
A Counterexample Guided Method
for Reactive Synthesis

Alexander Legg

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

School of Computer Science and Engineering

University of New South Wales

Sydney, Australia

September 2016

iv

Abstract

Software controllers of reactive systems are ubiquitous in situations
where incorrectness has a high cost. In order to place trust in the soft-
ware, strong guarantees of its functional correctness are required. Re-
active synthesis can be used to automatically construct software to a
specification and ensure correctness. The drawback is that synthesis is
computationally hard and it is infeasible to synthesise a controller for
many specifications.

Synthesis is formalised as a game between the controller and its
environment. In this thesis we consider safety specifications that define
the winning condition of the game for the controller as never allowing
the game to visit an error state. The usual approach for solving controller
synthesis is to compute the set of all winning states in the system and
construct a controller that never deviates from this set. The set may be
very large so it is standard practice to represent sets of states symbolically
as a relation over the variables of the system. Binary decision diagrams
(BDDs) are an efficient data structure used to store and manipulate sets
of states for synthesis. The drawback of this approach is that a set of
states has only one representation as a BDD and in some cases it may be
exponentially large in the number of variables. The state explosion of
BDDs causes controller synthesis to be infeasible on specifications with
no compact representation of the set of winning states.

In this thesis I propose a synthesis algorithm that constructs an ap-
proximation of the set of safe states that is sufficient to show correctness
of the controller. The algorithm constructs an abstraction of the game
and searches for a candidate strategy for the controller. Counterexamples
are used to refine the strategy until it is winning for the game abstraction.
Similar to bounded model checking, a SAT solver is used to efficiently
implement the search for a counterexample trace. When a strategy is
found to be winning in the abstraction of the game an approximation
of the states for which the strategy wins is extracted from the strategy
via interpolation. The search continues by refining the abstraction until
the approximation of winning states converges on a fixed point that is
sufficient to prove that the specification is realisable.

v

Acknowledgements

My PhD would not have been possible without the support of several
individuals. First and foremost I would like to extend my gratitude to
my supervisors Leonid Ryzhyk, Nina Narodytska, and Gernot Heiser.
Leonid introduced me to the world of academia and taught me every-
thing I needed to survive in it. I will be forever grateful for his guidance.

I would also like to thank everyone, past and present, in the Trust-
worthy Systems group at Data61 for providing an incredibly positive
environment for the duration of my PhD. I owe my sanity to the daily
coffee outings, the frequent beers, and most importantly the friendships.

Lastly, for the constant encouragement and support I thank my par-
ents Jon and Kerrie, my partner Edwina, and my family Thomas, Kayla,
David, Mary, Rachael, Andrew, Kathryn and Cassandra.

Publications

• Alexander Legg, Nina Narodytska, and Leonid Ryzhyk. A SAT-based
counterexample guided method for unbounded synthesis. In Swarat
Chaudhuri and Azadeh Farzan, editors, Proceedings of the 28th Interna-
tional Conference on Computer Aided Verification, volume 9780 of Lecture
Notes in Computer Science, pages 364–382, Toronto, ON, Canada, 2016.
Springer

• Niklas Eén, Alexander Legg, Nina Narodytska, and Leonid Ryzhyk. SAT-
based strategy extraction in reachability games. In Blai Bonet and Sven
Koenig, editors, Proceedings of the 29th Conference on Artificial Intelligence,
pages 3738–3745, Austin, TX, USA, 2015. AAAI Press

• Nina Narodytska, Alexander Legg, Fahiem Bacchus, Leonid Ryzhyk,
and Adam Walker. Solving games without controllable predecessor.
In Armin Biere and Roderick Bloem, editors, Proceedings of the 26th
International Conference on Computer Aided Verification, volume 8559 of
Lecture Notes in Computer Science, pages 533–540, Vienna, Austria, 2014

vii

Contents

Abstract iv

Acknowledgements v

Publications vii

Contents viii

1 Introduction 1
1.1 Synthesis . 2
1.2 Approach . 3
1.3 Contribution . 4
1.4 Summary . 5

2 Background 7
2.1 Temporal Logic . 7

2.1.1 Kripke Structures . 8
2.1.2 Linear Temporal Logic 8
2.1.3 Computation Tree Logic 9

2.2 Model Checking . 11
2.2.1 Büchi Automata . 11
2.2.2 Symbolic Model Checking 12
2.2.3 Fixed point calculations 14

2.3 Synthesis . 15
2.3.1 Solving Games . 16
2.3.2 Symbolic Game Solving 17
2.3.3 Abstraction . 18

2.4 Boolean Satisfiability . 19

viii

CONTENTS ix

2.4.1 Bounded Model Checking 19
2.4.2 Interpolation . 20
2.4.3 Quantified Boolean Formulas 21

2.5 Summary . 22

3 Related Work 23
3.1 Bounded model checking . 23
3.2 Unbounded model checking . 24

3.2.1 Non-canonical symbolic representation 24
3.2.2 Hybrid SAT/BDD approach 25
3.2.3 SAT based unbounded model checking 26
3.2.4 Application of Craig interpolants 26
3.2.5 Properly Directed Reachability (PDR) 27

3.3 Synthesis with SAT . 28
3.3.1 Bounded Synthesis . 28
3.3.2 Lazy Synthesis . 29
3.3.3 Properly directed reachability applied to synthesis . . . 29
3.3.4 Clause Learning for Synthesis 30

3.4 Quantified Boolean Formula Solving 32
3.4.1 Q-resolution . 32
3.4.2 Dependency graphs . 33
3.4.3 Formula structure . 34
3.4.4 SAT for QBF . 34

3.5 Summary . 36

4 Bounded Realisability 39
4.1 Algorithm . 40

4.1.1 Example . 42
4.1.2 Abstract game trees . 47
4.1.3 Counterexample guided realisability 48
4.1.4 Correctness . 52

4.2 Optimisations . 54
4.2.1 Bad State Learning . 54
4.2.2 Strategy Shortening . 56
4.2.3 Default Actions . 58

4.3 Discussion . 58
4.3.1 Comparison to QBF . 59

x CONTENTS

4.3.2 Model checking . 60
4.3.3 Related synthesis techniques 60
4.3.4 Limitations . 61
4.3.5 Strengths . 62

4.4 Summary . 64

5 Strategy Extraction 67
5.1 Algorithm . 68

5.1.1 Example . 69
5.1.2 Partitioning game trees 72
5.1.3 Computing successor states 76
5.1.4 Compiling the strategy 77

5.2 Optimisations . 78
5.2.1 Strategy extraction with learning 78
5.2.2 Ensuring compact interpolants 80

5.3 Related work . 81
5.4 Summary . 81

6 Unbounded Realisability 83
6.1 Algorithm . 84

6.1.1 Learning with interpolation 84
6.1.2 Example . 88
6.1.3 Convergence on a fixed point 89
6.1.4 Strategy extraction . 95

6.2 Optimisations . 97
6.2.1 Generalising the initial state 97
6.2.2 Generalising losing states 98
6.2.3 Improving candidate strategies 98

6.3 Discussion . 99
6.3.1 Related work . 99
6.3.2 Limitations . 100
6.3.3 Strengths . 102

6.4 Summary . 103

7 Evaluation 105
7.1 Bounded realisability . 105
7.2 Strategy extraction . 110

CONTENTS xi

7.3 Unbounded realisability . 114
7.3.1 Benchmarking . 114
7.3.2 Synthesis Competition Results 117

7.4 Summary . 120

8 Conclusion 121

List of Figures 123

List of Tables 125

List of algorithms 127

Bibliography 129

1 Introduction

We rely on software systems to perform important tasks for us on a daily basis
and frequently we experience the frustration of incorrect implementations.
However, as these systems become more ingrained into our lives the cost of
incorrectness can be far greater than mere frustration.

In 1996 the European Space Agency lost the Ariane 5 rocket forty seconds
after launch to an incorrect conversion from floating point to integer [Dowson,
1997]. The cost of the failure was $370 million in USD. More recently, Toyota
has been forced to recall a large number of vehicles due to a failure in the
software controlling the brakes [Parrish, 2013]. The failures led to loss of
life [CBS News, 2010].

As the desire for software and the consequences of incorrectness has
grown, the need for a systematic methodology for producing correct software
has become apparent. One solution has been to develop strict engineering
practices, including rigorous testing, to reduce the chance of errors. Another
solution is to produce a proof of correctness of the software, either with or
without the aid of a mechanised proof assistant. In some cases the correctness
proof can be done automatically in a process called model checking.

A step further is to have our software automatically constructed for us,
a technique first formally considered by Alonzo Church in the middle of
the last century [Church, 1962]. Software synthesis shifts the role of the
developer from writing code to writing formal specifications. This completely
eradicates the human error factor from the low level construction of software
and allows developers to focus on high level system design. In all other
approaches to software correctness the software must first be constructed; a
process involving considerable time and effort.

1

2 CHAPTER 1. INTRODUCTION

Unfortunately, automatic software synthesis involves nontrivial computa-
tion. In broad strokes, the synthesis algorithm must determine how the state
of the system is affected by the software and its environment and then select
actions for the software such that no matter the actions of the environment
the system adheres to the specification. In practice, on certain system specifi-
cations the process can lead to significant state explosion that renders synthesis
infeasible.

The state of the art in synthesis contains several methodologies that act as
countermeasures to state explosion. However, no single approach is suited
to all classes of specifications nor are all specifications currently feasible. In
this thesis I propose a methodology for resisting state explosion on a set of
synthesis specifications that are problematic for other approaches.

1.1 Synthesis

This thesis is concerned with synthesis of reactive systems. In a reactive
system a controller interacts continuously with its environment by responding
to inputs with the appropriate outputs. For example, a device driver is a
reactive system in which the driver interacts with an operating system and
a hardware device. Synthesising reactive systems like drivers is different to
synthesising regular programs or functions since the correctness of a controller
depends on how the system behaves over time instead of a single output
corresponding to a single input. To model this continuous interaction the
reactive synthesis problem is staged as a game between the controller and its
environment. For a detailed formalisation see Chapter 2.

In this thesis we will consider synthesis of controllers for safety games in
which the winning condition for the controller is defined by ensuring that
the game remains within a set of safe states. The game is zero sum, the
environment wins if a state outside the safe set is reached. We say that we
have solved a game if we can construct a winning strategy for one of the
players. The usual approach to solving safety games is to iteratively construct
a set of winning states that are known to be safe regardless of the actions of
the environment. A winning strategy for the controller can be constructed by
choosing actions that have successor states within the winning region.

Explicit enumeration of the states in the winning region is infeasible even
on small specifications so the set of states is usually represented symbolically.

1.2. APPROACH 3

This is done by specifying the game with states as valuations to a set of
boolean variables and using boolean algebra to symbolically define sets of
states. Traditionally binary decision diagrams (BDDs) are used to represent
boolean functions because they provide compact representations in most cases
and there are efficient algorithms for operating on formulas in BDD form. The
disadvantage of this approach is that in the worst case the representation
occupies space that is exponential in the number of variables in the formula.
A BDD is a canonical representation of a formula so it may be the case that a
compact BDD representing the winning region for a particular specification
does not exist.

Other approaches rely on satisfiability solvers to efficiently perform the
operations required by synthesis on sets of states. The satisfiability problem
(SAT) is the question of whether a value can be assigned to all variables
in a formula such that the formula evaluates to true. Modern SAT solvers
provide efficient implementations of backtracking search with computational
learning that operate on boolean formulas in clausal normal form (CNF). The
advantage of a SAT based approach is that CNF is not canonical so in cases
when a BDD cannot compactly represent a set of states it may be possible to
do so in CNF.

The disadvantage of SAT based approaches is that solvers only determine
whether a satisfying assignment to variables exists, i.e. existential quantifica-
tion. The dual problem, universal quantification, is to determine whether all
variable assignments satisfy a formula. Both forms of quantification are re-
quired for synthesis in order to decide whether an action exists for one player
that satisfies a property for all opponent actions. An example of this kind of
computation would be deciding whether the controller can force the game
into the winning region regardless of any action the environment chooses. It
is possible to perform universal quantification with a SAT solver but it adds
considerable complexity, which introduces another bottleneck to the synthesis
process.

1.2 Approach

This thesis presents a SAT based approach that computes an approximation
of the winning region. By approximating the winning region we hope to
avoid the state explosion cost of representing the entire set of winning states.

4 CHAPTER 1. INTRODUCTION

The algorithm is set within a counterexample guided abstraction refinement
framework. An abstraction restricts the opponent to a set of moves and the
algorithm existentially checks whether a strategy can be defeated by any
combination of that restricted subset. Thus the universal quantification of
opponent actions is handled by carefully expanding an existential formula
only when required.

In this approach, a SAT solver is used to verify whether a candidate
strategy is a winning strategy for a safety game with a fixed number of a
game rounds, which we call a bounded game. This approach is similar to
bounded model checking where a program is verified by querying a SAT
solver for a trace that violates the specification. In our bounded synthesis
approach the SAT solver searches for a trace of opponent moves that cause
the candidate strategy to lose the bounded game. As with bounded model
checking, a counterexample trace informs the algorithm how to refine the
candidate strategy.

Discovering a winning strategy for the bounded game does not guarantee
that the strategy is winning in the unbounded game. Specifically, if the
controller strategy avoids an error state for k rounds this does not guarantee
that it can avoid errors for k + 1 rounds. We address this problem with
an extension to the algorithm that iteratively solves bounded games while
incrementing the bound. During the execution of the bounded game solver
we learn losing states for both players. This computational learning serves a
dual purpose by both serving as an optimisation to reduce the search space
and also providing the termination condition. By carefully learning states that
are losing for the environment we may construct an overapproximation of
the environment’s winning region. The overapproximation can be used to
guarantee that the actual winning region does not contain the initial states
and so there cannot be a winning strategy for the environment.

