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Abstract. One way to reduce the cost of formally verifying a large
program is to perform proofs over a specification of its behaviour, which its
implementation refines. However, interesting programs must often satisfy
multiple properties. Ideally, each property should be proved against the
most abstract specification for which it holds. This simplifies reasoning and
increases the property’s robustness against later tweaks to the program’s
implementation. We introduce extensible specifications, a lightweight
technique for constructing a specification that can be instantiated and
reasoned about at multiple levels of abstraction. This avoids having
to write and maintain a different specification for each property being
proved whilst still allowing properties to be proved at the highest levels of
abstraction. Importantly, properties proved of an extensible specification
hold automatically for all instantiations of it, avoiding unnecessary proof
duplication. We explain how we applied this idea in the context of verifying
confidentiality enforcement for the seL4 microkernel, saving us significant
proof and code duplication.

1 Introduction

Formally verifying real software is expensive: proving a single property of a
program’s implementation can require an order of magnitude more effort than to
write the implementation [4, 5]. To avoid expending this much effort on every
property to be proved of an implementation, it is common to construct an abstract
specification for the software and prove that the software’s implementation
formally refines this specification. While this is expensive, subsequent reasoning
can then be performed over the abstract specification. In practice, such proofs can
require only a similar amount of effort as that to write the implementation [5].

The verification of the seL4 microkernel [4] provides a useful data-point, being
to our knowledge the most extensive code-level verification ever performed of a
general-purpose software artifact. A microkernel is a minimal operating system
kernel; seL4 implements services such as threads, virtual address spaces, IPC, and
capability-based access control. An initial proof of refinement between the kernel’s
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Fig. 1. Proving Confidentiality for seL4

C implementation and an abstract specification of its behaviour consumed about
25 person-years of effort [4]. This produced a proof on the order of 200,000 lines
of Isabelle/HOL, including proving the basic kernel invariants for the abstract
specification. However, subsequent proofs of security properties, namely integrity
and authority confinement [9], have been carried out on the abstract specification,
making use of these invariants, and then transferred to the C implementation
via refinement. These proofs were completed in under 10 person months [9].

Reusable, general purpose software systems, such as operating system (OS)
kernels, must often satisfy multiple properties. For instance, a secure OS kernel
like seL4 should enforce not only integrity and authority confinement, but also
confidentiality and availability. Unfortunately, writing a specification that captures
all of these properties is tricky: one can reason about integrity in the presence of
nondeterminism, but doing so with confidentiality under refinement is much harder
because nondeterministic specifications tend to have insecure refinements [8].

seL4’s abstract specification, where integrity and authority confinement were
proved, is nondeterministic. Under-specification of seL4’s scheduling behaviour is
a major source of nondeterminism in this specification. The scheduling routine is
maximally nondeterministic, saying only that the kernel can either (nondeter-
ministically) schedule some runnable thread, or schedule the idle thread. Thus
any sensible scheduling algorithm is a valid refinement of this scheduling specifi-
cation. However, this includes malicious scheduling algorithms that might leak
information via their scheduling decisions, perhaps by choosing the next thread
to schedule by examining some secret information. For this reason, confidential-
ity cannot be proved about this specification, because it abstracts away from
details that are relevant to confidentiality. We must therefore prove confidential-
ity of a less nondeterministic specification that, for instance, precisely specifies
the kernel’s scheduling behaviour. We call this specification, the deterministic
specification. This situation is depicted in Figure 1(a).

This might suggest that the initial abstract specification for seL4 was too
nondeterministic. However, proving the kernel invariants, integrity and authority
confinement at this level was the right thing to do. This is because, not only
is a more abstract specification easier to reason about but, by proving these
properties at a more abstract level, they become far more resilient to changes in
the kernel’s design and implementation, and we can still derive these properties
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for the deterministic specification by refinement. Specifically, having proved
these properties about the nondeterministic specification, we can conclude that
they hold for all possible refinements, which include all sensible scheduling
implementations for instance. If we need to tweak an implementation detail of the
scheduler, we need not fear that doing so will break these properties. The same
does not necessarily follow if we have proved them only about the deterministic
specification, which captures the precise scheduling behaviour.

