrawing twice his current balance? News of the first

withdrawal must travel to the second branch faster than the man can travel. What if he

has an accomplice — i.e. two men withdraw from the same account in different branches

simultaneously?

Perhaps we do not need an entirely strict policy. Perhaps it is enough that a program’s

resource consumption is made known to the OS in a timely fashion, and that the program

is incapable of allocating resources faster than the OS can chase it up. Certainly an OS

would be able to enforce things about the program that could not be enforced in the

bank analogy: in particular the program would not be capable of impersonating another

program.

At one extreme, the OS could periodically check resource consumption in the FGM,

and if resources are running low, it could conduct an audit of which programs are con-

suming too many resources, and take appropriate action. At the other extreme, we could

require every single node allocation to be approved by the OS before it proceeds. This

would involve a huge amount of communication and seems out of the question. Neither

of these approaches seem efficient.

I thought of a reasonable alternative: programs that require allocation explicitly request

“permits” from the OS in advance that permit them to perform a specified number of

allocations. The program would be responsible for sending these (unforgeable) permits
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along to the locations where allocation occurs. This means that allocation does not lead to

overheads when no allocation is occurring, and it doesn’t require every single allocation

to be approved by the OS.

Obviously when nodes are deleted, the program should be credited for this somehow.

It should either be able to trade them in for new permits, be able to re-use them in later

allocations, or the OS should record a decrease in the program’s resource usage. The

exact mechanism will depend on how nodes are deleted.

In both of these methods, the amount of budget a program has is sent around within the

program, and the program’s “identity” is protected by the fact that the pressure/permits

cannot be forged or leaked into other programs.

We could also track program identities by assigning each program a unique number,

and modify the hardware so that program information can be broadcast relatively effi-

ciently. This would not scale to an arbitrary sized FGM, so perhaps we could divide the

FGM into control domains of (for instance) 50×50 PEs. Every instruction in the domain

would be stamped with an identification number (for instance 0 to 255) indicating which

program it belongs to, and within that domain any PE would be able to access a table

of information about the programs within that domain. Where programs cross domain

boundaries appropriate bookkeeping needs to take place, and domain boundaries would

likely be where the bulk of OS activity occurred. While such a scheme might prove very

convenient, I fear it simply delays the onset of difficult resource management problems

until programs reach a larger scale — a scale at which the problem is managing control

domains rather than instructions.
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3.7. Graph Manipulation

Many real-world problems, from traffic flow to computer networking, can be posed as

graph problems. There has been much study of graph algorithms, particularly for se-

quential machines. Graph algorithms are often difficult to run on multicore or vector

hardware, because the graphs themselves are relatively amorphous and cannot be neatly

arranged into n bins. It would seem that a reconfigurable graph fabric (like the FGM)

would be the optimal choice for efficient execution of graph algorithms.

Consider the problem of finding the shortest path between two nodes in a graph. On a

sequential machine, only one node can be explored at a time. It isn’t obvious how to take

advantage of vector hardware to work on this problem faster. Multicore machines don’t

seem a good match for the problem because thread creation and migration is expensive,

and threads will frequently need to synchronise on shared data. On the FGM, a program

could be created to have the same shape as the graph in question, thus allowing all nodes

that are currently candidates for exploration to be explored in parallel.

Manually writing a program that does this for a specific graph should be fairly easy.

However, what if we want to feed graphs into the program at runtime, and have it construct

software to analyse the graphs in the most efficient way? Such a program needs to be able

to generate flow graph programs dynamically.

Now consider a data structure like a FIFO queue or a binary tree (of unlimited size).

On a von Neumann machine we might store a queue as a linked list, and a binary tree as a

tree. Both of these structures are just special cases of graphs and in principle they should

be quite natural to represent in the FGM.

As items are added or removed from these data structures, we need to allocate or release

memory and adjust pointers between nodes, in the FGM as on von Neumann machines. I

imagine that the memory would be allocated from a free list on the PE in question, and if

no memory was available, a procedure to move nodes to neighbouring PEs and/or perform
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some kind of garbage collection before retrying might be initiated. This will mean, for

instance, that as the FIFO queue gets larger, its contents will begin to spread over multiple

PEs.

It might be desirable for the binary tree to be an active data structure (see Section 2.7)

to allow multiple updates or queries to be processed simultaneously, thus deriving benefit

from the machine’s parallelism. This means that not only would the data grow as items

were added to the tree, but also new copies of tree code would be generated.

The FGM is certainly capable of representing graphs. The programs it runs have an

explicit graph structure: each instruction is a node, and contains references to other nodes.

These references specify the arcs of the graph. Perhaps we could extend this to represent

and manipulate data with a graph structure. If that were possible, it should also be possible

to manipulate graphs containing code, and hence create something like a compiler.

It appears that graph manipulation and generation of code (that is, dataflow graphs) at

runtime will allow the FGM to be used on a much larger class of problems and make it

easier to solve certain problems efficiently. I must admit that finding an efficient hardware

or software implementation is likely to be challenging. Below I will explain why I believe

it is possible, and discuss various implementation considerations. In Chapter 4, I propose

a model for graph manipulation and demonstrate its utility.

3.7.1. The graph interpreter

One way to provide graph manipulation functionality with minimal changes to the archi-

tecture is to build a giant static program that covers many PEs and operates on some kind

of data representation of a graph. It might treat the graph as a flow graph (but equipped

with an instruction set affording graph manipulation). Alternatively, it might apply sim-

ple rewrite rules to the entire graph, a computational model that has been proposed and

investigated in the past (see for example [Tomita et al., 2002], which describes a self-
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replicating Turing machine embedded in a graph). Essentially it would be a simulation or

virtualisation of a different kind of graph processor.

Implementing such a program might give insights into how to redesign the hardware

to facilitate graph manipulation. Using a real SD-ASIC to run efficient simulations for

further development of the FGM would be a good way to eat one’s own dog food.

By virtue of being distributed across many PEs, this program would be able to take

advantage of the parallelism of the machine, but would likely add a considerable degree

of overhead and might need quite a large number of instructions per PE. On the other

hand, it might turn out to be a good way to go about things, and become a library, or part

of the OS.

3.7.2. Hardware-supported graph manipulation

The graphs that can be formed by taking fixed-size instruction slots as nodes and the

references they contain as arcs (as described above) are limited in their structure. They

are limited in the number of outgoing arcs permitted per node. [Hillis, 1988] examines

this problem, discussing the different options for how many references a node contains,

and explains that we can view a collection of physical nodes as a single logical node,

which does allow us to encode arbitrary graphs.

Another issue is that, unlike the Connection Machine, the FGM fabric is not a complete

graph, that is, nodes are not connected to all other nodes. In order to represent arbitrary

graphs, we may need to consider a chain of nodes as a single arc, thus allowing arcs to

span arbitrarily long distances.