1.3 Contribution

This thesis presents a SAT based counterexample guided approach to con-
troller synthesis of safety specifications. This approach includes a bounded
synthesis algorithm, an extension to unbounded synthesis, and a methodol-
ogy for extracting strategies from the certificate generated by the bounded
synthesis algorithm.

1.4. SUMMARY 5

The approach is designed to solve synthesis specifications where the win-
ning region is difficult to represent compactly with existing symbolic tech-
niques. The aim of this work was not to produce a one size fits all approach
to safety synthesis but instead to provide a solution suited to some of the
problem instances that are difficult to solve for other methods.

The instances that emit winning regions that are difficult to efficiently
represent with binary decision diagrams include many real world problems.
An example of such a specification is an arbiter that must grant resources
from a homogeneous pool in order to fulfil requests from the environment.
In this problem the winning region for the environment must exclude all
combinations of resource allocations that exceed the number of requests.
There is no compact representation of this kind of winning region as a binary
decision diagram but in my approach we use an approximation of the winning
region that is sufficient to solve the game without representing all possible
combinations.

In order to validate the methodology I have developed an open source
implementation of the algorithm. In later chapters we present benchmarks
that show that the algorithm is promising and although it does not solve as
many problem instances as other techniques it performs better on certain
classes of problems.

1.4 Summary

• Reactive synthesis can be used to automatically generate correct-by-
construction controllers for software systems. Compared to other ap-
proaches to software correctness synthesis does not require the software
to first be developed.

• Synthesis is formalised as a game between a controller and its envi-
ronment. In many cases these games can be solved by constructing
a symbolic representation of the winning states of the game using a
binary decision diagram. However, for some games there is no compact
representation of the winning region.

• This thesis presents a SAT based counterexample guided approach that
targets these cases by constructing an approximation of the winning
region that is sufficient to determine the winner of the game.

2 Background

Synthesis is a process that demands mathematical formalisation in order to
provide a strong guarantee of the correctness of the resultant software. As
such we require a mathematical language to describe the system we wish to
produce, the environment in which it operates, and the properties we want
the system to adhere to. This chapter will outline that language and the ways
we can reason about what we describe in it.

2.1 Temporal Logic

In this thesis we are concerned with reactive systems. Traditional programs
can be verified by checking that the output is correct for each possible input.
In a reactive system, i.e. a system that is in a continuous state of interaction
with its environment, there is no termination and therefore no final output to
verify. Instead the system is considered correct if it adheres to its specification
indefinitely. A formalism of a reactive system must then consider the concept
of time in order to specify its correctness property.

Device drivers will be frequently used as an example of a reactive system
throughout this thesis. A driver accepts requests from the operating system
and information about internal state from the device, and it responds by
sending commands to the device and reporting to the operating system. The
correctness of a device driver might be specified by a statement in temporal
logic that corresponds to something similar to the driver does not enter an error
state or the driver always responds to requests. In the following sections the syntax
and semantics required to make such statements formal will be introduced.

7

8 CHAPTER 2. BACKGROUND

2.1.1 Kripke Structures

A reactive system can be thought of as a sequence of states. The system
transitions between these states as it responds to its inputs. A Kripke struc-
ture [Kripke, 1963] formalises this notion and provides us will the language
to reason about a reactive system.

A Kripe structure M is defined by the tuple M = (S, s0, R, L) with respect
to a set of atomic propositions AP .

• A finite set of states, S,

• an initial state s0 ∈ S,

• a transition relation R ⊆ S × S, and

• a labelling function L : S → 2AP .

The transition relation defines how the system moves between states. It
must be left-total, i.e. for every s ∈ S there is an s′ ∈ S s.t. R(s, s′). The
labelling function maps every state in S to a set of atomic propositions that
hold in that state of the system.

We often consider paths or runs of a Kripke structure. A path is a sequence
of states π = s0, s1, s2, ... such that R(si, si+1) holds for all i ≥ 0.

2.1.2 Linear Temporal Logic

Kripke structures lay the groundwork for reasoning about reactive systems.
Using the labelling function we may define desirable properties for the system
that must hold in particular states. What is now lacking is a means of bringing
states together to express properties of the system as a whole. This requires a
logical language that can express temporal properties.

Temporal logic takes propositional logic and provides additional semantics
for the concept of time. In a Kripke structure this refers to the expressiveness
to reason about runs of the system. This allows us to define properties that
must be true for the entire execution of a reactive system.

Linear temporal logic (LTL) allows for statements that refer to a single
run of a Kripke structure. Pnueli introduced LTL in 1977 [Pnueli, 1977] to
succinctly describe the outcomes of program execution by referring to global
invariants and eventualities. The syntax is:

2.1. TEMPORAL LOGIC 9

• φ is a propositional formula referring to the current state,

• Xφ - φ is true in the next state of the execution,

• Fφ - Eventually (finally) φ will be true, and

• Gφ - φ is always (globally) true.

• φ1Uφ2 - φ1 holds until φ2 holds.

These operators are semantically defined with respect to a Kripke structure
M = (S, s0, R, L). We use M, s |= φ to denote φ holds true at state s ∈ S of
structure M . We definte |= recursively:

• M, s |= φ iff φ ∈ L(s).

• M, s |= ¬φ iff not (M, s |= φ).

• M, s |= φ1 ∧ φ2 iff (M, s |= φ1) ∧ (M, s |= φ2).

• M, s |= φ1 ∨ φ2 iff (M, s |= φ1) ∨ (M, s |= φ2).

• M, s |= Xφ iff for some state s′, R(s, s′) ∧M, s′ |= φ.

• M, s0 |= Fφ iff for some path (s0, s1, ...), ∃i(i ≥ 0 ∧ (M, si |= φ)).

• M, s0 |= Gφ iff for some path (s0, s1, ...), ∀i(i ≥ 0 ∧ (M, si |= φ)).

• M, s0 |= φ1Uφ2 iff for some path (s0, s1, ...), ∃i(i ≥ 0 ∧ (M, si |= φ2) ∧
∀j(j ≥ 0 ∧ g < i→ (M, sj |= φ1))).

Throughout this thesis we use F and G to represent the finally and globally
operators. Elsewhere in the literature ♦ and � are sometimes used to represent
the same.

2.1.3 Computation Tree Logic

In addition to LTL, which is used to formalise properties about a single exe-
cution trace, we may need the ability to talk about aggregations of traces. In
1981 Clarke introduced computation tree logic (CTL) [Clarke and Emerson,
1981], which has additional syntax and semantics for exactly that. The syntax
of CTL is as follows:

10 CHAPTER 2. BACKGROUND

• Aφ - φ is true on all paths

• Eφ - there exists a path on which p is true

We again define the semantics of CTL with respect to a Kripke structure
M = (S, s0, R, L).

• M, s |= φ iff φ ∈ L(s).

• M, s |= ¬φ iff ¬(M, s |= φ).

• M, s |= φ1 ∧ φ2 iff (M, s |= φ1) ∧ (M, s |= φ2).

• M, s |= φ1 ∨ φ2 iff (M, s |= φ1) ∨ (M, s |= φ2).

• M, s |= EXφ iff for some state s′, R(s, s′) ∧M, s′ |= φ.

• M, s |= AXφ iff for all states s′, R(s, s′)→M, s′ |= φ.

• M, s0 |= A[φ1Uφ2] iff for all paths (s0, s1, ...), ∃i(i ≥ 0 ∧ (M, si |= φ2) ∧
∀j(j ≥ 0 ∧ g < i→ (M, sj |= φ1))).

• M, s0 |= E[φ1Uφ2] iff for some path (s0, s1, ...), ∃i(i ≥ 0 ∧ (M, si |=
φ2) ∧ ∀j(j ≥ 0 ∧ g < i→ (M, sj |= φ1))).

• (M, s |= AFφ)⇔ (M, s |= A[>Uφ])

• (M, s |= EFφ)⇔ (M, s |= E[>Uφ])

• (M, s |= AGφ)⇔ (M, s |= ¬EF (¬φ))

• (M, s |= EGφ)⇔ (M, s |= ¬AF (¬φ))

In CTL, each A or E must be paired with an LTL operator. For example
AGφ, which says that φ must always hold on all paths. Alternatively, CTL*
allows for free mixing of operators from LTL and CTL. This allows for terms
such as E(GFφ), which is true iff there exists a path where φ will always
be true at some future state. There is also ACTL*, which is CTL* with no
existential branch quantifier.

2.2. MODEL CHECKING 11

2.2 Model Checking

Before turning our attention to the synthesis of a program that is correct ac-
cording to its temporal logic specification let us consider the simpler problem
of verifying that an existing program is correct. Verification can be done
by manually constructing a proof of correctness but this is labour intensive
process even with the assistance of a mechanised proof assistant. Here we
consider model checking, which is the problem of automatically verifying the
system.

The first such automatic model checker was proposed by Clarke et
al. [Clarke et al., 1986] to verify temporal properties of finite state programs.
The algorithm they proposed was a search based labelling of a finite state
transition graph, representing the program, with subformulas of the temporal
logic specification.

Another approach is based on the notion that temporal logic properties can
be expressed in terms of automata theory. Specifically, a finite state automaton
over infinite words can be used to represent a temporal logic formula. Büchi
automata [Büchi, 1962] are ω-automata, i.e. finite automata that accept an
infinite stream of input, which may be constructed such that the automaton
will accept exactly the inputs allowable by a temporal logic formula.

In [Vardi, 1996], the authors propose a model checking approach using this
connection between temporal logic and automata theory. They propose the
construction of a finite state, infinite word generator representing the program
P , and an acceptor of the same, φ, constructed from the temporal property
to be checked. Thus the program may be checked by determining whether
P ∩ ¬φ is empty.

Bounded model checking is another approach that searches for counterex-
ample traces of a certain length to safety properties using a SAT solver. This
form of model checking is the inspiration for the bounded approach to syn-
thesis presented in this thesis and is covered in greater detail in Section 2.4.1.

2.2.1 Büchi Automata

Like all ω-automata, the language of a Büchi automaton is ω-regular, i.e. a
regular language extended to infinite streams. A regular language over the
alphabet Σ is

12 CHAPTER 2. BACKGROUND

• The empty language , or

• A singleton language {a} for a ∈ Σ, or

• For two regular languages A and B:

– A ∪B the union of those languages, or

– A �B the concatenation of those languages, or

– A∗ the Kleene operation on that language.

The automaton itself is defined as a tuple A = (Q,Σ, δ, q0, F) where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ : Q×Σ→ Q is a transition function mapping states and letters to next
states,

• q0 ∈ Q is an initial state, and

• F ⊆ Q is a set of accepting states. A accepts an input stream iff it visits
F infinitely often.

Other ω-automata include Rabin and Streett automata. Both are similar to
Büchi automata except with the acceptance condition given by a set of pairs
(Ei, Fi). For Rabin automata, a run is accepted if there is a pair where the run
visits Fi infinitely often and does not visit Ei infinitely often. Streett automata
have the same acceptance condition in the negation: a run is accepted if for all
pairs the run visits Ei infinitely often and does not visit Fi infinitely often.

2.2.2 Symbolic Model Checking

The model checking approaches described above involve a computationally
expensive explicit exploration of the state space of the system. In the decisively
titled Symbolic model checking: 1020 states and beyond [Burch et al., 1990] the
authors claim an increase in the size of systems that can be checked from 103–
106 to 1020. This breakthrough result was achieved via symbolic, as opposed
to explicit, representation of the states in the Kripke structure.

Consider the Kripke structures used in the previous sections. Without loss
of generality, we may replace the set of states with a set of boolean variables.

2.2. MODEL CHECKING 13

a

b b

c

d

⊥

c

d

>

a

d

b

⊥

c

>

Figure 2.1: BDDs for (¬a ∨ b) ∧ (a ∨ c ∨ ¬d) ∧ (b ∨ d).
Solid blue transitions are 1, dashed red transitions are 0.

A single state is now a valuation to those variables and a set of states may
be symbolically represented by a boolean function. In order to combat state
explosion a compact representation of boolean functions is required. The
standard choice is an ordered binary decision diagram (BDD) [Bryant, 1986].

BDDs represent boolean functions as directed acyclic graphs. Each node
contains a variable, each edge represents a decision (true or false) on its
parent’s variable. One node is designated root and each path through the
graph will terminate in one of two sink nodes that represent whether the
decisions on that path satisfy the boolean function or not. Isomorphic nodes
(where both decisions lead to the same result) may be removed and isomorphic
subgraphs may be merged in order to compress the function representation.
The ordering of variables in the graph is important to this compressibility. In
the worst case the representation is a tree with no removed or merged nodes,
which is exponential in the number of variables. Given a boolean function
and a variable ordering the corresponding BDD is canonical. Figure 2.1 shows
two example BDDs that represent the same boolean function with different
variable orderings.

Conjunction and disjunction may be performed on BDDs via an algorithm
with a running time of O(n×m) where n and m are the sizes of the two BDDs.

14 CHAPTER 2. BACKGROUND

The worst case of this algorithm is rarely reached however and in general the
operation is efficient. Universal quantification may be performed by construct-
ing the conjunction of two copies of the BDD: one with the quantified variable
set to true and one with the variable set to false. Existential quantification
works the same way with disjunction. An efficient use of BDDs for model
checking uses these operations for a fixed point computation that computes
sets of states that satisfy a CTL property.