This suggests that properties should be proved at the most abstract level at
which they still hold. However, in the worst case, each property would require
its own specification, as well as associated proofs of refinement between them.
Any changes to the most abstract specification, such as an API evolution, must
be reflected in all other specifications, and all proofs updated. This is expensive
when APIs continually evolve and specifications duplicate much of each other’s
code, as happens with the nondeterministic and deterministic seL4 specifications.

In this short paper, we present extensible specifications, a technique for con-
structing specifications that avoids these problems while still allowing properties
to be proved at the highest levels of abstraction. This technique is designed
primarily for very large mechanical proof efforts, with large bodies of existing
proofs and specifications, where duplicating existing artifacts and performing and
maintaining unnecessary proofs is undesirable. These ideas have been developed
and formalised within the proof assistant Isabelle/HOL; however, they should be
applicable to any other proof assistant for higher order logic.

2 Extensible Specifications

The seL4 specifications are formalised as nondeterministic state monads [2] and
we explain extensible specifications with reference to this formalism.

An imperative program may be specified as a nondeterministic state monad by
defining a state type that is a record containing a field for each global variable in
the program and each relevant piece of global state (such as the state of external
devices with which the program interacts). The program is then a function that
takes one of these records as its input and yields an updated record and a return
value as its output. Nondeterministic computations yield a set of such outputs.
Traditional “do-notation”, as supported by Haskell for instance, is used to phrase
monadic specifications in an imperative style.

A Running Example We use a toy example program to motivate and explain
extensible specifications throughout this section. This program contains two
functions of interest, called alloc and dealloc whose signatures are:

int alloc(void); void dealloc(int i);

alloc takes no arguments and allocates a new resource, returning an integer ID
to the allocated resource. dealloc takes an ID as its argument that represents
an allocated resource, and deallocates the resource if it is currently allocated,
and does nothing otherwise. For simplicity, alloc is allowed to fail if there are no
resources to allocate. Figure 2 depicts abstract specifications of these functions.
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alloc-abs ≡ do
ids ← gets ids;
assert (ids 6= ∅);
i ← select ids;
modify (ids-update (λf . f − {i}));
return i

od

dealloc-abs i ≡ do
ids ← gets ids;
when (i /∈ ids)
(modify (ids-update (λf . f ∪ {i})))

od

Fig. 2. An example abstract specification.

The state type for these specifications is a record that contains a single field, ids,
which holds a set of integers representing the IDs of currently free resources.

Given a field name x, gets x reads from the state record the value stored
in field x, while modify (x-update func) updates the x-field of the state record
with the result of running the function func on the current value stored in that
field. Given a set S, select S nondeterministically selects a value from S. Hence,
alloc-abs first reads the set of free IDs and asserts that it is not empty. It then
nondeterministically selects from this set the next ID to allocate, before updating
the set of free IDs in the state record by removing the chosen ID from it. Finally
alloc-abs returns the chosen ID to its caller.

It is straightforward to show certain correctness conditions about these
functions. For instance, we can prove that, whenever it is successful, alloc-abs
returns the unique resource ID i that is now allocated but was originally free.
This statement may be written in a monadic Hoare logic variant [2] as:

{|λs. ids s = X |} alloc-abs {|λi s ′. i /∈ ids s ′ ∧ ids s ′ ∪ {i} = X |} (1)

This statement is read as follows: if, before alloc-abs executes from some pre-
state s, ids s = X, then whenever it terminates, returning a result i in some
post-state s ′, i /∈ ids s ′ ∧ ids s ′ ∪ {i} = X.

alloc-abs completely abstracts away from the order in which resources are
allocated. Reasoning about this order requires a more concrete specification of
alloc’s behaviour. Suppose alloc is implemented by having it maintain a list of
unused resource IDs, from which it selects the first item (and fails when this list
is empty). Figure 3 depicts a hypothetical concrete specification of this behaviour.
This specification operates on a state record that extends the original by adding
a new field ids-list that contains a list of currently free resource IDs. The original
set ids is retained to allow existing properties like (1) to be phrased over this new
specification. While not really necessary in this example, this is vital for larger
specifications with a massive body of existing proof, such as seL4.