The amount of data, code and references to other nodes that can be stored within a

single node is a balancing act. Making nodes consume a fixed number of bits makes it

much easier to manage allocation but leads to either wasted space within nodes or the

overhead of spreading data across multiple nodes. Nodes with a single reference within
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(a) (b)

Figure 3.2.: Simulating nodes with more references: (a) using three nodes each with two
references to represent one node with three references; (b) using two nodes
each with three references to represent one node with four references.

them are not useful. Nodes with two references in them seem expressive enough for

any needs, since a group of three such nodes can be used to simulate a single node with

three references, and two nodes with three references can be used to simulate a node with

four references, as shown in Figure 3.2. Adding more references reduces the number of

nodes necessary to represent a graph, but creates wasted space when the references are

unnecessary. A reasonable balance must be found, or variable-sized nodes used.

How can we manipulate such a data structure with only local information? I believe a

principle which I call transitive proximity is important: loosely speaking, if A is near B

and B is near C then A is near C. If we assume that B has uniform chances of being on

the 9 PEs which are at most one hop from A, and the same holds for B and C, then there

is a 60% chance that A and C are at most one hop from each other, and otherwise, they

are two hops apart.

Thus, if B has a reference to C, and B passes this reference to A, then either the ref-

erence can be handed over trivially, or one of A or C needs to be moved by a limited

distance. This distance is no larger than the maximum distance between two nodes. Mov-

ing either A or C to the same PE as B, for example, will be guaranteed to bring A and C

near enough to each other.
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Moving nodes around is not trivial. A node being moved will generally be referenced

by other nodes, and these references must be updated. Doing so might be impossible

without moving these nodes also, which would require further references to be updated,

and so on. Waiting for all this work to complete just to be able to pass a reference around

seems unreasonable. Instead, when a node needs to be moved, it can be moved to a

new location immediately, and a placeholder for it left in the node’s old location. The

placeholder could contain a forwarding address, allowing references to it to be updated

when convenient. Once no more references to the placeholder exist, it can be deleted to

reclaim its space.

In the case where a node is an actual instruction with incoming data flows, the forward-

ing address can be used to ensure these flows don’t get lost. In this way it seems that

moving instructions is possible even while a program is running.

The movement of nodes could occur not just to support graph manipulation activity, but

also to move instructions so as to balance out resource usage. For instance, if a PE is low

on memory but one of its neighbours has plenty of memory, instructions could migrate so

as to even this out.

For this to work on a larger scale, that is, so entire programs migrate to areas of the

FGM that are little utilised, a method based on pressure and stiffness could be used —

instructions would experience a “force” pulling them towards regions of lower resource

utilisation and would in turn pull on their neighbours, thus tending towards a smoother

pattern of resource consumption using local information only.

3.7.3. Opaque references

The ability to do pointer arithmetic is not particularly useful in the FGM. A reference

points to one of some several hundred nodes, so the possible size of an array-like data

structure is quite limited. Additionally, many problems that on a von Neumann computer
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would be solved with the use of an array, would on the FGM be solved by operating on one

or more incoming data flows, thus would not require anything being stored or retrieved

from such a data structure.

Aside from pointer arithmetic, there seems to be no need for a program to inspect

the numerical value of a pointer. So if pointer arithmetic is disallowed, references can

be opaque, that is, their numerical value can be impossible for a program to obtain or

manipulate.

Opaque references help enforce separation between programs. References can not be

created out of nothing. They can only be copied from existing references, and this allows

references to be validated when they are created rather than when they are used. Opaque

references also seem like a very useful idea if nodes can be relocated by the hardware at

will, since the actual numerical value of a reference is subject to change at any time.

Opaque references can be seen as a form of capability system (see Section 2.10). If

node A has a reference to node B, then A has certain rights over node B. If A is a normal

instruction then presumably it has the right to send data to node B. However, A might

be a graph-manipulation instruction, and be capable of reading one of B’s references. To

prevent violation of the separation between programs, a model would need to be adopted

that could prevent graph manipulation instructions from following a chain of references

into a separate program.

3.7.4. Templates

Just as constructing arbitrary pointers is dangerous, constructing arbitrary instructions

could be dangerous too. Instead of manipulating the binary value of instructions and so

forth, I propose the use of code templates. Rather than generating the machine code as

a sequence of bytes, existing instructions would simply be copied and stitched into the

desired configuration by graph manipulation.
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An assembler program would need to have a copy of each possible machine instruction

available. A compiler might have small graphs of instructions. These instructions or

graphs of instructions would be duplicated each time they were required and stitched

together to form a program.

An active data structure would serve as its own template. For example, whenever a

new node is added to a binary tree, the code for that node could be copied from its parent

node. This relies on the similarity between all the different nodes in the tree. It seems

efficient, too: the code template would be fairly near to where it is needed, and multiple

copies could be created in parallel. It seems like recursive functions and recursive data

structures are ideally suited to this because of their self-similarity.

Code templates might make it easier to transform programs between slightly different

instruction sets and could have other benefits for safety/isolation or convenience.

59



4. Investigation

With my investigation I intended to gain a better understanding of the FGM, as well as

demonstrate and evaluate some of the things I had conceived.

Early in the project, I began work on a simulator of the FGM. I did not yet know what

it might be used for, but I was certain that it would be valuable. When this was complete,

I created an assembly language to make it easy to write programs which could run on the

simulator.

Since I was not sure how the simulator would be used, and furthermore I thought it

likely that I would want to experiment with changes to the simulator and assembly lan-

guage, I designed them to be somewhat abstract and easily extended and modified. I felt

that building my own simulator was a better option than obtaining one from Wave Semi,

since by building a simulator, I would learn far more and find it easier to work with and

modify the simulator.

The programming language I chose for these programs was Haskell. The language was

ideal for my purposes. It is a hotbed of programming language research, and allows the

creation of sophisticated, extensible programs with a minimum of code. The Haskell type

system helps prevent many types of bugs well before a program is run, which is important

in a research environment where small changes are often being made to a program.

I spent some time writing simple programs to experiment with the simulator and gain

a better understanding of the FGM.
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As my ideas developed, I became convinced that graph manipulation might be an im-

portant tool within the FGM and ought to be investigated. I decided to write a flow-graph

compiler, that is, a program running within the FGM, capable of creating a new FGM

program. Since an FGM program is a graph, this would presumably require the use of

graph manipulation capabilities.

Although a compiler is considered by some to be part of an operating system, generally

this is not the case. Either way, my aim was not to write a useful compiler for the FGM,

but to investigate issues that might be relevant to an operating system by writing a very

simple compiler.

To this end I designed a set of graph manipulation instructions for the FGM, and added

them to the simulator and assembly language. Due to the extensible way I had designed

the simulator and assembly language, these changes did not break existing programs I

had written for the simulator. I then implemented the compiler (adding a few more graph

manipulation instructions to the simulator along the way as necessary).