2.2.3 Fixed point calculations

Modal µ-calculus [Kozen, 1982] for propositional logic formalises the concept
of fixed points. Given a monotone function f , a fixed point is a set X such
that f(X) = X . The least fixpoint operator µ gives the smallest set X and the
greatest fixpoint operator ν gives the largest. µ-calculus formulas have the
following syntax, given with respect to a set of propositions P and a set of
variables V .

• If p ∈ P then p is a formula

• If p is a formula then ¬p is a formula

• If p and q are formulas then p ∧ q is a formula

• If p is a formula and Z is a variable then both νZ.p and µZ.p are formulas
when all occurrences of Z have an even number of negations

• If p is a formula and Z is a variable then ∀Z.p is a formula.

• Additionally, we introduce some syntactic equivalences:

– p ∨ q ≡ ¬(¬p ∧ ¬q)

– ∃Z.p ≡ ¬∀Z.¬p

Given a labelled transition system (S, F) where S is a set of states, and
F : P → 2S is a mapping of propositions to states with which they hold, we
give the semantics of µ− calculus by a function JpK:

• JpK = F (p)

• J¬pK = S \ JpK

2.3. SYNTHESIS 15

• Jp ∧ qK = JpK ∪ JqK

• JνZ.pK =
⋃
{T ⊆ S|T ⊆ JpK[Z := T]} where JpK[Z := T] is JpK with Z

mapped to T .

We can use µ-calculus to characterise CTL formulas as fixed point compu-
tations. For example, the formula EGψ can be characterised with a greatest
fixed point νZ.ψ∧EXZ. With this characterisation the formula can be checked
by iterative executions of EXZ, which we call the image of Z. The image of
a set of states is the set of all possible successor states. Likewise we say that
the pre-image of a set of states is the set of all ancestor states. Both operations
can be efficiently implemented on symbolic BDD representations of sets of
states to check CTL formulas by computing fixed points. The fixed point
can be computed forwards from the initial state using image operations or
backwards from a target set using pre-image operations.

2.3 Synthesis

Model checking is the art of deciding whether a program meets a specifica-
tion. Synthesis is the related problem of constructing the program to meet a
specification. In model checking the actions of the program are decided by
the software being checked. A synthesis procedure must instead decide how
the controller chooses actions and the ways the environment can react to each
decision. In order to model this requirement the controller and environment
should be considered to be in an adversarial relationship. Thus the synthesis
problem is formulated as a two player game between the reactive program
and its environment [Pnueli and Rosner, 1989].

A game is a structure G = (S,U,C, δ, s0). We consider only two player
games and we name those players the controller and environment. The structure
is defined by:

• S is a finite set of states,

• U is a finite alphabet of uncontrollable actions,

• C is a finite alphabet of controllable actions,

• δ : S×U ×C → S is a transition relation mapping states, uncontrollable
actions, and controllable actions to next states,

16 CHAPTER 2. BACKGROUND

• s0 ∈ S is an initial state.

Conceptually, the game structure is another finite state automaton where
transitions are partially controlled by both players. In each state, the envi-
ronment chooses an uncontrollable action from U and the system chooses a
controllable action from C. We consider only deterministic games where
δ(s, u, c, s′1) ∧ δ(s, u, c, s′2) → (s′1 = s′2). We modify the notion of a
run to suit games: (s0, u0, c0), (s1, u1, c1), ...(sn, un, cn) where ∀i[i ≥ 0 →
δ(si, ui, ci, si+1)].

In addition to the game structure itself we define a game objective ψ given
by an LTL formula. We say that a run is winning for the controller iff the run
satisfies the objective. The game is zero-sum, therefore a run is winning for the
environment in the dual case where the objective ψ is not true. For a controller
to be correct it must ensure that all choices of the environment lead to runs
that are winning for the controller.

A controller strategy πc : S × U → C is a mapping of states and uncon-
trollable inputs to controllable actions. πc is a winning strategy iff all runs
(s0, u0, π

c(s0, u0)), (s1, u1, π
c(s1, u1)) . . . are winning. Realisability is the prob-

lem of determining the existence of a winning controller strategy and synthesis
is the problem of constructing it.

An environment strategy πe : S → U is a mapping of states to uncontrol-
lable actions. An environment strategy is winning iff all runs (s0, π

e(s0), c0),
(s1, π

e(s1), c1) . . . are winning for the environment. The existence of a win-
ning environment strategy implies the nonexistence of a winning controller
strategy and vice versa.

2.3.1 Solving Games

Reactive synthesis for a game with an LTL objective [Pnueli and Rosner, 1989]
may be solved via the construction of an equivalent non-deterministic Büchi
automaton that is subsequently determinised to a deterministic Rabin automa-
ton. Without delving into details, the Rabin automaton is interpreted as a
tree-automaton and checked for emptiness. This yields a double exponential
time algorithm in the size of the specification.

The double exponential complexity causes a state explosion, which led to
synthesis being considered infeasible for many years. However, synthesis has
been applied in many real world scenarios by restricting the game objective

2.3. SYNTHESIS 17

to fragments of LTL. In this thesis we consider safety games, or games with
objectives of the form Gφ where φ is a propositional formula. Informally, a
controller in a safety game has the objective to stay within a safe region or
avoid error states. Safety games can be solved using a fixed point compu-
tation similar to symbolic model checking of CTL properties as described
above [Asarin et al., 1995].

Whilst the LTL fragment that is solvable via a safety game is simple,
fixed point computations can also be used to solve the much more expressive
generalised reactivity fragment of LTL [Piterman et al., 2006]. Safety synthesis
can be seen as the first step on the path to more useful yet practical synthesis
techniques.

2.3.2 Symbolic Game Solving

Solving a game symbolically is similar to symbolic model checking. Without
loss of generality we may replace the sets of explicit states and actions that
define the game with sets of boolean variables. We have G = (S,U , C, δ, s0)
where S, U , and C are sets of boolean state and action variables. Then δ :

2S × 2U × 2C → 2S is a boolean function that defines the transition relation of
the game. s0 ∈ 2S is the initial state of the game.

Symbolic algorithms for solving safety games focus of determining sets
of states from which a player can win. The building block of this algorithm
is the uncontrollable predecessor (UPre), which returns a set of predecessor
states from which the environment can force play into a given set. We define
this operator as

UPre(X) = {s | ∃u∀c∀s′(δ(s, u, c, s′) =⇒ s′ ∈ X)}

For simplicity we describe the algorithm as though playing for the en-
vironment. As such we are actually solving the dual to the safety game: a
reachability game. To solve the game we iteratively build a set of states back-
wards from the error set (¬φ) using the uncontrollable predecessor. It is clear
that this set will grow monotonically and (since the state space is finite) even-
tually converge on fixed point. We call this fixed point set the environment’s
winning set. If this set contains the initial state then the game is unrealis-
able and the environment’s winning strategy is to always play to stay within
its winning set. Conversely, if the initial state is outside the environment’s
winning set then the controller must have a strategy to avoid the error states

18 CHAPTER 2. BACKGROUND

and the specification is realisable. In terms of µ-calculus, the environment’s
winning region with respect to an error set E is given by the least fixed point
of the uncontrollable predecessor of E. The complement of the environment’s
winning region gives the safe region for the controller:

SAFE(E) = ¬(µY.UPre(Y ∨ E))

As in model checking, fixed point calculations on sets of states may be
efficiently implemented using binary decision diagrams to represent sets of
game states. Synthesis algorithms implemented in this way are able to scale
to games with large state spaces.

2.3.3 Abstraction

When the state space is very large, as it can be in many real world systems,
symbolic representation is an insufficient optimisation. Real world systems
contain many complex details that may not be relevant to the verification
property. Abstraction aims to reduce the level of detail in the system, without
sacrificing correctness, so that it may be synthesised. For example, a system
may require that a controller write a value to an 8 bit register (28 possible
states). If the specification only refers to the register as being equal to a
particular value then the abstraction may reduce this to 1 bit: set to the value,
and not set to the value. This is an example of predicate abstraction [Graf and
Saidi, 1997] and is just one of several possible ways to abstract a specification.

An abstraction is a mapping of concrete states onto a new, smaller, set
of abstract states. Abstractions may be created manually or automatically
constructed. A common technique is to approximate an abstraction for a
system and refine it during the verification process. Counterexample guided
abstraction refinement (CEGAR) [Clarke et al., 2000] is a framework in which
an approximate abstraction is refined via the analysis of counterexamples to
the specification. An upper approximation is used for abstraction so that when
the specification holds for the abstraction it also holds for concrete system.
However, when a counterexample is found in the abstraction it may not be a
concrete counterexample, in which case we call it a spurious counterexample.
These counterexamples are used for refinement and the procedure begins
anew with the refined abstraction.

2.4. BOOLEAN SATISFIABILITY 19

The counterexample guided abstraction methodology I describe in this
thesis does not reduce the state space of the game in the same way that a
technique like predicate abstraction does. In my approach a CEGAR loop is
used in a different way that is complementary to existing abstraction methods.
For instance, predicate abstraction may be applied to a specification before it
is solved via the algorithms presented in this thesis.

2.4 Boolean Satisfiability

The ability to prove existentially quantified boolean formulas satisfiable or
unsatisfiable (SAT) is enormously useful for program verification. Significant
research has led to many highly efficient solvers for the SAT problem. Modern
SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [Davis and Putnam, 1960; Davis et al., 1962]. This algorithm is a
backtracking search that operates on the formula given in conjunctive normal
form (CNF).

A CNF formula is a set of clauses of the form (l0 ∨ l1 ∨ ... ∨ ln) where each
literal li is a boolean variable or its negation. We call a clause with only one
literal a unit clause. We call a variable pure if it appears in only one polarity
in the formula. The DPLL algorithm propagates unit clauses and removes
clauses with pure literals as its first step. Next a value is assigned to a variable
and the algorithm recurses to search for a solution with that assignment. If
none can be found then a backtracking occurs and the opposite polarity of
the variable is tested. In modern solvers, clause learning is used to share
information between different branches of the search tree. The algorithm
terminates when the current variable assignment satisfies the formula, or the
search space is exhausted.

2.4.1 Bounded Model Checking

Previously in this chapter, we discussed the use of BDDs as a symbolic rep-
resentation that compresses boolean functions and efficiently quantifies the
function. A CNF representation of a function is not canonical and so does not
necessarily suffer from the same state explosion problems as BDDs. Biere et
al. [Biere et al., 1999] introduced a model checking methodology that takes
advantage of CNF as a symbolic representation and utilises a SAT solver to
efficiently operate on it.

20 CHAPTER 2. BACKGROUND

Instead of constructing a set of winning states this technique, called
bounded model checking, searches for runs of the game. Conceptually the
BDD approach is similar to breadth first search and bounded model check-
ing is similar to depth first search. In broad strokes, the new methodology
consists of constructing a propositional formula representing the existence
of a program trace of a certain length k that violates the specification. The
formula is solved by a SAT solver, which returns either SAT: a counterexample
to the specification, or UNSAT: there is no counterexample of length k. The
algorithm executes this process for increasing lengths k, which we call the
bound.The algorithm is described in further detail in the next chapter.

One difficulty of this approach is choosing a maximum bound that is both
sufficient to verify the program correct and feasible to compute the result of the
propositional formula. For a finite state automaton, the diameter is the minimal
length such that every reachable state can by reached by a path of that length
or less. The diameter is sufficient for model checking but not always feasible.
In addition, computing the diameter itself is an inefficient quantified boolean
formula. Despite this difficulty, bounded model checking is useful in many
practical cases. In particular the ability to quickly find short counterexamples
gives an advantage in cases when a BDD based approach hits state explosion
issues.

2.4.2 Interpolation

A Craig interpolant, I, is defined with respect to two formulas, A and B, that
are inconsistent (A ∧B ≡ ⊥) and has the following properties

• A→ I

• B ∧ I ≡ ⊥

• vars(I) ⊆ vars(A) ∩ vars(B) where vars(X) is the set of variables
referred to by X .

Propositional logic interpolants can be efficiently derived from the resolu-
tion proof of unsatisfiability of A and B. Due to their interesting properties
and efficient construction, interpolants have been found to be useful in many
areas of model checking [McMillan, 2005]. In general, interpolants are valuable
for their ability to approximate. Intuitively, an interpolant is an approximation

2.4. BOOLEAN SATISFIABILITY 21

of A that captures only the details needed for a proof of unsatisfiability of A
and B. If the proof represents something important about the system, such as
a counterexample to the specification, then the interpolant captures important
details. Interpolation can be used as an alternative to building a set of safe
states in model checking by instead incrementally building an inductive in-
variant for the system from counterexample refutations. Chapter 3 contains a
survey of model checking and synthesis methods that exploit this intuition.
Interpolation is also central to the algorithm presented in this thesis.

2.4.3 Quantified Boolean Formulas

A quantified boolean formula (QBF) extends satisfiability with the addition of
quantifiers. We consider formulas in prenex normal form Q1x̂Q2ŷ...F (x̂, ŷ, ...)

where Qi ∈ {∃,∀}, x̂, ŷ, ... are sets of boolean variables, and F is a proposi-
tional formula over the quantified variables in CNF.