Extensible Specifications Notice that much of the code in Figure 3 is duplicated
from Figure 2. Also, proving an analogous result to (1) for alloc-conc requires
re-proving it directly or concluding it from a proof of refinement between alloc-abs
and alloc-conc. For large specifications, either approach requires significant effort.

By defining a single extensible specification for alloc that subsumes both
alloc-abs and alloc-conc (and doing the same for dealloc), we can avoid this
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alloc-conc ≡ do
ids-list ← gets ids-list;
assert (ids-list 6= []);
i ← return (hd ids-list);
modify (ids-update (λf . f − {i}));
modify (ids-list-update tl);
return i

od

dealloc-conc i ≡ do
ids ← gets ids;
when (i /∈ ids)
(do

modify (ids-update (λf . f ∪ {i}));
modify (ids-list-update (λl . i ·l))

od)
od

Fig. 3. A hypothetical concrete specification.

alloc-ext select-ext update-ext ≡ do
ids ← gets ids;
more ← gets more;
next-ids ←
return (select-ext ids more);

g-ids ←
return (guard-set ids next-ids);

assert (g-ids 6= ∅);
i ← select g-ids;
modify (ids-update (λids. ids − {i}));
modify (more-update (update-ext i));
return i

od

guard-set ids-set next-ids-set ≡
if next-ids-set ⊆ ids-set ∧ next-ids-set 6= ∅
then next-ids-set else ids-set

dealloc-ext i update-ext ≡ do
ids ← gets ids;
when (i /∈ ids)
(do

modify (ids-update (λf . f ∪ {i}));
modify (more-update (update-ext i))

od)
od

Fig. 4. An example extensible specification.

effort. A specification is made extensible by augmenting its state type with
an extra extended state component of arbitrary type, and inserting carefully
placed extended computation points in its code, which are placeholders for code
that operates on the extended state. Extended computations are placed (1)
where the extended state is read to resolve nondeterminism that abstracts away
implementation choices, and (2) where extended state needs to be updated to
ensure consistency with the program’s implementation. By instantiating the
extended state with a concrete state type and the extended computations with
specification code that operates over this state, one produces an instance of the
extensible specification.

Figure 4 depicts extensible specifications for alloc and dealloc. As we
will show, each may be instantiated to behave like the abstract and concrete
specifications above, avoiding the duplication between them.

Importantly, we can also prove properties about these extensible specifications.
Such properties hold for all instances of these specifications. This avoids proof
duplication and/or having to maintain refinement proofs between specifications
like alloc-abs and alloc-conc. We can easily rephrase (1) to be over alloc-ext:

{|λs. ids s = X |} alloc-ext select-ext update-ext {|λi s ′. i /∈ ids s ′ ∧ ids s ′ ∪ {i} = X |}

Due to the similarity between alloc-ext and alloc-abs, the proof of (1) is easily
adapted to alloc-ext. This is true for any property of the original specification.
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Because it holds for all instances of alloc-ext, the above Hoare triple automatically
applies to the instantiations shown below for alloc-abs and alloc-conc.

alloc-ext and dealloc-ext operate over a state type that extends the original
state type with an extra field, more, of arbitrary type. They are parametrised
by subroutines that perform extended computation (select-ext and update-ext).
While we have included them in this paper for ease of presentation, passing
the extended computations as parameters can be avoided by defining them as
abstract operations on a type-class that the extended state implements. This
approach should also work for other higher order logic proof assistants, like Coq.