Following the success of the compiler, I turned to a more pressing need: how to load a

new program onto the FGM. The problem sounds deceptively simple, and if very restric-

tive assumptions are made, the problem is simple to solve. Naturally I chose some more

liberal assumptions, which made the problem rather challenging. I came to a method

which I can justify, but better methods may exist.

Below I cover these endeavours in more depth.

4.1. Simulator

At its core, the simulator maintains a queue of instructions which are ready, that is, their

inputs are available. One at a time, it removes an instruction from this queue, performs

the operation associated with the instruction, and propagates the outputs to wherever they
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are destined. If this results in other instructions becoming ready, then these instructions

are added to the ready queue.

Initially the simulator included a notion of PE locations and took the passage of time

into account, but I found these were not useful for my experiments so I removed them

to leave an extremely simple core amounting to about 250 lines of code (as I have said,

Haskell allows one to describe a lot with very little code — the amount of thought that

goes into each line can be quite large). The following code excerpt is illustrative of the

simulator’s main data structures:

data GraphNode = GraphNode ( IORef ( [ Maybe Word ] , Opcode , [ Maybe P o r t ] ) )

type Opcode = ( Comple tenessFn , ComputeFn , S t r i n g )

type P o r t = ( GraphNode , I n t )

In essence this defines a GraphNode as three things grouped together: a list of the input

words that have arrived for processing (“Maybe Word” because they may or may not be

present at a given time), the operation code, and port locations where outputs are to be

sent (“Maybe Port” because some outputs are discarded rather than being sent anywhere).

An Opcode is a group of three things: a function that determines whether the input is

complete (i.e. the instruction is ready), a function that does the actual computation, and

a string which contains the instruction’s name (for debugging purposes). A Port specifies

both a GraphNode and an integer identifying which input of that instruction is the target

of a data flow.

Defining a new type of instruction is as simple as writing a completeness function and a

compute function for the opcode. While writing programs within the assembly language,

I found I was using a particular construct so often that I created a new instruction for it.

I called this instruction GATE, and given two inputs x and y, it will wait for both inputs to
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arrive, and then output x. In this way y controls a “gate” allowing x to pass.

The PASS instruction simply passes its input x to its output (possibly to multiple out-

puts, in which case x is duplicated). A chain of these instructions can be used to relay

information over long distances.

4.2. Assembly Language

I implemented my assembly language as an embedded domain-specific language (EDSL)

in Haskell. This meant the development effort was minimal and the language could utilise

Haskell features.

The language is built around flows, which as the name suggests, represent data flows.

Whereas in the hardware, each instruction specifies where its outputs go, in the assembly

language you specify where the inputs of an instruction come from. This leads to a much

more natural programming style where instructions look like functions of their inputs.

In fact, program components can be defined as Haskell functions and strung together

as desired. These fulfil a similar function to macros in macro assemblers, and I will refer

to them by this name.

The following fragment shows the square macro which uses the mul instruction to

square its input flow, and the quadratic macro which evaluates ax2+bx+c2 given inputs

x, a, b and c, utilising the square macro as well as the add and mul instructions.

s q u a r e x = mul [ x , x ]

q u a d r a t i c x a b c = add [ mul [ a , s q u a r e x ] , add [ mul [ b , x ] , s q u a r e c ] ]

The following fragment shows the macro counter which, upon receiving a request,

will output an increasing integer, initially 0, then 1, 2, 3, etc.
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c o u n t e r r e q u e s t = v a l u e where

v a l u e = I 0 <∼ g a t e r e q u e s t n e x t V a l u e

n e x t V a l u e = add [ va lue , g e n e r a t e v a l u e ( I 1 ) ]

This example shows the <∼ notation which gives flows initial values. In the case,

value is initially the integer 0, and subsequent values come from nextValue gated by the

request. generate is a macro which repeatedly generates the same value (in this case

1) gated by the presence of an input. Note the usage of value within the definition of

nextValue — we have thus constructed a loop.

Instructions with multiple outputs use Haskell’s tuple or list syntax to define multi-

ple flows at once. In the following example, the flows quotient, remainder, loop and

completeness are generated from multi-output instructions, and toDecimal is itself de-

fined as a two-input, two-output macro:

t oDec ima l i n p u t d i g i t A c k = ( c o m p l e t e n e s s , r e m a i n d e r ) where

( q u o t i e n t , r e m a i n d e r ) = divmod [ unsafeMerge loop i n p u t , g e n e r a t e ’ q u o t i e n t $ I 10]

( l oop : c o m p l e t e n e s s : ) = s t e e r [ c o m p l e t e n e s s ’ , q u o t i e n t ]

c o m p l e t e n e s s ’ = eq [ g a t e d i g i t A c k q u o t i e n t , g e n e r a t e ’ c o m p l e t e n e s s ’ $ I 0 ]

The instructions divmod, steer and eq respectively find the quotient and remainder of

the inputs, use one input to steer the other between multiple outputs, and determine if two

values are equal.

As stated above, the macros are Haskell functions. When the program is assembled,

the functions are evaluated, resulting in an intermediate recursive data structure of instruc-

tions and flows (but no macros). A recursive data structure can be traversed ad infinitum

due to the cycles within it. I used the data-reify library by [Gill, 2009] to solve this prob-

lem. It is capable of taking a recursive Haskell data structure and reifying it into an explicit

graph. My assembler takes the resultant graph and transforms it into a form the simulator

understands, which mainly involves reversing all the arcs in the graph, so that instructions

know where to send their outputs rather than where their inputs come from.
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I have found that loops play a critical role in FGM programs and every loop needs

initialisation somewhere within. I believe I have designed an effective tool for writing

FGM programs. My experience in using it to write various experimental programs has

been good.

4.3. Graph Manipulation Instructions

Consider the following C function which adds a node to a linked list:

void addNode ( i n t da ta , s t r u c t node∗ i n s e r t i o n P o i n t )

{

s t r u c t node∗ newNode = ma l lo c ( s i z e o f ( s t r u c t node ) ) ;

newNode−>d a t a = d a t a ;

newNode−>n e x t = i n s e r t i o n P o i n t −>n e x t ;

i n s e r t i o n P o i n t −>n e x t = newNode ;

}

On a sequential machine, a memory address can be referred to multiple times as part of

graph manipulation code. In the above example we see newNode being dereferenced twice

and insertionPoint dereferenced twice. The sequential ordering ensures the operations

occur in the correct order.

If we make the assumption that graph manipulation instructions are quite simple, then

to achieve something like the above example in the FGM we will need multiple instruc-

tions working together, and so there will need to be a way for these instructions to receive

a memory address to operate on, and to co-ordinate them so they operate in the correct

order. The example above also has a memory allocation operation; some kind of analogue

will be required in the FGM.
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(a) (b) (c)

insertionPoint

newNode

insertionPoint

newNode

Figure 4.1.: Addition of a node to a linked list. Dotted lines show the references being
transferred. (a) shows the state of the list just prior to addition, (b) shows the
result of the first step, and (c) shows the final result after the second step.