Quantifiers over boolean variables may be expanded into propositional
formulas like so:

• ∃xF (x) ≡ F (true) ∨ F (false)

• ∀xF (x) ≡ F (true) ∧ F (false)

Expansion may be used to construct a SAT problem from QBF but the
CNF formula may be exponentially larger than its QBF representation. We
will discuss alternative approaches to solving QBF problems in Chapter 3.

A Skolem function for variables ŝ with respect to a QBF

∃x̂1∀ŷ1...∃x̂i∀ŷi∃ŝQ1ẑ1...Qj ẑjF (x̂1, ŷ1, ..., x̂i, ŷi, ŝ, ẑ1, ..., ẑj)

is a function f : 2|ŷ1| × ...× 2|ŷi| → 2|ŝ| such that

∃x̂1∀ŷ1...∃x̂i∀ŷiQ1ẑ1...Qj ẑjF (x̂1, ŷ1, ..., x̂i, ŷi, f(ŷ1, ..., ŷi), ..., ẑ1, ..., ẑj)

is equisatisfiable to the original QBF. In other words, if ψ is a satisfiable QBF,
then f assigns a value to ŝ for every assignment to universally quantified
variables in the prefix such ψ[ŝ/f] is also satisfiable. It is possible to reduce a
QBF to Skolem normal form by substituting all existential variables with a valid
Skolem function.

22 CHAPTER 2. BACKGROUND

2.5 Summary

In this chapter we have introduced several concepts necessary for an under-
standing of the central work of this thesis. We briefly summarise some key
points here as an aid to the reader.

• Temporal logic is the language we use to describe systems when a for-
malisation of time is necessary to express correctness. The existing body
of work on synthesis and model checking is vast and this mathematical
foundation of temporal logic provides the common language we use to
define particular specialisations. In this thesis we are concerned with
safety synthesis, which is formalised as a two player game with a win-
ning condition defined by a subset of linear temporal logic with a single
global operator.

• Model checking is an approach to automatically verifying the correctness
of programs. In this chapter we briefly introduced the problem and two
techniques used to solve it. In the next chapter we will expand on
some existing work on model checking that is related to the synthesis
techniques introduced by this thesis.

• Synthesis is a game between a system and its environment. Synthesis
games may be solved by constructing a winning region via a fixed point
computation of the controllable predecessor operator. In order to make
this process scalable states are represented symbolically. Binary decision
diagrams, which are graphical representations of boolean formulas, are
commonly used as a compact symbolic representation of a set of states.

• The algorithm presented in this thesis constructs boolean formulas.
Here we have defined the problem of satisfiability for boolean formulas
and introduced the tools that solve them. Additionally the algorithm
makes use of interpolation of boolean formulas, which can be performed
efficiently using the certificate generated by SAT solvers.

3 Related Work

Reactive synthesis is an extensively studied topic and the work of this thesis
is influenced by a wide array of prior work. In the previous chapter we
identified symbolic representation of state sets and abstraction refinement as
methodologies for mitigating state explosion. In this chapter we will approach
the problem from a different angle. The work in this thesis is inspired by
research in the model checking community and some prior efforts to apply
that research to synthesis.

3.1 Bounded model checking

Bounded model checking [Biere et al., 1999] (BMC), as introduced in Sec-
tion 2.4.1, is a methodology that generates SAT queries to determine the
existence of a trace that violates the model’s specification.

BMC considers the validity of CTL* formulas in Kripke structures in which
the length of a run is bounded to k. The authors of the procedure provide
a semantics for the translation of CTL* formulas on bounded models, via
LTL, to satisfiability constraints. For example, consider a safety property AGφ
where φ is a propositional formula. A safety property is universal and so is
checked in BMC by searching existentially for counterexamples in the form
of the negation EF¬φ. The search is translated into a SAT query by unrolling
the transition relation R from the initial state s0 like so: s0 ∧

∧k−1
i=0 R(si, si+1).

The transition relation describes all valid successor states of the current state,
and k repeated applications of R describes all valid runs of length k. The
LTL formula is similarly translated into a formula

∨k
i=0 ¬φ ∈ L(si). The SAT

query is satisfiable when there is a path of length k in the Kripke structure
(s0, s1, ..., sk) such that ¬φ holds in some state si.

23

24 CHAPTER 3. RELATED WORK

One of the motivations behind bounded model checking is aligned with
the aim of this thesis: to avoid the high space cost of approaches that construct
a symbolic representation of the winning region as a binary decision diagram.
By bounding the length of traces SAT can instead be used to symbolically
compute reachable states of the system. The drawback is that although BMC
is sound, i.e. any counterexample is a true counterexample, it is not complete
with respect to the unbounded system unless a sufficient bound is used. For
safety properties the diameter of the system gives a tight sufficient upper
bound for BMC although it is difficult to compute.

The approach taken to realisability described in Chapter 4 is inspired by
BMC and uses a similar approach to replace BDDs with SAT queries. In my
approach a bound is placed on the number of rounds in a safety game. The
method of unrolling the transition relation into a SAT query is adapted to
games by the addition of branching to encode a partial strategy for one player.
Similar to the use of SAT to search for counterexample traces in BMC, a SAT
solver is used to check for an opponent spoiling strategy.

3.2 Unbounded model checking

The usage of SAT solvers in bounded model checking proved to be highly
beneficial for discovering counterexamples. Research into applications of
SAT in unbounded model checking has subsequently progressed in several
directions.

3.2.1 Non-canonical symbolic representation

One approach to unbounded model checking is to replace BDDs with binary
expression diagrams (BEDs) or reduced boolean circuits (RBCs) in a fixed point
algorithm [Abdulla et al., 2000; Williams et al., 2000]. BEDs are a generalisation
of BDDs with the advantage that BEDs are not canonical and their use as a
symbolic representation may be more succinct than the equivalent BDD. An
RBC is simply a graphical representation of a circuit with some reductions
applied. The two representations are essentially orthogonal and conversion
between them is linear.

The disadvantage is that the image operators computed during the fixed
point calculation require quantifier eliminations that increase the size of the
BED or RBC. Detecting a fixed point in the state sets then requires a costly

3.2. UNBOUNDED MODEL CHECKING 25

satisfiability check of combinations of the expanded formulas. One option is
to construct an equivalent BDD for which the satisfiability check is efficient
but this potentially negates the advantage of the non-canonical representation.
It is also possible to construct a CNF representation of the formula from
either a BED or RBC and query a SAT solver for satisfiability. Neither option
fully mitigates the potential size of the expanded formula due to quantifier
elimination. In practice this methodology works well only on models with
few inputs so that quantification does not explode the formulas.

3.2.2 Hybrid SAT/BDD approach

Although many research efforts are directed away from BDDs to avoid their
space blowup some work instead focuses on allowing a trade off between
space and time via combinations of SAT procedures with BDDs. One such
approach [Gupta et al., 2000] uses BDDs to enhance SAT in two ways during
a reachability fixed point algorithm. As introduced in Chapter 2, a fixed
point algorithm can be used to compute the entire set of reachable states by
repeated application of the image operator. When the set of states returned
by the image operation is equivalent to the input states, i.e. the procedures
encounters a fixed point, the entire set of reachable states is known.

The authors introduce a technique they call BDD bounding to prune the
search space of the SAT procedure by checking that partial assignments to
a set of variables during the SAT search are contained within a BDD. An
image computation requires that the assignment to current state variables is
contained within the source states computed during the previous iteration.
The set of source states may be represented as a BDD and BDD bounding
applied to the search in order to detect and immediately backtrack when a
satisfying assignment has current state variables set to a value outside the
BDD.

It is possible to directly apply SAT to quantifier elimination, and thus to
image computation, by repeatedly applying a SAT solver to find all satisfying
solutions. This methodology applied without any optimisations is generally
infeasible due to the large number of calls that must be made to the SAT solver.
The authors of [Gupta et al., 2000] introduce a middle ground between this
entirely SAT based approach and a standard BDD image computation. They
suggest interrupting the SAT procedure after some partial assignment has

26 CHAPTER 3. RELATED WORK

been made to continue computation with a BDD. Effectively this is BDD image
computation but distributed into smaller components by the SAT solver.

3.2.3 SAT based unbounded model checking

An optimised approach to SAT image computation is an efficient model check-
ing procedure is cases where cube enumeration does not cause exponential
blowup [McMillan, 2002]. McMillan proposes constructing blocking clauses
by modifying the SAT procedure and analysing the solver’s internal implica-
tion graph. The result is effectively cube enumeration that produces a CNF
formula with intelligently enlarged cubes so that the original formula is cov-
ered in fewer SAT calls. The procedure is applied to CTL model checking by
performing universal quantification on CNF formulas via variable deletion.

3.2.4 Application of Craig interpolants

Another angle of research is to extend bounded model checking into an
unbounded procedure via a more efficient means than computing a diameter
or other sufficient bound. In [McMillan, 2003] Craig interpolation is proposed
as means of approximating the set of reachable states during bounded model
checking.

Recall the introduction of Craig interpolants in Section 2.4.2. An inter-
polant is a formula that may be constructed efficiently from the resolution
proof of two mutually unsatisfiable formulas. It is implied by one formula
and the conjunction with the second formula is unsatisfiable. During bounded
model checking a formula representing an unrolling of the transition relation
of length k is unsatisfiable if there is no counterexample trace. This formula
may be separated into an initial transition and k − 1 remaining transitions
enabling a convenient application of interpolation. An interpolant constructed
this way is an overapproximation of the image computation on the initial
states and the states contained in the interpolant cannot emit a counterexample
in k − 1 steps.

The algorithm (given in Algorithm 1) takes a set of initial states I ∈ 2S

where S is a set of boolean state variables, a transition relation δ : 2S×2S , a set
of final states E ∈ 2S , and a bound k. The algorithm maintains a set of states
R that overapproximates the reachable states from I . The approximation is
initialised with I itself and each iteration updates the approximation with the

3.2. UNBOUNDED MODEL CHECKING 27

Algorithm 1 FiniteRun: Determines the existence of a finite run from I to E
function FINITERUN(I, δ, E, k)

if I ∧ E then return true
R← I
loop

A← R(s0) ∧ δ(s0, s1)
B ←

(∧
1≤i≤k δ(si, si+1)

)
∧
(∨

1≤i≤k E(si)
))

if SAT(A ∧B) then
if R = I then return true else FINITERUN(I, δ, E, k + 1)

else
I ← INTERPOLATE(A,B)
R′ ← I(s1)
if R′ =⇒ R then return false
R← R ∨R′

end if
end loop

end function

addition of an interpolant constructed in the manner described above. If it is
possible to reach a final state from I in k steps it will be detected by the SAT
query on line 7 and the algorithm returns that a finite run exists. If it is not
possible to reach a final state from I but it is possible from an approximation
of the reachable set then a larger bound is required to determine if a run is
actually possible. Otherwise, if the approximation reaches a fixed point then it
forms an inductive invariant of the system and the algorithm is able to return
that no run is possible.

3.2.5 Properly Directed Reachability (PDR)

More recently an approach was proposed that checks safety properties without
unrolling the transition relation of the system [Bradley, 2011]. The intuition of
the algorithm is to construct a proof of a safety properly P by incrementally
strengthening a series of inductive lemmas. This procedure provided the
inspiration for the unbounded realisability algorithm of Chapter 6.

The algorithm maintains a series of formulas F0, F1, ..., Fk that overapprox-
imate the set of states reachable in 0, 1, ..., k steps. The sequence is extended
when Fk(s) ∧ δ(s, s′) → P ′(s′) is true indicating that Fk+1 = P is a new
reachable set that maintains the safety property. Then clauses in each Fi are
propagated forwards to Fi+1 if it is possible to do so. When P is not reachable

28 CHAPTER 3. RELATED WORK

from Fk there must be a state within Fk that is one step from violating the
safety property. Either this state indicates a counterexample or a new rela-
tively inductive clause can be added to some Fi to prevent the state from being
reachable at Fk. If during the forward propagation of clauses two formulas Fi
and Fi+1 become equivalent the algorithm has reached a fixed point and has
proved that the safety property is invariant.

3.3 Synthesis with SAT

Given the success of model checking techniques employing satisfiability meth-
ods it is no surprise that many attempts have been made to replicate these
results in the context of synthesis. Synthesis is a significantly more complex
problem and it is not obvious how to translate the advantages of SAT, namely
the ability to quickly find counterexamples, to an algorithm that must con-
struct a model before checking it. Nonetheless advances have been made that
are able to outperform BDD methods in some situations.

3.3.1 Bounded Synthesis

In Chapter 4 we will discuss a bounded realisability algorithm. The bounded
synthesis methodology introduced by [Finkbeiner and Schewe, 2013] is an
unfortunate conflation of terms. Their approach places a bound on the size of
the implementation as opposed to bounding the length of the game as in this
thesis and in bounded model checking.

This bounded synthesis approach is used to synthesise reactive systems for
distributed architectures by first constructing a universal co-Büchi automaton
for the given LTL specification. An implementation is a transition system that
drives that automaton thereby producing a run graph. The run graph of a
transition system may be annotated in each node with the maximal number
of rejecting states that occur on any path to that node. The authors show that
the existence of an annotation with finite bounds indicates that its transition
system is accepted by the automaton and hence the LTL specification. A bound
is placed on the size of the transition system, which additionally sets an upper
bound for the maximum label in the annotation, and an SMT solver can be
used to search for a bounded transition system that has a valid annotation. In
this way LTL synthesis is reduced to a series of SAT modulo integer arithmetic
problems with increasing bounds.