We obtain alloc-ext from alloc-abs by adding two blocks of extended com-
putation. The first reads the extended state and uses it to help resolve the
nondeterministic selection of the next ID to allocate, while the second updates
the extended state following this selection.

alloc-ext is carefully constructed so that it behaves like alloc-abs with respect
to the non-extended state. alloc-ext calls the extended computation select-ext
to obtain the set of IDs from which to subsequently select the ID to allocate.
Importantly, alloc-ext then makes use of the function guard-set whose purpose is
to force alloc-ext to behave like alloc-abs no matter what select-ext did: guard-set
ensures that the subsequent assert fails only when ids is empty and the subsequent
select always chooses an ID from ids. guard-set does this by checking that the set
chosen by select-ext is a non-empty subset of ids and replacing it by ids if it is
not. By building alloc-ext this way, we ensure that any property unrelated to the
extended state that alloc-abs satisfies also holds for all instantiations of alloc-ext.

The original specifications of Figure 2 can be recovered by instantiating
the extended state to be of type unit (the type with one element), and the
extended computations to be no-ops. For alloc-ext, we have select-ext return
the entire set ids, which ensures that the subsequent select behaves exactly like
the nondeterministic select in alloc-abs. Finally, we have update-ext leave the
extended state unchanged. Hence alloc-abs = alloc-ext (λids more. ids) (λi more.
more) and dealloc-abs i = dealloc-ext i (λi more. more).

We can also instantiate alloc-ext to behave like alloc-conc from Figure 3, to
reason about the concrete behaviour of alloc. We instantiate the extended state
to include a list of currently unallocated resource IDs. We define the functions
ids-list-ext, which reads this list from the more field, and ids-list-update-ext, which
updates it; we omit these definitions for brevity. We then have select-ext return
the singleton set containing the head of this same list, and have update-ext modify
this list by replacing it with its tail (i.e. by removing its first item).

alloc-ext will behave deterministically, by performing the select from the
singleton set given by select-ext, so long as this set is contained in ids, to prevent
guard-set causing selection from the entirety of ids. alloc-ext behaves the same as
alloc-conc in this case so long as ids-list is empty if and only if ids is. The invariant
valid-list ensures this, and is trivial to prove of the deterministic instantiation.

valid-list s ≡ distinct (ids-list s) ∧ set (ids-list s) = ids s

It states that each ID in ids-list is distinct, and each ID in ids-list is in ids
and vice-versa. Under this invariant, the instantiated extensible specification
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exhibits the hypothetical concrete behaviour precisely. Specifically, valid-list s −→
alloc-conc s = alloc-ext (λids more. {hd (ids-list-ext more)}) (λ-. ids-list-update-ext
tl) s and dealloc-conc i = dealloc-ext i (λi . ids-list-update-ext (λl . i ·l)).

These kinds of invariants, which assert consistency between the instantiated
extended state and the non-extended state, are commonly required for reasoning
that a concrete instantiation of an extensible specification behaves correctly with
respect to the extended state. They are also the same kind of invariants required
to prove refinement between alloc-abs and alloc-conc, for instance; although
extensible specifications avoid the need for this additional refinement proof.

3 Proving Confidentiality for seL4

We now explain how we applied extensible specifications to assist proving confi-
dentiality of the seL4 microkernel. Our requirement for proving confidentiality
was having a deterministic specification, with proofs of the thousands of lemmas
that establish the correctness of the individual kernel functions, and proofs of
the kernel invariants, integrity and authority confinement on this specification.
These results have already been proven for seL4’s nondeterministic abstract
specification. Extensible specifications allow us to obtain these results for the
deterministic specification as well without unnecessary effort.