First let us review the graph structure already present in the machine. Each instruction

has up to (say) three references within it. These normally specify destinations for that in-

struction’s outputs. Each instruction is a node, and the references specify the arcs between

nodes. This infrastructure seems quite sufficient for representing graphs. We would like

to augment it with the ability to modify them.

Linked list operations are graph operations — we are just accustomed to performing

them on a computer with access to a global memory. If we illustrate the linked list algo-

rithm graphically (see Figure 4.1, we see that arcs are transferred between nodes. This

strongly suggests that we need to be able to pass instruction addresses between nodes in

the FGM in order to perform graph manipulation.

The choice we have is either to allow references to be passed around like other pieces of

data, or to somehow relegate reference exchanges to special instructions. In all cases we

have the problem of passing a reference to a neighbouring node, potentially extending the

reference to be further than nearest-neighbour. I believe this problem, whilst challenging,

can be solved by relocating instructions as suggested in Section 3.7.
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Figure 4.2.: The write instruction: (a) shows two incoming references, (b) shows the up-
date to n and the reference output by the write instruction afterwards.

I chose a model which seemed consistent and elegant, and after implementation I found

that it was usable. In this model, each graph manipulation instruction has a reference input

which shall be referred to as r. Some instructions have a secondary input which shall be

referred to as d. The node specified by r shall be referred to as n (in C notation, we would

say that n = *r). Figure 4.2 illustrates this. Most instructions access n, and produce

output when this access is complete. Short descriptions of the instructions follow.

read Reads a reference out of n, outputs the reference.

write Writes the reference d to n.

send Sends data word d to n like an ordinary data flow.

override Changes the port number in r to d, outputs the result.

duplicate Copies node n, outputs a reference to the new node.

null steer Sends d to one of two locations depending on whether r is a valid reference.

The write instruction must wait until the write is complete before producing an output.

This is necessary to allow further instructions that must occur after the write to be properly
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Figure 4.3.: The read instruction: (a) shows an incoming reference, (b) shows the refer-
ences output by the read instruction afterwards.

synchronised. Similarly the duplicate instruction should not generate an output until the

duplication is complete. (The same is true of the read instruction, however obviously it

cannot produce output before the read is complete.)

As shown in Figure 4.2 and Figure 4.3, I made some of the instructions output a copy

of r when they are done. My reasoning was that subsequent instructions may need r as an

input. This is simply a convenience: references can be copied using the PASS instruction

(not the duplicate instruction which copies an entire node).

Something which is notably absent from the instruction list is a means of deleting

nodes. This is because it would be disastrous if an instruction were to be deleted despite

references to it remaining in existence, particularly if we rely on program graph structure

being sound to prevent programs from interfering with other programs.

Instead, I think the hardware or OS should automatically clean up nodes that are no

longer referred to, rather than allowing programs to delete nodes arbitrarily, since it is

extremely undesirable for a node to be deleted even though references to it still exist.

Since my simulator runs on Haskell, nodes that are no longer referenced will eventually

be garbage collected by the Haskell runtime.
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Performing garbage collection in the FGM will probably be challenging due to the

asynchronicity, lack of global memory, and presence of cycles in flow graphs. If an iso-

lated cycle is created (by deleting all outside references to it), then the cycle will con-

sume space needlessly. Worse, an active computation can continue in the cycle, wasting

resources. Existing approaches to garbage collection, particularly those designed for dis-

tributed systems, should be reviewed. Work such as [Le Fessant et al., 1998] might be

useful.

4.4. Compiler

The compiler I implemented is able to take a Polish notation numerical expression such as

“-*10 3 /2 1 ”, which represents the mathematical expression 10×3− 2
1 , and create a

flow graph that would evaluate the expression, in this case giving the result 28. While the

compiler is only capable of producing very simple programs, it demonstrates that, given

a set of graph manipulation instructions, it is fairly straightforward for a program within

the FGM to create a program for the FGM.

Such a compiler is a self-modifying graph. The program being generated must be

somehow referenced by the compiler at all times, hence in a sense is part of the compiler

graph during the compilation process.

Graph manipulation is used not only to construct the new program, but also to maintain

an intermediate data structure used by the compiler. This data structure was a stack of

“loose ends” of the program being strung together (as shown in Figure 4.4). Thus I was

able to demonstrate the use of graph manipulation instructions in maintaining a simple

dynamic data structure.

Initially the stack contains a reference to where the final output of the program should

be sent. During operation, the compiler reads one character at a time from its input stream.
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10

Multiply

Subtract

3 / 2 1Compiler

stack

Figure 4.4.: The flow graph compiler in operation. The input -*10 3 /2 1 has been
partially processed.

If the character is an operator, the compiler creates the appropriate instruction, connects

its output to the reference currently at the top of the stack (removing it from the stack), and

then adds the two loose inputs of the instruction to the stack. For instance, upon seeing

the + character the compiler will create an ADD instruction and connect it as described.

If the character is a digit, it is treated as part of a decimal number. If the character is a

space, it is understood that the end of a number has been reached. The number is sent to

the reference at the top of the stack (removing it from the stack).

I implemented this design using the assembly language and verified that it behaved

correctly using the simulator.

Each operator is processed by a different branch of the program, and numeric values

are processed by yet another branch. It does not make sense to have separate stacks for

each branch! The different branches must all share a single stack because they all need

to work together on the same data. Therefore some mechanism is required to ensure that

when information is retrieved from the stack, it is directed to the part of the program that

requested it.

This can be achieved by assigning each possible user of the stack a different number,

and when a part of the program sends a request to the stack, the number is appended so
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the stack can direct its reply to the appropriate place. A drawback to this approach is that

it requires all the stack users to be known in advance.

Instead of doing this, along with every request made to the stack, I included a reference

to the node where the result of the stack operation was to be sent (either the value popped

off the stack, or an acknowledgement that a push has been completed). This method has

many similarities with the use of function pointers or callbacks in conventional program-

ming languages. The performance cost of such an operation on real hardware would be

considerably higher than the approach of using unique numbers described above, but it is

more flexible and quite convenient.

4.5. Code Loading

Loading and running a program is effectively a pre-requisite for calling something an

operating system. An operating system for the FGM will need to be capable of doing this.

The difficulty lies in the fact that loading data from outside the FGM must occur

through the boundary nodes, but the instructions have to be distributed across processing

elements that are far from the boundary without destroying the program’s graph structure.