3.3. SYNTHESIS WITH SAT 29

One synthesis tool [Ehlers, 2012] divides an LTL specification into safety
and non-safety components. The safety components are solved by a standard
symbolic algorithm with BDDs. The author proposes a symbolic version
of bounded synthesis to solve the non-safety components. Their approach
constructs a BDD that encodes the search for a transition system with a valid
annotation. Another approach [Filiot et al., 2011] similarly does symbolic
bounded synthesis using antichains.

3.3.2 Lazy Synthesis

A counterexample guided framework has been applied to bounded synthesis
in a methodology called lazy synthesis [Finkbeiner and Jacobs, 2012]. The
authors propose the construction of bounded size partial implementations
via SMT solving a collection of constraints. The partial implementation is
then model checked in a symbolic BDD algorithm and any counterexamples
are used to introduce new constraints that refine the partial strategy. If the
implementation is found to be correct during the model checking phase then
the algorithm terminates. Alternatively, the constraint solver may return
that there is no implementation at which point the bound on the size of the
implementation is increased.

The counterexample guided search for a correct implementation is similar
to the bounded realisability approach proposed in this thesis. The framework
is fundamentally the same: candidate strategies are found by a SAT solver,
they are checked for correctness, and counterexamples are used to refine
further searches for candidates. However, the two methodologies use different
approaches to each component of that framework.

3.3.3 Properly directed reachability applied to synthesis

The incremental induction of PDR [Bradley, 2011] (see Section 3.2.5) has also
been applied to the realisability problem. In [Morgenstern et al., 2013] the
authors suggest that by replacing the SAT queries used to approximate reach-
ability with 2QBF queries, the algorithm may be used to solve realisability of
safety games.

Their approach computes overapproximations of the sets of states from
which the environment can force an error state in some number of game
rounds. A state is added to the overappoximation of states that are envi-

30 CHAPTER 3. RELATED WORK

ronment winning in k rounds via a 2QBF query that checks whether the
environment has an action such that for all controller actions a successor
state is inside the overapproximation of states winning in k − 1 rounds. This
generates new obligations for the algorithm to refine the overapproximations.
Each successor state must now be checked for the ability for the environment
to win in k − 1 rounds. Eventually this process may discover a chain of states
from the initial set to the error set such that the environment can force a win.
Alternatively the overapproximating sets will reach a fixed point indicating
that the controller can force the game to stay within a set of safe states.

The universal quantification in the 2QBF query is costly to compute so the
authors propose repurposing SAT for the task. Similar to how QBFs are solved
in [Janota et al., 2012], a SAT query checks whether there is an existentially
quantified pair of controller and environment actions that reaches the desired
set, and another SAT query gives the controller the opportunity to revise its
action. Intuitively, the first query guesses an environment transition and the
second query checks it. To assist the process an overapproximation of controller
winning states is maintained and used to direct the controller away from its
losing states in the checking query. Additionally, the environment transitions
that turn out to be bad guesses are learned and blocked in future attempts.

A recent approach [Chiang and Jiang, 2015] has a similar application of
PDR to synthesis with the major difference being that the authors propose
solving the game forwards from the initial states instead of backwards from
the error set. Thus the relatively inductive sets represent overapproximations
of reachable states. In the previous work the SAT query checks for environ-
ment actions that force a successor state into an approximation of environment
winning states. As a result, when a transition is found to have a countering
controller action it is only known to be a bad transition for the environment to
force into the current target. In this more recent work the SAT query is always
attempting to find transitions from the (approximate) reachable sets into the
error set. An advantage of this approach is that learned transitions may be
blocked in all future queries.

3.3.4 Clause Learning for Synthesis

In [Bloem et al., 2014] the authors propose a suite of learning algorithms
for synthesis. Two of these algorithms are centred on learning unsafe states
by solving a quantified formula that checks for environment controllable

3.3. SYNTHESIS WITH SAT 31

successor states outside the current approximation of the safe region. When
such a state is discovered it is generalised into multiple cubes representing
sets of states that are then blocked from the safe region. The specification
is decided unrealisable when the initial states are no longer within the safe
region and realisable when there are no states left to learn.

The two variations of this algorithm correspond to one based on a QBF
solver and one based on two competing incremental SAT solvers. The latter
contains an optimisation to ensure that the incremental nature of the solvers is
exploited. Incremental solvers work well in the case where new constraints are
added to the problem over time. Removing constraints requires either careful
backtracking of learned clauses or restarting the session with no clauses. As
the safe region is restricted by blocking cubes the constraints of the solver
playing on the behalf of the environment are reduced by enabling the search
for transitions to outside the safe region to visit the blocked cubes. The
authors suggest maintaining a separate instance of the safe region that is lazily
updated. The environment searches for states with successor states outside
the old version of the safe region until it is necessary to make the costly update
to the incremental solver to the more permissive new safe region.

Another optimisation takes inspiration from PDR to approximate reacha-
bility information during clause learning. It is not useful to learn unreachable
states to remove from the safe region so the search space can be pruned by
only considering an overapproximation of reachable states. The optimisation
is implemented first by checking candidates for learning for inclusion in the
initial set or a predecessor inside the current safe region estimate.

The authors additionally propose two approaches that attempt to directly
compute a winning region. The first of these searches for assignments to the
parameters of a CNF template of the winning region with a call to a QBF
solver. The parameters correspond to the polarity and inclusion of variables
within clauses. The second constructs an effectively propositional logic (EPR)
formula that characterises the Skolem functions encoding the winning region
of the game. This cannot be solved via QBF due to the nonlinear nature of
quantifiers over current and successor variables that describe the winning
region. The formula can be encoded in EPR and handed to an efficient solver.

Each of these algorithms has been implemented in a tool that has the ability
to run various combinations in parallel. The authors report a significant benefit
to parallelisation and sharing of learned clauses in between algorithms.

32 CHAPTER 3. RELATED WORK

3.4 Quantified Boolean Formula Solving

A quantified boolean formula (QBF) generalises the satisfiability problem to
include universal and existential quantifiers (see Section 2.4.3). In accordance
with the additional complexity of quantification (see Chapter 2) QBF solvers
have so far been less successful than SAT solvers at scaling to real world prob-
lems. However recent work in which competing SAT solvers are employed on
behalf of each quantifier in a QBF problem have shown promising advances.

The bounded realisability problems of Chapter 4 are specialisations of QBF
problems. The algorithm proposed to solve those problems can be seen as a
domain specific QBF solver. In this section we survey existing techniques for
QBF solving, including the algorithm of [Janota et al., 2012] that inspired the
bounded realisability algorithm presented in the next chapter.

Approaches to solving QBFs are split into two main categories: solvers
that search for solutions with a modified DPLL algorithm [Cadoli et al., 1998]
or solvers that expand the formula into an existential-only SAT problem [Ayari
and Basin, 2002]. Research in the former category is focused mostly on com-
putational learning to prune the search tree. Early work in this area identified
that both conflict clauses and satisfying assignments (or cubes) can be learned
in a QBF search [Giunchiglia et al., 2002; Zhang and Malik, 2002]. In the latter
category research is focused on ensuring that expansion does not explode the
size of the formula. In the following sections we review the state of the art in
both of these categories of QBF solvers.

3.4.1 Q-resolution

Q-resolution [Büning et al., 1995] is a method for combining clauses and
eliminating variables to eventually solve a QBF. We consider QBFs in prenex
normal form with quantifiers Q1x̂1Q2x̂2...Qnx̂n. We assign an ordering to
variables corresponding to their scope: x̂1 < x̂2 < ... < x̂n. We say that
a formula is forall reduced if each universally quantified literal l is deleted
from clauses with no existentially quantified literals of larger scope. This
reduction preserves equivalence and ensures that the innermost quantifier is
always existential. For example, ∀x1∃y1∀x2((x1 ∨ y1 ∨ x2) ∧ (x1 ∨ ¬y1 ∨ ¬x2))
is equivalent to ∀x1∃y1((x1 ∨ y1) ∧ (x1 ∨ ¬y1)).

Q-resolution is used to generate new clauses for a forall reduced QBF.
Two existing clauses are selected with opposite polarities of an existentially

3.4. QUANTIFIED BOOLEAN FORMULA SOLVING 33

quantified variable y. Taking the union of literals of both clauses, removing
y literals, and reapplying forall reduction produces a new clause called the
resolvent. If all possible resolvent clauses are generated for a variable y it may
be removed entirely from the formula along with any clause containing y. For
example, ∀x1∃y1((x1 ∨ y1)∧ (x1 ∨¬y1)) may be further reduced to ∀x1(x1) by
resolving on y1, which after forall reduction is the empty clause and the QBF
is shown to be false.

In practice, solving a QBF with q-resolution alone will generate too many
clauses to be feasible. In [Biere, 2005] an approach combining q-resolution
with expansion is suggested. Resolution is used to eliminate variables from the
innermost existential scope and expansion for the innermost universal scope.
A scheduler selects which variable to eliminate next by selecting from all
candidate variables the variable with the lowest cost. The cost of eliminating
a variable is set to the upper bound of the number of literals introduced to the
formula by eliminating that variable.

3.4.2 Dependency graphs

One issue with prenex normal form is that much of the structural information
of the original problem is lost on conversion. The quantifier prefix can be
seen as a linear variable dependency scheme. In [Lonsing and Biere], the
authors generalise variable dependency to directed acyclic graphs, which is
more expressive and may more accurately represent the quantifier structure
of the original problem. In a search based solver based on the extension of
DPLL to QBF, variables are decided based on the partial ordering defined by
the prefix. If the solver instead has access to the more general dependency
graph it may have a greater degree of freedom with which to choose the order
of decisions and maintain soundness.

Additionally, certain standard optimisations to the search procedure rely
on dependency information for correctness. For instance a unit literal is
the only unassigned existential literal l in a clause in which all unassigned
universal literals are independent to l. A unit literal constrains the variable to
the polarity of the literal and so decides that variable. With a more expressive
dependency scheme it is possible to detect more unit literals and speed up the
search.

34 CHAPTER 3. RELATED WORK

3.4.3 Formula structure

Structural information about a formula can be used for other optimisations
to QBF. Reconstructing a circuit similar to the original problem formulation
can lead to a compressed representation and more efficient quantifier elimina-
tion [Pigorsch and Scholl, 2009, 2010]. The authors propose an and-inverter
graph (AIG) representation and the application of circuit compression tech-
niques such as BDD-sweeping for compression. BDDs may also be used to
do quantifier elimination in cases where the representation does not explode.
Otherwise quantification is performed directly on the AIG by symbolically
expanding the circuit followed by compression.

Circuits may also be used as a representation of the problem in a search-
based QBF solver [Goultiaeva et al., 2009]. The advantages in this setting
include propagation of assignments both forwards and backwards as well
as identification of irrelevant don’t care literals by analysing the gates of a
circuit. This technique was further improved by the introduction of ghost
literals [Klieber et al., 2010], which enables the solver to propagate cubes of
learned satisfying assignments in the same way that learned constraints are.

3.4.4 SAT for QBF

SAT solvers are very efficient at finding satisfying assignment to existential
queries but less efficient at proving unsatisfiability or, equivalently, satisfiabil-
ity of universal queries. This asymmetry has been recognised and turned to
an advantage in QBF solvers that use SAT to discover counterexamples to the
universal component of QBF problems.

Counterexamples may be used to guide the careful expansion of a QBF [Jan-
ota and Marques-Silva, 2015] into a propositional formula. This algorithm
provides the inspiration for the domain specific QBF solver in Chapter 4. The
QBF is viewed as a game between an existential player and a universal player
in which the existential player attempts to satisfy the formula and the univer-
sal player seeks to falsify it. The algorithm solves the game recursively by
constructing an abstraction, finding a candidate solution for one player under
that abstraction, and subsequently verifying that candidate in the concrete
game.

The game is abstracted by partially expanding the QBF into propositional
logic. In a partial expansion only a subset of assignments to quantified vari-

3.4. QUANTIFIED BOOLEAN FORMULA SOLVING 35

ables are used to expand the formula. In other words, the player correspond-
ing to those variables is restricted to a subset of actions. If the current player
cannot win an abstract game in against a restricted opponent then it cannot
win in the concrete game. So the abstraction can be used to find a satisfying
assignment to its own variables with an efficient SAT query using the partially
expanded formula. From that assignment, a candidate strategy is formed by
taking the assignment to the first block in the quantifier prefix. The candidate
is then checked by recursively calling the solver on the suffix of the formula.
This effectively replaces the player’s current action with its candidate and
hands control to the opponent. If the recursive call discovers a counterexam-
ple it is added to the abstraction and a new candidate is found. If there is no
counterexample then the current player wins. If the refined abstraction now
allows no candidate solution then the opponent wins. The full algorithm is
listed in Algorithm 2.

Algorithm 2 Counterexample guided QBF
1: function SOLVE(QX(ϕ))
2: if ϕ has no quantifiers then
3: return (Q = ∃) ? SAT(ϕ) : SAT(¬ϕ)
4: end if
5: ω ← ∅
6: loop
7: α← (Q = ∃) ?

∧
µ∈ω ϕ[µ] :

∨
µ∈ω ϕ[µ]

8: τ ′ ← SOLVE(PRENEX(QX(α)))
9: if τ ′ = NULL then return NULL

10: τ ← {l | l ∈ τ ′ ∧ var(l) ∈ X}
11: µ← SOLVE(ϕ[τ])
12: if µ = NULL then return τ
13: ω ← ω ∪ {µ}
14: end loop
15: end function

Two recent counterexample guided approaches work on the idea of ab-
stracting the QBF via the selection of a subset of clauses [Janota and Marques-
Silva, 2015; Rabe and Tentrup, 2015]. In both works the authors suggest that
competing SAT solvers select a subset of clauses for the opposing solver to sat-
isfy at each quantifier alternation. In [Janota et al., 2012] the QBF abstraction
is refined via expansion and may lead to an exponential increase in the size of
the formula. By instead linearly increasing the formula to include selection

36 CHAPTER 3. RELATED WORK

variables enabling an abstraction over clauses the more recent approaches
avoid that potential explosion.