The abstract seL4 specification is approximately 5,500 lines of Isabelle/HOL,
and the proofs of integrity and authority confinement, and the kernel correctness
lemmas and invariants, comprise around 65,000 lines of Isabelle/HOL. However,
nondeterminism is used to abstract away from implementation details in only
three main places: the precise order in which hardware address space identifiers
(ASIDs) are allocated, the order in which capabilities are recursively deleted
during a revoke system call, and to abstract away the scheduling algorithm, as
explained earlier. If we were to take the approach depicted in Figure 1(a) and
manually define a deterministic abstract specification for seL4, it would duplicate
around 98% of the abstract specification. We would also have to prove refinement
between this new specification and the original, and maintain this proof going
forward. This refinement theorem would have to be repeatedly applied to prove
the thousands of correctness lemmas, as well as the kernel invariants, integrity
and authority confinement for the deterministic specification.

We avoided these problems by altering about 2% of the abstract specification
to make it extensible, as depicted in Figure 1(b) where the dashed arrow indicates
that the deterministic specification is an instance of the extensible one. We
repeated the process shown in Section 2 for each nondeterministic function in
the specification. Section 2’s example is a simplification of the cases for hardware
ASID allocation and capability revocation: each of these involves replacing a
nondeterministic selection with a deterministic one, based on some extra state
that the deterministic specification must track. We are currently designing a
confidentiality-preserving scheduler for seL4. Once complete, we will modify the
current extensible specification to allow scheduling decisions to be implemented
by extended computations. Rephrasing the invariants and correctness lemmas,
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authority confinement and integrity properties and adapting their proofs to the
extensible specification altered only ∼1, 000 lines of Isabelle/HOL (∼1.5%). These
results then hold for the original specification and the deterministic one without
further effort.

By making the seL4 abstract specification extensible, we have avoided dupli-
cating tens of thousands of lines of proof and specification code, and performing
unnecessary refinement proofs. This would have required significant effort, and
made the resulting artifacts a nightmare to maintain as seL4’s API evolves.

4 Related Work

The basic ideas of extensible specifications are certainly not new. The extended
state, and its abstract extended operations, which parametrise alloc-ext for
instance, define the interface of an abstract data type [7] that instances of
the extensible specification implement. Extensible specifications also resemble
a lightweight form of Aspect-Oriented Programming [3], where our concrete
extended computations resemble advices and the sites at which they are placed
resemble join points. When making a specification extensible, the appropriate join
points are sites where extended state needs to be read to resolve nondeterminism,
and sites where extended state needs to be updated.

While presented here in the context of state monads, extensible specifications
also resemble mechanisms for specification and proof re-use within the B method
(e.g. [1]) and Event-B (e.g. [10]). With these sorts of methods, a generic pattern
can also carry assumptions that instances of it must meet in order to inherit
results proved for the pattern. We can do likewise for extensible specifications by
attaching assumptions to the type-class of the extended state. Monadic extensible
specifications are arguably cleaner and simpler than these other methods, largely
because they inherit the elegance and power of higher order logic for abstracting
over extended computation.

Sophisticated verification systems that support automated stepwise refinement
also offer similar benefits to extensible specifications. For instance, Chalice [6]
allows the differences between two specifications to be encoded using skeleton
syntax, and refinement between them automatically proved via SMT. This avoids
duplicating code between specifications, and having an explicit refinement proof.
We expect SMT could also be used to prove properties for the concrete specifi-
cation already shown of the more abstract one. Unlike extensible specifications
where proof re-use comes for free, here it relies on SMT solving.

5 Conclusion

We have presented extensible specifications, a lightweight technique for construct-
ing specifications that can be instantiated and reasoned about at multiple levels
of abstraction. By using extensible specifications one avoids having to write and
maintain a different specification for each property being proved of a program,
whilst still allowing properties to be proved at the highest levels of abstraction.
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Properties proved of an extensible specification hold automatically for all instan-
tiations of it, avoiding unnecessary proof duplication. This technique has been
vital in assisting the ongoing proof of confidentiality for the seL4 microkernel,
where it saved duplicating tens of thousands of lines of proof and specification
code, and for maintaining these artifacts as the kernel has continued to evolve
during this proof effort. Our experience applying extensible specifications to seL4
suggests that they are practically applicable and scale to real-world verification
efforts.
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