If we restrict ourselves to loading a single program at a time with a completely de-

termined layout, the problem becomes simpler. The program’s graph structure does not

need to be maintained while it is being loaded so long as when loading is complete the

structure is correct. A self-evident technique is to load the program, row by row, so it is

pulled down through the FGM like a roller blind over a window. Instructions that have

to travel the furthest must be loaded first so that they do not block the path of subsequent

instructions. This operation could be globally co-ordinated, so that all the PEs work in

lock-step to relocate the instructions they contain, or in a more distributed fashion where

a push from one end ripples downwards and once it is complete an acknowledge is sent

71



in the opposite direction, allowing the next push to begin.

Detailed study of the problem thus restricted did not seem worthwhile. The problem

appears to be fairly easy to solve, though deciding on which solution is best would require

much knowledge of FGM hardware details. A solution might not be able to load multiple

programs at once or vary the program layout.

Consider a situation where multiple programs are running within the FGM, and a PE

has a large amount of work to do, or a lack of free memory slots. It would be good if a

program being loaded could avoid this PE and favour PEs with more resources. Alterna-

tively, consider a chip with a faulty PE that has been disabled. It would be useful if this

PE could be evaded during loading.1

I chose to investigate the loading of programs with nothing more than the flow graph

itself, that is, no extra information to assist loading, nor on how the program is to be laid

out on the FGM. Only the instructions of the program and the arcs between them are

available.

One problem I looked at was how to design the interface with external memory — how

does the outside world appear to the FGM? I sought an interface which would make the

outside world look like an extension of the FGM. In other words, external memory and

I/O would be done through things that behaved like PEs at the boundary of the array, but

with different properties to the other PEs in the FGM.

For example, the boundary nodes could look like PEs with very large memories at-

tached, and which did not actually execute instructions. A program could thus be stored

in these PEs and when required it would be moved out, instruction by instruction, and

drawn across the FGM. I will refer to PEs equipped with a large number of instruction

slots as towers.

References that refer to instructions in a tower must be large enough to index any of

1With the 8-way connected configuration of the SD-ASIC, it is actually not possible for a program graph
to “jump” over a PE, so this motivation is somewhat weak.
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Tower Bridge Normal PEs

Instruction
area

Reference
area

Figure 4.5.: An illustration of towers and bridges. Note that the amount of space required
for references in a bridge is larger than that of a normal PE, because it must
be capable of referencing all the instruction slots of a tower.

those instructions. Having such large references throughout the entire FGM, however,

is undesirable. All we really need is that tower PEs themselves, and their neighbours,

support these large references. I shall refer to the PEs which sit in between towers and

regular PEs as bridges. These nodes have no more instruction slots than regular PEs,

however each instruction slot is larger so as to accommodate the large references to nodes

in the towers. See Figure 4.5 for an illustration.

Since towers have large amounts of memory attached, the extra space required to store

references within them is not a big drawback. Bridges could either be equipped with

slightly more memory than a regular PE, or simply offer fewer instruction slots to accom-

modate the larger references. The actual layout and implementation of this scheme could

be done in many ways. A tower could simply be a bank of RAM with a memory controller

attached. There could be many of these distributed across the FGM chip, which would
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be good for parallelism, or fewer, larger ones, or the RAM (or ROM) could be entirely

off-chip and accessed via a bus. Some of the instruction slots in a tower could represent

I/O to external devices other than RAM, or serve special FGM functions.

This system of towers and bridges requires variable reference sizes. Making references

opaque as in Section 3.7 would simplify this at the instruction level.

Given such a scheme, a program can be loaded by pulling it out of the towers and

spreading it across the FGM, and it can be saved by folding it away into the towers. The

next time the program is loaded it will immediately resume from the point when it was

saved.

There seem many good reasons why we would want to begin a program from its initial

state rather than resuming it. For example, using ROM instead of RAM to store the

program might cost less or use less energy, or we may simply want to run several instances

of the program. What if the program gets stuck and we would like to terminate it and start

over? It would be good if we were able to copy a program from external memory rather

than just moving it around.

Graph copies could have many applications beyond loading programs. They could be

used to copy a program’s entire state, essentially creating a checkpoint, which would be

useful for development, debugging and error recovery. I suspect they will be useful in

dealing with dynamic data structures, as at time large parts of a data structure require

copying, and at least copying code templates (see Section 3.7) would be useful. Graph

copies might be useful in program compilation, allowing program modules to be copied

and wired together. It would clearly be good if the copy could take advantage of the

FGM’s parallelism.

The challenge in copying a program is in detecting cycles. If instruction A refers to

B, B refers to C, and C refers to A, then after copying A, and then B, and then C, the

algorithm should realise it has already copied A and use the copy, rather than making a
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second copy of A. Various algorithms to do this have been published, with many differ-

ent sets of assumptions on the amount of extra space available, and on memory layout.

[Lindstrom, 1974] presents two algorithms; the first does not assume any extra storage

and runs in O(n2) time where n is the number of nodes, while the second assumes a sin-

gle tag bit per node in both the old and new graph and runs in O(n logn) time. [Fisher,

1975] presents an algorithm that does not assume any extra storage space and operates in

O(n) time, however it modifies the pointers in the original graph during construction of

the copy, restoring them to their original values by the completion of the algorithm, and

also assumes that the copied graph is allocated within a contiguous section of memory.

An implicit assumption of all these algorithms is that the copy is done on a conventional

computer with a global memory. On the FGM, we do not have this luxury. Once a node is

copied we need to send it away as soon as possible to create room for new nodes, because

each PE has a limited amount of space. However we should aim to avoid over-extending

arcs (including those that have not yet been created!). Assuming we are copying from a

tower to a bridge, copied instructions must not leave the bridge until all the instructions

that refer to them and which they refer to have also been copied.

Two methods of keeping track of this are bidirectional references and reference counts.

In the case of bidirectional references, a node is ready to leave the bridge when all of its

references refer to copied nodes. In the case of reference counts, a copy’s reference count

begins at 0 and is incremented each time a reference is made to it. When the reference

count is equal to the reference count of the original node, and all references within the

node refer to copied nodes, the node is ready to leave the bridge.

To look at this another way, the bridge has space for a few hundred nodes that are not

fully linked with their new neighbours. These will run along some cross-section of the

graph. In cases where the bridge PE runs out of space it may have to stash things in a

RAM tower temporarily. Hopefully this will not occur frequently since dataflow graphs
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are not strongly connected, and also bearing in mind that a program will be spread over

multiple towers and bridges as it is being loaded, not just passing through a single bridge.

Since reference counts consume less space I decided to adopt that approach, although

moving instructions with bidirectional links is far easier as discussed in Section 3.7.

To allow for loading programs from ROM, it would be good to minimise or avoid mod-

ifications to the original graph structure. Intuitively, there needs to be a way of detecting

cycles in the original graph, and having each node in the original graph point to its copy

(if one exists yet) seems like the simplest way to do this. Since a relatively small number

of original nodes will be pointing to their copies at any one time in a one-to-one fashion,

the amount of RAM space required could probably be made small with the help of some

hardware optimisations.