An orthogonal approach uses nested SAT solvers to solve formulas of the
form ∃σ(ϕ ∧ (¬∃τ(ψ))) where ϕ is a CNF, ψ is a QBF [Bogaerts et al., 2016].
At each quantifier level an underapproximation of ψ is given to a recursive
solver while the CNF portion is solved via SAT. The SAT solver hands partial
assignments gathered by propagating assignments through ϕ to the nested
solvers. The partial assignment is validated on the underapproximation in
order to discover conflicts from further inside the QBF.

3.5 Summary

In this chapter I reviewed research from the fields of model checking, synthesis,
and QBF that are related to the work I present in this thesis. Below I summarise
the most important of these.

• Bounded model checking is a technique used to check the correctness of
a system by searching for execution traces allowed by the model that
serve as counterexamples to its specification. It is able to do so efficiently
by constructing a SAT query that is satisfiable when a counterexample
trace of a certain length exists.

• Unbounded model checking optimises bounded model checking by
proving the nonexistence of a trace of any length by constructing a
set of reachable states. This can be achieved by either modifying the
SAT decision procedure to carefully enumerate states or by using Craig
interpolation to approximate the set.

• Properly directed reachability also uses interpolation to approximate
reachable states but does so by incrementally constructing a series of
inductive lemmas for the system.

• There are several existing approaches to synthesis with SAT. Bounded
synthesis places an upper limit on the size of implementation and lazy
synthesis extends this by guiding the search for an implementation with
counterexamples. There are also approaches that generalise clause learn-
ing for unbounded model checking and properly directed reachability
into synthesis.

3.5. SUMMARY 37

• The natural extension of bounded model checking to synthesis replaces
SAT queries with QBF. Recent research has suggested that efficient QBF
solvers should focus on reconstructing and exploiting information about
the problem. Additionally, approaches to QBF that use dueling SAT
solvers have seen success.

4 Bounded Realisability

In this chapter I will describe my work on bounded realisability of reactive
systems with safety properties. As introduced in Chapter 2 reactive realisabil-
ity is the problem of determining the existence of a program, which we call a
controller, that continuously interacts with its environment in adherence with
a specification. A safety property is a simple condition that defines a set of
error states that the controller must avoid in order to be correct.

Realisability is the first step on the path to synthesis. In the subsequent
chapter I will describe an algorithm that extracts the actions of the controller
necessary for realisation. This strategy may be used for synthesis: automatic
construction of the controller program. Reactive synthesis for controllers
with safety properties has many practical uses in areas such as circuit design,
device drivers, or industrial automation.

The algorithm described in this chapter solves bounded safety games.
Recall that Chapter 2 introduced games as a formalism for synthesis by stating
the problem in terms of a game between a controller and its environment. In
this chapter we are concerned with bounded games that restrict all runs in the
game to certain length. This concept is borrowed from model checking where
it is used to verify that a program emits no erroneous traces of a certain length.
This verification is actualised by the construction of a propositional formula
that is satisfiable when a trace that visits an error state exists in the model. A
SAT solver can be used to efficiently search for a satisfying assignment to this
formula, which represents a counterexample to the correctness property of
the specification.

In the case of realisability, the existence of a trace that reaches an error
state does not guarantee that the specification is unrealisable. Instead we
are interested in player strategies. A controller strategy must avoid the error

39

40 CHAPTER 4. BOUNDED REALISABILITY

states for all possible environment actions. Likewise, an environment strategy
must take into account all controller actions. We cannot use a SAT solver to
search for a strategy directly since we require both existential and universal
quantifiers. We can, however, check if a strategy allows a counterexample
trace without quantification. This sets us up for a counterexample guided
methodology in which we construct candidate strategies and check them for
correctness. If we discover a counterexample we use it to guide a refinement
step in which we improve the candidate strategy.

Similar to bounded model checking, bounded realisability does not guar-
antee unbounded realisability. If we decide that the controller can avoid error
states for a game bounded to k rounds there is no guarantee that the environ-
ment can not force an error in a game with a bound higher than k. In Chapter 6
I present an extension to the algorithm that is complete for unbounded games.

Restricting ourselves to solving a bounded safety game enables us to turn
the focus of the algorithm from states to traces. The traditional approach of
constructing a binary decision diagram to symbolically represent the winning
region has the potential to consume exponential space. The advantage of
concentrating on runs of the game is that we do not rely on computing the
winning states and therefore do not suffer from the related state explosion.
The factors affecting the upper limit on scalability for the bounded synthesis
algorithm are different to those of the BDD based approach. The most efficient
algorithm for a particular realisability problem depends on the properties of
that problem instance.

4.1 Algorithm

This work draws inspiration from a QBF solving algorithm that treats the QBF
problem as a game [Janota et al., 2012]. In that algorithm one player assumes
the role of the universal quantifiers and the opponent takes on the existential
quantifiers. In the game, the players take turns to chooses values for their
variables from the outermost quantifier block in. Quantifiers may be removed
from a formula by iteratively constructing and merging copies of the formula
for each quantified variable. The copies of the formula represent the two
possible values, true or false, of the quantified boolean variable. Universal
quantification can then be reduced to the conjunction of these copies, and
existential quantifications corresponds to a disjunction. In practice, these

4.1. ALGORITHM 41

expanded formulas are far too large to be solved so the authors introduce
abstractions, or partially expanded formulas, to avoid expanding on variables
unnecessarily. The abstractions are refined through a CEGAR process of
searching for candidate solutions and analysing counterexamples. The full
algorithm is described in detail in Chapter 3.

We define a safety game by the tuple G = (S,U , C, δ, s0, E). S, U , and C are
sets of boolean variables representing game states, environment actions, and
controller actions respectively. The transition relation, δ, is a boolean formula
δ : 2S × 2U × 2C → 2S that maps current states and actions to successor states.
The game begins in the initial state s0 and the E is the set of error states that
the controller must avoid. A controller strategy is a function πc : 2S×2U → 2C ,
i.e. a mapping from states and environment actions to controller actions. We
say that a strategy is winning if all runs in which the controller chooses actions
according to πc avoid error states. If πc is a partial function that defines a
mapping for a subset of 2S × 2U to 2C then we call πc a partial strategy.

Realisability is the problem to determining the existence of a winning
controller strategy. The following quantified formula may be used to solve
realisability of a safety game bounded to k game rounds:

∀Uk∃Ck∀Uk−1∃Ck−1 . . . ∀U0∃C0
(
s0(Sk)∧

¬E(Sk) ∧ δ(Sk,Uk, Ck,Sk−1) ∧ . . . ∧ ¬E(S1) ∧ δ(S1,U1, C1,S0) ∧ ¬E(S0)
)
.

The formula is constructed by unrolling the transition relationship for
every game round until the bound is reached. A quantifier alternation is
introduced to the formula for the variables corresponding to the actions of
each player. Universal quantifiers are used for the environment variables and
existential for the controller. The formula is constrained so that if the state at
any game round is an error state the formula evaluates to false. Hence it is
satisfiable if and only if a strategy exists for the controller that avoids the error
states.

It is possible to solve the QBF naïvely but we can do better by taking
into account structural information in the realisability problem that is lost
in the translation to prenex normal form. In the remainder of this chapter
I describe an adaptation of the counterexample guided QBF algorithm that
takes advantage of this information.

42 CHAPTER 4. BOUNDED REALISABILITY

Operating System

Driver

Device

os_request

dev_cmd

Figure 4.1: Structure of device driver example

4.1.1 Example

We introduce an example to assist an intuitive explanation of the algorithm.
Consider a model of a simple storage device driver. The operating system
makes requests of the driver to write or read data to or from the device. The
structure of the model is shown in Figure 4.1. It is the role of the driver to
grant these requests while ensuring that a read never occurs when a write
was requests and vice versa.

As detailed in Chapter 2, we formalise realisability by a game structure
G = (S,U , C, δ, s0). The structure for our example is:

• S = {request,error}. The game consists of two boolean variables
to denote the current request from the OS to the driver, and whether
an error has occurred. We use request = 0 to represent a read and
request = 1 for write.

• U = {os_request}. The uncontrollable actions consist of a single
boolean variable to describe a read or a write. We use the same values
as before, 0 for read and 1 for write.

• C = {dev_cmd}. The controllable actions similarly consists of a single
boolean variable to denote the command given to the device: a read
(dev_cmd = 0) or a write (dev_cmd = 1).

• The transition relation δ is defined by the following formulas:

request’← os_request

4.1. ALGORITHM 43

err’← request 6= dev_cmd

Primed variables are used here to indicate how the value is assigned in
the next game round.

• s0 = (request = 0∧err = 0). To simplify the example there is no idle
state so the model is initialised with a pending read request.

The bounded synthesis algorithm is set within a counterexample guided
abstraction refinement framework. An abstraction serves a dual purpose
in this approach as both a representation of a player strategy and as a way
to reduce the search space of the game. This is achieved by employing one
player’s candidate strategy as its opponent’s game abstraction. The effect is
that the search for a player’s strategy is directed by its opponent’s current best
effort strategy. Intuitively both players escalate their strategies until one of
them converges on a winning strategy.

The abstractions of the game that we construct during the CEGAR search
restrict actions available to one of the players. Specifically, we consider abstrac-
tions represented as trees of actions, referred to as abstract game trees (AGTs).
Figure 4.3b shows an example abstract game tree restricting the environment
(abstract game trees restricting the controller are similar). The root of the tree
is labelled with an initial state and a game length. In the abstract game, the

(0, 0) (1, 0)

(0, 1) (1, 1)

(1, 0)

(0, 1)

(0, 0) (1, 1)

(*, 1) (*, 0)

Figure 4.2: State automata representation of δ in Example 1. Nodes are la-
belled by the tuple (request, error). Edges are labelled with uncontrollable
and controllable actions: (os_request, dev_cmd). A star indicates that the
transition occurs on both a 0 and a 1. Transitions from error states are elided
for simplicity.

44 CHAPTER 4. BOUNDED REALISABILITY

cmd = 0

req = 1

cmd = 1

req = 1
〈(0, 0), 2〉

(a) Trace to error

req = 1

〈(0, 0), 2〉

(b) Candidate
environment strategy

cmd = 1

req = 1

cmd = 0

req = 1
〈(0, 0), 2〉

(c) Counterexample trace

Figure 4.3: Execution of bounded realisability on the example.
Here we use abbreviations req for os_request and cmd for dev_cmd.

Root nodes are labelled with initial state (os_request,dev_cmd) and a
game length.

controller can freely choose actions whilst the environment is required to pick
actions from the tree. After reaching a leaf, the environment continues playing
unrestricted. The tree in Figure 4.3b restricts the first environment action to
os_request = 1. At the leaf of the tree the game continues unrestricted.

We will now step through an execution of the algorithm using the example
just introduced. The first step involves a search of the empty game abstraction
for an initial candidate strategy for the environment player. In the empty
abstraction we have not yet restricted the game in any way so all runs through
the game are enabled. We search for a candidate strategy by finding a run that
reaches an error state. Here we are only searching for the existence of a run
and so we do not require quantifier alternations and a SAT solver can be used
to efficiently perform the search. Intuitively, an existential search is equivalent
to the two players of the game cooperating. Effectively, FINDCANDIDATE

employs cooperation as a heuristic for optimistically discovering candidate
strategies or alternatively quickly discovering useful counterexamples that
speed up the refinement loop. The heuristic is based on the observation that
most real world systems to which synthesis may be applied are designed to
allow the implementation of an efficient controller. Figure 4.3a shows a trace
through the example game that reaches an error state.

The trace informs us that by playing the actions contained in the trace it is
possible for the environment to reach an error state. From this we conjecture
that the first action in the trace is a reasonable choice for the first move in

4.1. ALGORITHM 45

the environment’s winning strategy. So we construct a candidate strategy in
which the environment plays os_request = 1 in the first game round. The
next step is to validate our conjecture by searching for counterexamples. We do
this by constructing a new abstraction of the game in which the environment
is restricted to playing actions from its candidate strategy (Figure 4.3b). Then
we play this abstract game on the behalf of the controller. Once again we
search for a trace through the game but this time the SAT solver is searching
for a trace that avoids error states for the duration of the bounded game. Any
traces found in this way indicate the possibility of a spoiling strategy for the
controller that defeats the candidate strategy of the environment. Figure 4.3c
shows a trace in which the controller counters the environment by playing
dev_cmd = 0 in the first round to match the initial state of request = 0.

We can define a partial strategy for an abstract game by labelling the nodes
in the tree to define the actions a player should choose against the opponent’s
actions in the edges of the tree. The trace contains controller actions that can
be used to form a counterexample partial strategy (Figure 4.4a). Our goal
now is to refine the candidate strategy for the environment so that it wins
against the controller’s partial strategy. In the candidate strategy we have not
yet selected an environment action for the second game round, so we may
refine the strategy by doing this now. Since the game is deterministic there
is a unique state (request = 1 ∧ err = 0) reachable by playing the actions
in the combination of AGT and counterexample strategy. We now solve an
abstract game with a bound of 1 from this state in order to determine which
action the environment should select for the second game round.

This new game is solved via a recursive call to the algorithm. First a trace
to an error state is found (Figure 4.4b) and an environment candidate strategy
is constructed (Figure 4.4c) from the first environment action in the trace. Then
a counterexample trace to the environment’s strategy is found in which the
controller chooses correctly to play dev_cmd = 1. At this point it is impossible
to refine the environment candidate strategy by appending additional actions
because the bound on game length has been reached. Instead an action from
the candidate is backtracked and the search continues on a refined AGT that
now includes the counterexample (Figure 4.4d).

The environment is now playing against a restricted opponent. In this
case there is no possible action that the environment can take to reach an error
state. This can be seen in the state machine for the game in Figure 4.2. None

46 CHAPTER 4. BOUNDED REALISABILITY

cmd = 0

req = 1

〈(0, 0), 2〉

(a) Partial strategy

cmd = 0

req = 1
〈(1, 0), 1〉

(b) Trace to error

req = 1

〈(1, 0), 1〉

(c) AGT with controller
actions

cmd = 1

〈(1, 0), 1〉

(d) Refined AGT

cmd = 0

〈(0, 0), 2〉

(e) Refined AGT

Figure 4.4: Continued example algorithm execution

of the outgoing transitions from (1, 0) with the controller choosing to play
dev_cmd = 1 lead to an error state in one step. If the environment cannot
win from this state against a restricted controller then clearly it cannot win
against an unrestricted controller in the game bounded to one round. We can
therefore conclude that the candidate strategy that led to this state was not a
winning strategy for its abstract game.

Actually we may conclude a stronger assertion that any strategy that
results in this state with one game round remaining is a bad strategy. It is
possible to exclude these strategies from future searches in an optimisation
described in Section 4.2.1.

The algorithm now backtracks to the very beginning. We have determined
that the candidate environment strategy in Figure 4.3b can be defeated by the
partial controller strategy in Figure 4.4a. Now the abstraction of the game is
refined to include the counterexample. The original empty abstraction refined
with a single counterexample action is shown in Figure 4.4e. Note that a
trace reaching an error in which the environment plays os_request = 1

is still possible in this abstract game (Figure 4.5a). The algorithm without
optimisation may consider this candidate again for the new abstract game.
The result will be the same and refinement occurs again, except now the
game is refined to include a counterexample action from the second round
(Figure 4.5b). On this game abstraction the candidate is blocked because the
trace must include dev_cmd = 1 in the second round.

4.1. ALGORITHM 47

cmd = 0

req = 1

cmd = 0

req = 1
〈(0, 0), 2〉

(a) Trace to error

cmd = 1

cmd = 0

〈(0, 0), 2〉

(b) Refined AGT

cmd = 1 cmd = 0

cmd = 0

〈(0, 0), 2〉

(c) Refined AGT

Figure 4.5: Continued example algorithm execution (2)

As a result the environment must choose a different action for the first
round of the game. A SAT query will reveal that os_request = 0 can lead to
an error when the controller plays dev_cmd = 1 in the second round. How-
ever, this candidate can be defeated by the controller choosing dev_cmd = 0

instead. The algorithm will discover this and refine the abstraction again
to include the counterexample. In refined abstract game (Figure 4.5c) the
environment has no winning trace and therefore the algorithm terminates and
returns realisable for the controller. The final game tree serves as a certificate
tree that proves the nonexistence of an environment strategy. In the next
chapter I show how a controller strategy can be extracted from a certificate
tree.

4.1.2 Abstract game trees

An abstract game tree (AGT) is a restricted version of the concrete game
in which fewer actions are available to one of the players. For example, in
Figure 4.5c the controller is restricted to playing dev_cmd = 0 in the first
round and either dev_cmd = 0 or dev_cmd = 1 in the second. The root of
the tree is annotated by the initial state s of the abstract game and the bound
k on the number of rounds. We denote NODES(T) the set of all nodes of a tree
T , LEAVES(T) the subset of leaf nodes. For edge e, ACTION(e) is the action
that labels the edge, and for node n, HEIGHT(k, n) is the distance from n to
the last round of a game bounded to k rounds. Figure 4.6 shows how HEIGHT

is calculated, n1 has a height of two because the three round game continues
for one additional round after the leaf nodes. HEIGHT(k, T) is the height of

48 CHAPTER 4. BOUNDED REALISABILITY

n2

cmd = 1

0

n3 1

cmd = 0

n1 2

cmd = 0

T 3

〈(0, 0), 3〉

Figure 4.6: Height of an AGT node

the root node of the tree. For node n of the tree, SUCC(n) is the set of pairs
〈e, n′〉where n′ is a child node of n and e is the edge connecting n and n′.

Given an environment (controller) abstract game tree T a partial strategy
Strat : NODES(T) → 2C (Strat : NODES(T) → 2U) labels each node n of the
tree with the controller’s (environment’s) action to be played in the game
round corresponding to HEIGHT(k, n). Figure 4.4a shows a partial strategy
constructed during the example execution. In the example an action for the
controller (dev_cmd = 0) is defined as the action to play in the first round of
the game against the environment’s first action (os_request = 1).

Given a partial strategy Strat, we can map each leaf l of the abstract game
tree to 〈s′, i′〉 = OUTCOME(〈s, i〉, Strat, l) obtained by playing all controllable
and uncontrollable actions on the path from the root to the leaf. An environ-
ment (controller) partial strategy is winning against T if all its outcomes are
states that are winning for the environment (controller) in the concrete game.

4.1.3 Counterexample guided realisability

The bounded realisability algorithm constructs candidate strategies for one
player that serve the dual purpose of game abstraction for its opponent. The
algorithm begins by discovering a candidate for the environment. Next we
must determine if there are counterexamples to the candidate. This step is
executed by constructing an abstract game tree from the environment’s candi-
date strategy and recursively invoking the algorithm on this new abstraction.
The recursive call plays against the environment’s strategy on behalf of the
controller. Thus the algorithm can be seen as running two competing solvers,
for the controller and for the environment. By symmetrically playing for both

4.1. ALGORITHM 49

players we achieve the goal of directing the search towards strong strategies
and counterexamples.

Algorithm 3 Solve an abstract bounded game
1: function SOLVEABSTRACT(p, s, k, T)
2: cand← FINDCANDIDATE(p, s, k, T) . Look for a candidate
3: if k = 1 then return cand . Reached the bound
4: T ′ ← T
5: loop
6: if cand = NULL then . No candidate: return with no solution
7: return NULL
8: end if
9: 〈cex, l, u〉 ← VERIFY(p, s, k, T, cand) . Verify candidate

10: if cex = false then . No counterexample: return candidate
11: return cand
12: end if
13: T ′ ← APPEND(T ′, l, u) . Refine T ′ with counterexample
14: cand← SOLVEABSTRACT(p, s, k, T ′) . Solve refined game tree
15: end loop
16: end function

The full procedure is illustrated in Algorithms 3 to 5. SOLVEABSTRACT

takes a concrete game G with maximum bound κ as an implicit argument. In
addition, it takes a player p (controller or environment), state s, bound k and
an abstract game tree T and returns a winning partial strategy for p, if one
exists. The initial invocation of the algorithm takes the initial state I , bound κ
and an empty abstract game tree ∅. Initially the solver is playing on behalf of
the environment since that player takes the first move in every game round.
The empty game tree does not constrain opponent moves, hence solving such
an abstraction is equivalent to solving the original concrete game.

The algorithm is organised as a counterexample-guided abstraction refine-
ment (CEGAR) loop. The first step of the algorithm uses the FINDCANDIDATE

function, described below, to come up with a candidate partial strategy that is
winning when the opponent is restricted to T . If it fails to find a strategy, this
means that no winning partial strategy exists against the opponent playing
according to T . If, on the other hand, a candidate partial strategy is found, we
need to verify if it is indeed winning for the abstract game T .

The VERIFY procedure searches for a spoiling counterexample strategy by
solving new games beginning at the outcome in each leaf of the AGT after

50 CHAPTER 4. BOUNDED REALISABILITY

applying the candidate strategy. The new games are solved by a recursive call
to SOLVEABSTRACT, which now plays on behalf of the opponent. The dual
solver is searching for a continuation of the current game that ensures that the
opponent always wins.

Algorithm 4 Find a candidate strategy
17: function FINDCANDIDATE(p, s, k, T)
18: T̂ ← EXTEND(T) . Extend the tree with arbitrary actions
19: if p = cont then
20: f ← TREEFORMULA(k, T̂)
21: else
22: f ← TREEFORMULA(k, T̂)
23: end if
24: sol← SAT(s(ST̂) ∧ f)
25: if sol = unsat then
26: LEARN(p, s, k, T, f) . This line is enabled in an optimisation
27: return NULL . No candidate exists
28: else
29: . Return partial strategy for T
30: return {〈n, c〉 | n ∈ NODES(T), c = sol(n)}
31: end if
32: end function

Algorithm 5 Verify a candidate strategy
33: function VERIFY(p, s, k, T, cand)
34: for l ∈ LEAVES(T) do
35: 〈k′, s′〉 ← OUTCOME(s, k, cand, l) . Get bound and state at leaf
36: if k′ = 0 then continue
37: if p = CONT then
38: T ′ ← ∅
39: else
40: T ′ ← {cand(l)}
41: end if
42: . Solve for the opponent
43: a← SOLVEABSTRACT(OPPONENT(p), s′, k′, T ′)
44: if a 6= NULL then return 〈true, l, a〉 . Return counterexample
45: end for
46: return 〈false, ∅, ∅〉 . There was no counterexample
47: end function

If the dual solver can find no spoiling strategy at any of the leaves then
the candidate contains the prefix of a winning strategy for the abstract game.

4.1. ALGORITHM 51

u1 u2

u0

〈s, k〉

(a) Original AGT

c3

u3

c1

u1

c4

u4

c2

u2

c0

u0

〈s, k〉

(b) Refined AGT with
candidate strategy

c1

u1
c2

u2

c0

u0

〈s, k〉

(c) Projected strategy

Figure 4.7: Projection of a candidate strategy

Otherwise, VERIFY returns the action used by the opponent after the leaf of
the AGT in a spoiling strategy. The abstract game is refined by appending this
action to the corresponding leaf in T in line 9.

We solve the refined game by recursively invoking SOLVEABSTRACT on it.
If no partial winning strategy is found for the refined game then there is also
no partial winning strategy for the original abstract game, and the algorithm
returns a failure. Otherwise, the partial strategy for the refined game is
projected on the original abstract game by removing the leaves introduced
by refinements (see Figure 4.7). The resulting partial strategy becomes a
candidate strategy to be verified at the next iteration of the loop. In the worst
case the loop terminates after all actions in the game are refined into the
abstract game.

The CEGAR loop depends on the ability to guess candidate partial strate-
gies in FINDCANDIDATE. For this purpose we use the heuristic that a partial
strategy may be winning if each OUTCOME of the strategy can be extended
to a run of the game that is winning for the current player. Clearly, if such a
partial strategy does not exist then no winning partial strategy can exist for
the abstract game tree. We formulate this heuristic as a SAT query such that
any satisfying assignment encodes such a strategy. The query is constructed
recursively by TREEFORMULA (for the controller) or TREEFORMULA (for the
environment) in Algorithm 6.

The tree is first extended to the full height of the game with edges that
are labeled with arbitrary opponent actions (Algorithm 4, line 18). For each
node in the tree, new SAT variables are introduced corresponding to the state
(ST) and action (UT or CT) variables of that node. Additional variables for

52 CHAPTER 4. BOUNDED REALISABILITY

the opponent actions in the edges of T are introduced (Ue or Ce) and set to
ACTION(e). The state and action variables of node n are connected to successor
nodes SUCC(n) by an encoding of the transition relation and constrained to
the winning condition of the player.

Algorithm 6 Tree formulas for Controller and Environment

1: function TREEFORMULA(k, T)
2: if HEIGHT(k, T) = 0 then
3: return ¬E(ST)
4: else
5: return ¬E(ST)∧
6: ∧
〈e,n〉∈SUCC(T)

(δ(ST ,Ue, CT ,Sn) ∧ Ue = ACTION(e) ∧ TREEFORMULA(k, n))

7: end if
8: end function
9: function TREEFORMULA(k, T)

10: if HEIGHT(k, T) = 0 then
11: return E(ST)
12: else
13: return E(ST)∨
14: ∨

〈e,n〉∈SUCC(T)

(δ(ST ,UT , Ce,Sn) ∧ Ce = ACTION(e) ∧ TREEFORMULA(k, n))

15: end if
16: end function

4.1.4 Correctness

Completeness of the algorithm follows from the completeness of the backtrack-
ing search. In the worst case the algorithm will construct the entire concrete
game tree and effectively expand all quantifiers. Soundness follows from
the existential search of the SAT solver in FINDCANDIDATE. The algorithm
terminates after searching for a candidate strategy on an abstract game tree
with actions fixed only for the opponent. If no candidate can be found with
the opponent restricted in this way then no strategy exists for the player.

4.1. ALGORITHM 53

Proposition 1. Let T be an abstract game tree with edges labelled by opponent
actions. If FINDCANDIDATE(p, s, k, T) = NULL then there is no strategy for p to
win a game bounded to k rounds from s.

Proof. We assume that p is the controller, the proof for the environment is
similar. The first line of FINDCANDIDATE constructs T̂ by extending T to the
full length of the game with arbitrary environment actions. The algorithm
then proceeds to construct f = TREEFORMULA(k, T̂) and query a SAT solver
for a satisfying assignment to s(Sk) ∧ f . The algorithm returns NULL when
there is no satisfying assignment.