In the algorithm I devised, a copied node initially contains references to original nodes.

The aim is to replace these references with references to copied nodes. If it is found that

copied nodes already exist, they are used. Otherwise a copy is created and a pointer to it

stored within the original node that it is a copy of. When a node is copied, its reference

count is set to zero. When its reference count reaches that of the original node, the link

between original and copy is destroyed and the copy may move away from the bridge.

I created a simplified implementation of the algorithm in C. It was intended as a simple

sanity check, and also to help communicate the algorithm. The implementation is given

in Appendix A. I tested it with simple graphs and found that it behaved as expected, in

particular that nodes are generally allowed to move away from the bridge fairly quickly,

though in pathological cases a large number of nodes can be waiting for references to be

made to them.

In principle there is no reason why this technique could not be used to duplicate graphs

within the FGM and not just at the boundaries for loading programs. Some natural ques-

tions arise about how the graph copy process is initiated and whether it uses special hard-
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ware features or instructions, or can be implemented atop more general graph manipu-

lation instructions, and how the resource allocation problem is addressed, but I did not

investigate this further.

I conceived a different approach to graph copy, inspired by cell division (mitosis), dur-

ing which the organelles in a cell line up along the middle of the cell. Initially, instructions

are shuffled around so that each node in the graph is located in an instruction slot which is

just prior to a free instruction slot. Once this process is complete, each node is duplicated

into the free slot. Since the location of each copy node is simply the location of the orig-

inal plus one, the references between copy nodes are trivial to determine. The advantage

of this technique is that nodes do not need extra storage for a pointer to their copies.

A final observation is that when loading a program, particularly from outside the FGM,

it may be necessary to check the instructions of that program to ensure that there are no

instructions that could subvert the FGM’s separation measures. How this might occur

depends on the instruction set, however if there is a clear set of privileged instructions, an

instruction that determines if another instruction is privileged or not could be sufficient.

77



5. Synthesis and Future Work

An operating system is an exercise in integrating a vast collection of components into a

coherent system. The components need to not only make sense individually, but also when

brought together. Understandably, the previous chapters have covered quite a variety of

topics. In this chapter I attempt to bring together the important elements and discuss some

of the boundless avenues for further work.

A design that works well for a simple system may not work well for a more complex

system, and it would be good to avoid investing a lot of effort into a design which later

turns out to be limiting. This is why I have tried to give a broad coverage of this topic,

at various levels and from various perspectives. I hope this coverage will be instructive

in further design efforts on the FGM, enabling decisions that help build towards greater

outcomes.

In my inquiries I have favoured solutions that can be distributed, solutions that only

require local operations, because such solutions are likely to be scalable. The results

have only increased my confidence that the challenges of this machine can be solved

using distributed methods in almost all instances. Such methods may not be the most

economical or practical solution in all cases, but if applied in key places could make a big

difference.
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5.1. Hardware

Programs will need to be deleted from the FGM’s memory to make space for new ones.

This might be a dedicated function of the hardware, but it might also be a special case

of hardware-based garbage collection, or perhaps implemented in software using graph

manipulation instructions. Deleted instructions could be added to a per-PE free list or

some other efficient means of keeping track of free instruction slots.

Something I have appealed to many times is the ability for a program’s instructions

to be moved while the program is running to help even out computational and memory

requirements (see Section 3.7). I believe the most important application of this is in

making dynamic data structures feasible by allowing the structures to grow without hitting

the limit of a PE’s memory. I am reasonably confident that this problem can be solved in

an efficient, distributed way, however I fear the solution will be rather complicated. Given

its utility I would recommend further investigation.

The ability to set the priority of a program (of which pausing the program would be a

special case) would be useful for debugging, controlling programs’ usage of resources,

and for operations which require a program to be stopped. This could be done with

some kind of propagation of information with feedback algorithm (see Section 3.6) which

would likely need hardware support.

The method of towers and bridges (see Section 4.5) seems like a useful hardware trick

to support heterogeneous PEs. I explored it as a way to interface with external devices but

found that it was also useful for large internal memories.

Towers and bridges rely on references being opaque, which means pointers do not have

a meaningful numerical value and pointer arithmetic is impossible. Pointer arithmetic has

limited utility on the FGM, so I do not think it will be missed. Opaque references seem

like an ideal capability mechanism, and I think they could both take the place of global

names for objects, and obviate the need for memory protection even in the presence of
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dynamic allocation and graph manipulation.

Top-down approaches to resource management, such as control domains (see Sec-

tion 3.6) could also be useful in practice, but to me they seem like short-term solutions.

However, if the chip has heterogeneous cores, arranging them in domains might be appro-

priate, in which case some form of central control for these domains might be useful. It

might be a good idea for such control to be implemented in software rather than hardware,

for instance the OS can be active on the boundaries (bridges) between domains.

Although we may not realise it, sequential computers are used to do a lot of graph

manipulation. The FGM is a graph machine, and it ought be more efficient at solving

graph problems than a sequential computer. Designing a mechanism to do this is sure to be

a challenge. I have proposed a set of graph manipulation instructions (see Section 4.3) and

demonstrated that they can be used to solve interesting problems (see Section 4.4). The

implementation of these instructions (or of any other mechanism for graph manipulation)

is sure to be challenging. To explore different models of graph manipulation, it may

be instructive to try to implement various abstract graph machines in software on top of

the FGM. How graph manipulation interacts with things like node relocation, garbage

collection, and allocation accounting will be important questions.

The ability for instructions to pass references to nodes between each other (which is

one feature of my proposed graph manipulation instructions) allows behaviour similar to

that of function pointers to be implemented in a distributed way. This convenience comes

with a performance penalty as code (or at least a path to it) must be physically moved

around, but the flexibility provided could be immense.

I have observed that features which are often taken for granted at the level of dis-

tributed systems, such as bidirectional links and identifying the source of a data item start

to become rather costly if they are available to every single instruction in the machine.

However, such features are useful particularly for management and bookkeeping. This
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leads to questions such as: How far can we get without such features? Can we construct

equivalent things in software? Can we implement them in such a way that we only pay

the penalty when they are actually used? The parent search (see Section 3.6) illustrates

the kind of idea that will be useful in answering these questions.

5.2. Operating System

In some ways, an operating system for the FGM will not be that different from other

operating systems. It will have to manage the hardware, interface with software, and keep

the software under control. The ultra-portable Linux kernel demonstrates that a lot of

the core work an operating system does is independent of the hardware it runs on. For

instance, once we have a means of controlling a program’s resource allocation, choosing

and enforcing an appropriate policy is the sort of problem that OS engineers already know

how to deal with.

Of course, many of the mechanisms and techniques used by traditional operating sys-

tems do not exist or are not appropriate for the FGM, and some abstractions don’t fit well

with the hardware. Developing replacements for these things is likely to be where the

most effort needs to be directed.

In the FGM, the more widespread something is, the simpler it must be. Something that

occurs on every PE must not take up more than a handful of instructions. This places some

limitations on the complexity of the operating system, which in turn may need to rely on

hardware assistance for certain things. The division between hardware and operating

system will be in a different place to where it is in conventional systems, and may be less

distinct. Many questions about OS design cannot be answered in isolation; they must also

consider the practicality of modifying hardware designs.
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5.2.1. Architecture

The tight integration between OS and hardware in the FGM will probably mean that many

functions typically performed by an OS kernel will be performed by the FGM hardware.

Additionally, instructions have a small area of influence which means that no code has

control over the entire machine. This suggests that the notion of a kernel is not really

appropriate for the FGM. In my view, the FGM hardware is roughly equivalent to a con-

ventional computer running a microkernel, and the FGM OS would be equivalent to an

operating system built around a microkernel (not including the microkernel).

While the hardware design of the FGM eschews global constructs in order to provide

performance and scalability, an OS for the FGM will need some way of connecting ev-

erything together. In particular, there will need to be a way of cataloguing the main tasks

being carried out in the system, so that a human operator can inspect and control what the

system is doing. That said, not all systems require this, and in some systems it creates

security problems.

In the SASOS approach (see Section 2.10), every piece of data and code has a per-

manent, unique global address. The notion of fixed-width global addresses immediately

makes me wary. Treating the entirety of the machine’s data equally creates the illusion that

the cost of accessing the data is fairly uniform. As systems scale this will become further

and further from the truth. SASOSes take the shared-memory von Neumann paradigm to

the extreme, which seems totally at odds with the FGM’s message passing approach.

Given that many copies of data and code will exist to take advantage of the FGM’s par-

allelism, the ability to address any instruction on any PE seems wasteful and of limited

value. If instructions can be moved around by the hardware at will, it becomes useless.

Therefore fine-grained global addresses for code and data in the processor are inappropri-

ate, but perhaps a coarse-grained solution would be useful, for instance giving a unique

numerical tag to each large data structure or an entire program.
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The single address space would be one way of providing a consistent interface to re-

sources external to the processor, such as external RAM, persistent storage, and other I/O

devices. I am not convinced this is any more useful than a file abstraction of hardware

devices, particularly on a machine where only a small subset of processing nodes have

direct access to external hardware.

Capability systems (see Section 2.10) seem like a much better model. As suggested

in Section 3.7, the (opaque) references between instructions on the FGM could act as

capabilities. These could be used as names or handles for various sorts of objects, for

example file handles, network sockets, and communication channels between programs.

The component approach to OS architecture seems to be well suited to the FGM. The

overhead of enforcing separation on the FGM is likely to be very low, and preventing

components from sharing data structures will not hurt performance as it does on tradi-

tional systems (although as conventional processors gain more cores, the cost of sharing

data structures increases). Component models specify the components in the system and

the interfaces the components use to interact with each other. This seems a natural fit for

dataflow.

5.2.2. Adapting to the FGM

Management is easier when the manager has complete control over the entire system, but

is still possible without this, by distributing and delegating control appropriately. Broad-

cast approaches are the most direct but often incur a high penalty of some sort or do not

scale well. Distributed methods are more challenging to implement and often require

more information in each node. Striking the right balance will not be easy.

Every useful program produces an output. The point where a program interfaces with

another program, or with the outside world, might be a good place from which the OS

can monitor and control the program. Further exploration of how input and output and
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communication between programs is set up, managed, and torn down will be important

in designing an operating system. For instance, how will a server program accept con-

nections from multiple clients, none of which it knows about in advance? When two pro-

grams communicate, how will the OS tell where one program ends and the next begins?

Perhaps with the use of special instructions or arcs, which are not crossed by algorithms

such as the one that carries out priority adjustments. This could potentially fit in with the

capability model described above.

The permit system (see Section 3.6) looks like a promising approach to resource al-

location control. Any such system would need to be integrated with whatever dynamic

allocation instructions that would be provided (such as my duplicate instruction), and

when nodes are deleted or garbage collected the program ought to be credited for them.

At first glance, completely evicting a large program from the FGM and bringing in

another seems like a very expensive operation, as there are a lot of instructions to move.

We must remember the large amount of parallelism in the machine, however. Context

switches are expensive on conventional computers as well, since considerable amounts

of code and data must be evicted from cache and a new set of code and data brought

in. Conventional computers have the advantage that unmodified data (which generally

includes all code) does not need to be written back to memory, whereas in the FGM the

tight coupling between code and data means that they must be moved together. Also,

conventional machines only pull the code and data which is actually used into caches.

On the FGM, parts of the program not currently being used might be stored in memory

while other parts are on PEs being executed, or the parts of the program experiencing low

activity could be stored in PEs with larger amounts of RAM but less processing capacity.

Creating a checkpoint of a program would require a graph copy operation. Obtaining

and analysing data traces would require adding some more data flows to collect data items.

Single-stepping a program that has been optimised to run in parallel would be difficult,
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although sophisticated tools might be able to give the illusion of single-step by collecting

traces and “replaying” a single-step scenario. Allowing a developer to modify data values

during single-step operation might be achieved with the help of checkpoints.

I suspect that separation between programs can be achieved by making instructions

and references opaque, choosing the instruction set carefully, and treating references as

capabilities with an appropriate rights model. This would require more investigation into

existing rights models (for example, the Take-Grant model [Lipton and Snyder, 1977]) to

see whether any are a good fit for the FGM and provide the necessary properties.

In a von Neumann machine, having all the code and data in the system as part of a task’s

address space allows the task to derive benefit from an arbitrary piece of code or data

(subject to security checks). If you pretend the von Neumann bottleneck has a negligible

effect, this seems simple. In reality, hardware caches have to ferry around a lot of data

to make this work, and distributed SASOSes have to manage the problem explicitly (and

that work may prove useful in the FGM). Replication of data and services in the FGM is

in some ways analogous to caching systems on von Neumann machines, and the FGM OS

will probably be responsible for performing it. Sharing code and data structures between

different software components was demonstrated in Section 4.4. A further step would be

to duplicate shared components when they are heavily used and merge them when the

demands on them are low.

I have suggested that the hardware might be in charge of migrating instructions be-

tween PEs as appropriate. This leads to the question, does the operating system need to

know anything about the physical layout of PEs at all? Maybe the OS need only see an ab-

stract graph machine, or maybe it should be able to extract information about propagation

costs or PE properties. Would any of that information need to be revealed to application

software? These are difficult questions.
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5.3. Languages

C is often described as a “portable assembly language”. It hides many hardware details

and does a lot of repetitive work for the programmer, but with a fairly small reduction in

what is actually possible to implement. This combination of convenience and flexibility

must be one of the reasons it is still popular as a language for OS programming and em-

bedded systems programming, and even continues to be occasionally used for application

software.

The FGM would surely benefit from a language of that calibre — or better! Such a

language would be a very helpful tool for OS development as well as research into ways

to use the FGM. Consider that if the hardware has opaque references, a clean concurrency

model (no need to worry about things like write ordering), and garbage collection, a low-

level language for it would be a few generations ahead of C in some respects.

While much more experience with the FGM will be necessary before such a language

could be created, I believe the assembly language I have designed does quite well, both

in terms of staying true to the FGM, and in convenience and usability.

Often, writing programs in the assembly language did not seem much more compli-

cated than writing Haskell programs (debugging, however, was a major pain). When

writing graph manipulation code, I noticed that I had to be more explicit about instruction

dependencies than I would in a sequential language, but I did not notice this when writ-

ing other code. This is because graph manipulation instructions have side effects. Writing

such code in a fully sequential style and having the compiler infer the dependencies seems

a good way to deal with this.

Some existing programming languages will be more easily adapted to the FGM than

others. However, it will be difficult for the FGM to gain acceptance unless it supports

a variety of programming styles. Even functional languages, due to their dependence on

things like closures and function pointers, are more challenging to implement on the FGM
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than one might expect. It seems reasonable that strongly-typed programming languages

will have an advantage in terms of efficient implementation on the FGM. Parallelising an

operation such as multiplying each element of a list by 2 is easier if you know they are all

integers, for instance.

I have imagined a programming language where one connects together sockets of dif-

ferent software components to create larger components. This could begin right down at

the level of individual instructions, and go all the way up to the level of program modules,

programs, or even systems of programs. To avoid deadlock, the sockets being connected

need to have matching completeness criteria — essentially, they must co-ordinate with

each other correctly. It would be good if the programming language could keep track of

this and verify it is being done correctly, for example in its type system.
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6. Conclusion

Software wants to be diverse. There are many different sorts of problems that people

want to solve, and having a diverse set of tools is part of the reason that computers are

such useful machines. Sometimes developers are willing to sacrifice performance for

flexibility. Sometimes they are willing to sacrifice flexibility for correctness. Sometimes

they are willing to sacrifice correctness for functionality. An operating system must try to

do a good job whatever is thrown at it, and hardware that is more flexible is a benefit in

this regard.

The FGM seems very flexible. It unifies sequentiality and parallelism. It encompasses

instruction-level parallelism, thread-level parallelism, and everything in between, as well

as data-parallelism, in a single stroke. It also supports nondeterministic choice.

This means it has a vast number of potential applications. In particular it is likely to

be very effective at solving problems without a regular structure. I think that this kind of

machine ought to be good at solving graph-related problems, and it so happens that many

of the management problems associated with the FGM are graph problems. This suggests

that the hardware should provide graph manipulation facilities, which will assist the OS

in managing the machine, and which the OS can extend and provide to applications.

I have found that an operating system for the FGM will need to fulfil much the same role

as traditional operating systems do. However, such an operating system will need to be

designed for scalability, and much work is required to develop the management techniques
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such an OS will need to employ to be consistent with the FGM. I have explored many of

the challenges that I identified, outlining ways of approaching them, and in some cases

potential solutions. I have also discussed ways in which the hardware might be changed

to fulfil potential needs of the OS and applications.

Designing a general-purpose operating system for a dataflow processor is a very in-

teresting problem, and I think such an operating system is both feasible to create and an

important exercise for the development of computer science — whether or not this par-

ticular OS for this particular machine will take the world by storm. It is my hope that this

project will help lead to computational potential that seems far beyond our reach today.
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A. Graph copy algorithm

# d e f i n e NUM BOUNDARY SLOTS 200

# d e f i n e MAX LINKS 3

s t r u c t towerNode ;

s t r u c t br idgeNode {

i n t r e f c o u n t ;

i n t p a y l o a d ;

s t r u c t towerNode ∗ c o n s t r u c t i o n R e f s [MAX LINKS ] ;

s t r u c t br idgeNode ∗ r e f s [MAX LINKS ] ;

} ;

s t r u c t towerNode {

i n t r e f c o u n t ;

i n t p a y l o a d ;

s t r u c t br idgeNode ∗ copy ;

s t r u c t towerNode ∗ r e f s [MAX LINKS ] ;

} ;

t y p e d e f s t r u c t br idgeNode br idgePE [NUM BOUNDARY SLOTS ] ;

void graphCopy ( b r idgePE b ) {

i n t f r e e I n d e x = 1 ;
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/ / s e a r c h f o r nodes w i t h r e f e r e n c e s t o t h e o r i g i n a l graph

f o r ( i n t i = 0 ; i < NUM BOUNDARY SLOTS; i ++) {

f o r ( i n t j = 0 ; j < MAX LINKS ; j ++) {

i f ( b [ i ] . c o n s t r u c t i o n R e f s [ j ] ) {

s t r u c t br idgeNode ∗ t a r g e t ;

s t r u c t towerNode ∗ o r i g ;

o r i g = b [ i ] . c o n s t r u c t i o n R e f s [ j ] ;

i f ( o r i g−>copy ) {

/ / a copy a l r e a d y e x i s t s ; use i t

t a r g e t = o r i g−>copy ;

} e l s e {

/ / a l l o c a t e a new node

t a r g e t = &b [ f r e e I n d e x ] ;

f r e e I n d e x ++;

/ / r e c o r d t h i s copy

o r i g−>copy = t a r g e t ;

/ / copy t h e o r i g i n a l i n t o t h e new node

/ / ( b u t s e t t h e r e f e r e n c e c o u n t t o 0 )

t a r g e t −>r e f c o u n t = 0 ;

t a r g e t −>p a y l o a d = o r i g−>p a y l o a d ;

/ / t a r g e t−>o r i g i n a l = o r i g ;

f o r ( i n t k = 0 ; k < MAX LINKS ; k ++) {

t a r g e t −>c o n s t r u c t i o n R e f s [ k ] = o r i g−>r e f s [ k ] ;

t a r g e t −>r e f s [ k ] = NULL;

}

}

91



/ / r e p l a c e t h e r e f e r e n c e t o o r i g i n a l node w i t h copy

b [ i ] . c o n s t r u c t i o n R e f s [ j ] = NULL;

b [ i ] . r e f s [ j ] = t a r g e t ;

/ / c o u n t t h e new r e f e r e n c e we j u s t made

t a r g e t −>r e f c o u n t ++;

i f ( t a r g e t −>r e f c o u n t == o r i g−>r e f c o u n t ) {

o r i g−>copy = NULL;

/ / r e f c o u n t i s comple te , t h e c o p i e d node may now

/ / move away from t h e b r i d g e

}

}

}

}

}
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