At every iteration of TREEFORMULA, a conjunction expands a universal
quantifier into a subset of its possible values: the actions in the tree. Therefore,
s(Sk) ∧ f is a partial expansion of the formula representing the existence of a
controller strategy:

∀Uk∃Ck∀Uk−1∃Ck−1 . . . ∀U0∃C0
(
s0(Sk)∧

¬E(Sk) ∧ δ(Sk,Uk, Ck,Sk−1) ∧ . . . ∧ ¬E(S1) ∧ δ(S1,U1, C1,S0) ∧ ¬E(S0)
)
.

The partial expansion is satisfiable when there is a corresponding assignment
to Ck . . . C1 for every value in the subset of expanded environment variables. If
there is not an assignment that satisfies the formula for one value to universal
variables then clearly the formula is not satisfiable for all values. Hence if
FINDCANDIDATE returns NULL there cannot exist a strategy for the bounded
game.

Theorem 1. If there exists a strategy to a bounded game then SOLVEABSTRACT

will return a certificate tree labelled with a partial strategy.

Proof. Consider an abstract game tree T with all opponent actions enumerated,
i.e. T is a concrete game tree. The call to FINDCANDIDATE on line 2 produces
a formula exactly equivalent to a full expansion of the quantified formula
above. If there is a winning strategy then it will be found by the SAT query
and returned as a labelling of the certificate tree T . The computed strategy is
winning so the call to VERIFY must return false and the algorithm terminates.

If T does not yet contain all opponent actions then VERIFY may return a
spoiling strategy that is then appended to the tree. The call to VERIFY recur-
sively calls SOLVEABSTRACT for the opponent, so if a spoiling strategy is found
it must be a valid opponent strategy against the candidate by Proposition 1.
Any action appended to the tree must be one that is winning for the opponent

54 CHAPTER 4. BOUNDED REALISABILITY

against the candidate and so cannot already exist in the abstraction. Hence the
refinement grows monotonically with each call to VERIFY. Thus, either VERIFY

returns false and the algorithm terminates, or eventually the abstraction is
refined into a concrete game tree and terminates as shown above.

4.2 Optimisations

The bounded realisability algorithm has an worst case running time that
is exponential in the number of opponent actions when the entire search
tree must be explored before discovering a winning strategy. In this section
I present some optimisations that aim to prune the search tree as well as
discover winning strategies earlier in the search.

4.2.1 Bad State Learning

The most important optimisation that allows the algorithm to avoid much
of the search space is to record states that are known to be losing for one
player. On subsequent calls to the SAT solver we encode these states in the
candidate strategy formula (see Algorithm 7). Thus the algorithm avoids
choosing moves that lead to states that are already known to be losing.

Bad states are learned from failed attempts to find a candidate. Enabling
the optimisation triggers a call to LEARN in line 26 of FINDCANDIDATE. If the
SAT solver cannot find a candidate strategy for a given abstract game tree that
means that there is a fixed prefix in the game tree for which the current player
can never win. The state reached by playing the moves in the prefix must then
be a losing state with some caveats. If the state is at the node with height k
and losing for the environment then we know that the environment cannot
force to the error set in k rounds. We do not know if the environment can
force to the error set in > k rounds. Therefore we record losing states for the
environment in an array of sets of states Be indexed by the height at which
the set is losing. For the controller, a losing state is losing for any run of length
>= k. Instead of keeping an array we maintain a single set of losing states
Bc and block the entire set in all rounds of the game. As a consequence the
algorithm is no longer complete: we can no longer find strategies that visit
states in a round < k after we discover that they are losing states for >= k. In
practical use we are uninterested in these controller strategies since they are
not winning for the unbounded game.

4.2. OPTIMISATIONS 55

Additional states can be learned by expanding a single state into a set of
losing states by greedily testing each variable of the state for inclusion in a
cube of states. If the formula remains unsatisfiable for the generalised cube
then the entire set of states must also be losing. This technique is well known
in the literature and can be efficiently implemented using a SAT solver capable
of solving under assumptions [Eén and Sörensson, 2003]. The entire learning
procedure is shown in Algorithm 8. LEARN takes a state s, and a tree formula
f that was found to be losing for the player k at height k. First, literals are
greedily removed from s and the resulting generalised cube is added to Bc

or Be. It is also possible to compute several cubes using this technique by
removing literals in several different orders but the additional cost was found
to outweigh the benefit in practice.

Algorithm 7 Modified Tree Formulas with Bad State Avoidance

1: function TREEFORMULA(k, T)
2: if HEIGHT(k, T) = 0 then
3: return ¬Bc(ST)
4: else
5: return ¬Bc(ST)∧
6: ∧
〈e,n〉∈SUCC(T)

(δ(ST ,Ue, CT ,Sn) ∧ Ue = ACTION(e) ∧ TREEFORMULA(k, n))

7: end if
8: end function
9: function TREEFORMULA(k, T)

10: if HEIGHT(k, T) = 0 then
11: return E(ST)
12: else
13: return Be[HEIGHT(K,T)](ST) ∨
14: ∨

〈e,n〉∈SUCC(T)

(δ(ST ,UT , Ce,Sn) ∧ Ce = ACTION(e) ∧ TREEFORMULA(k, n))

15: end if
16: end function

56 CHAPTER 4. BOUNDED REALISABILITY

Algorithm 8 Learn an expanded cube of losing states

function LEARN(p, s, k, T, f)
ŝ← s
for s ∈ S do

sol← SATWITHASSUMPTIONS(ŝ \ {s}, f)
if sol = NULL then

ŝ← ŝ \ {s}
end if

end for
if p = cont then

Bc ← Bc ∨ ŝ
else

for i ∈ [0, . . . , k] do
Be[i]← Be[i] ∨ ŝ

end for
end if

end function

4.2.2 Strategy Shortening

Learning new bad states means reducing the search space for the algorithm. It
follows that it is better to learn states earlier in the algorithm’s execution. One
problem with relying on SAT calls that assume cooperation is that there is no
urgency to the returned candidate strategies. Consider the running example:
the environment can reach the error set by setting request to 2 during two
rounds. However, in the empty abstract game tree of a bounded game of
length 3 or longer, there is no reason for the SAT solver to make the first action
one of the requesting rounds if it can assume the environment will never grant
any resources. The first action is important because the candidate strategy
is derived from that. The candidate is what the opponent has the chance to
respond to, so if the candidate does not do anything useful the opponent’s
response has the freedom to be equally apathetic about reaching its goal. This
leads to much of the search space being explored unnecessarily until we learn
a losing state.

Encouraging the SAT solver to find shorter candidate strategies is a suc-
cessful heuristic for mitigating this issue. Whilst it does require more SAT
calls per call to FINDCANDIDATE it can be efficiently implemented using in-
cremental SAT solving and during our benchmarking we found the cost to be
worthwhile. A strategy is shorter if following the strategy leads to a known

4.2. OPTIMISATIONS 57

bad state for the opponent in fewer game rounds. For the environment this is
clearly analogous to reaching the error set sooner. For the controller it is less
clear, we use states that have been learned to be losing for the environment
for a particular game height. The intuition is that these states are more likely
to be safe, i.e. belonging to the winning region of the controller.

Algorithm 9 Strategy Shortening

1: function SHORTEN(p, s, k, T)
2: T̂ ← EXTEND(T)
3: f ← if p = cont then TREEFORMULA(k, T̂) else TREEFORMULA(k, T̂)
4: α← >
5: cand← SAT(s(ST̂) ∧ f)
6: for l ∈ LEAVES(T) do
7: n← ROOT(l)
8: while HEIGHT(k, n) 6= 0 do
9: if p = cont then

10: α̂← Be[HEIGHT(k, n)](Sn)
11: else
12: α̂← Bc(Sn)
13: end if
14: sol← SATWITHASSUMPTIONS(α ∧ α̂, s(ST̂) ∧ f)
15: if sol 6= NULL then
16: α← α ∧ α̂
17: cand← sol
18: break
19: end if
20: n← SUCC(n)
21: end while
22: end for
23: return cand
24: end function

Algorithm 9 gives the pseudocode for the optimisation. First a formula
f representing the abstract game is constructed in the same way as in FIND-
CANDIDATE. An additional constraint on the formula α is initialised to true.
Then for a leaf l in the game tree the algorithm greedily attempts to construct
a candidate strategy such that the highest possible predecessor of l is a known
winning state. If a candidate is found then the constraint is added to α and
the algorithm continues on to find candidates with constraints added to other
branches of the tree. The solution to the SAT query with the most restrictive
constraint is returned to be used as a candidate strategy.

58 CHAPTER 4. BOUNDED REALISABILITY

4.2.3 Default Actions

During the search for a candidate strategy the SAT solver selects actions for
the opponent as though the players are cooperating. Sometimes the result
is an action that will always fail for the opponent. In many specifications
the environment is given the option to fail as a way of modelling errors. For
example, in a network driver specification error transitions may be used to
model failed connections. When such a transition exists it will often be selected
by the SAT solver (especially when the strategy shortening optimisation is
enabled). Constantly selecting a bad action for the opponent significantly
affects the performance of the algorithm because no bad states can be learned
and the solver must refine the game abstraction to avoid the bad action.
Additionally, if a candidate strategy was found by relying on a bad action
then it will usually need to be backtracked.

To avoid problematic action selection the solver can instead use some
heuristic to select the arbitrary action required in the SAT call in FINDCANDI-
DATE. This does not affect the correctness of the algorithm. If no candidate
can be found with the opponent playing an arbitrary action then clearly the
selected action (or a different opponent action that is winning) would have
eventually been refined into the abstract game if the opponent instead co-
operated. A simple action selection heuristic has been observed to improve
the performance of the solver during benchmarking. Before the main al-
gorithm executes two SAT calls are made with formulas constructed from
TREEFORMULA and TREEFORMULA called on an empty abstract game tree.
From the result a mapping of height to default action is made for each player.
During FINDCANDIDATE calls the arbitrary opponent actions are taken from
the corresponding map at the appropriate height.

4.3 Discussion

The design of the algorithm is motivated by the desire to solve bounded safety
games whilst avoiding the potential state explosion of computing the winning
set. The key insight is to shift the emphasis from finding a winning set to
finding winning strategies. The shift is made possible by searching for runs
in an abstraction of the game and using the results to refine the abstraction.
The advantage of this approach is that even when the winning set is difficult
to represent symbolically (via a BDD or similar) a winning strategy may

4.3. DISCUSSION 59

still be found. The reverse is also true: if the winning strategy requires too
much branching it will become intractable to construct it using this algorithm.
The difference can be likened to breadth-first versus depth-first search: the
controllable predecessor used to construct a BDD explores all branches before
progressing to the next game round, and bounded realisability explores traces
through the full height of the bounded game before constructing branches in
the abstraction. As with search, the best performing algorithm depends on
the particular problem instance to be solved.

4.3.1 Comparison to QBF

As previously stated the bounded realisability problem is a specialisation of
QBF and the algorithm presented in this chapter is a domain specific QBF
solver. In Chapter 3 several approaches to solving general QBF problems were
described. The state of the art in QBF is focused on several areas: dependency
analysis, circuit analysis, and counterexample guided search.

A QBF solver may use dependency analysis to determine a partial ordering
on decision making in the search. The bounded realisability algorithm is based
on partial expansions and not search but the way that partial expansions are
made is effectively a decision. In the case of bounded realisability formulas
analysis will most likely not reveal a dependency tree significantly different
from the linear quantifier prefix itself. The formula is constructed by unrolling
a transition relation that takes states and actions as input and outputs states
for the next iteration. It may be possible that the relation contains independent
subformulas and some actions and states can be decided in parallel but the
formula also contains constraints on states variables in the form of error and
learned states. Thus it is unlikely that any action from a subsequent game
round may be decided before an action in the current game round. One useful
aspect of the dependency tree is that state variables are decided entirely by a
prefix of action variable assignments. This information is used in bounded
realisability when the OUTCOME of a labelled game tree is used to create a
subgame.

The algorithm takes advantage of a higher level of information about the
original problem than an analysis of the circuit could provide. A generalised
approach to learning in QBF detects cubes of satisfying assignments and con-
flict clauses so that they are not reconsidered in other branches of the search
after backtracking. Every unsatisfiable formula produced by FINDCANDIDATE

60 CHAPTER 4. BOUNDED REALISABILITY

is effectively discovering either a satisfying assignment (when the environ-
ment loses) or a conflict clauses (when the controller loses). The specialised
solver projects this information onto state variables and transmits the learned
states between rounds of the game. This is only possible with the knowledge
that the formula is constructed from an iterated unrolling of the transition
relation of a game and it would be difficult to reproduce this level of learning
in a general QBF solver.

The ability to learn states is also the primary difference between the spe-
cialised solver and the counterexample guided QBF algorithm proposed in
[Janota et al., 2012]. More recent QBF approaches use counterexamples to
guide an abstraction of the problem via clause selection instead of trees. It
would interesting to apply these techniques to bounded realisability although
the extension to unbounded synthesis in Chapter 6 would not be applicable
without an abstract game tree.

4.3.2 Model checking

The concept of verifying programs by searching for counterexamples of a
certain length with a SAT solver was first introduced in a bounded approach
to model checking [Biere et al., 1999]. Replacing counterexample traces with
trees is the natural extension of this approach to realisability given that the
realisability problem is modelled as a game of opposing players. The move
from model checking to realisability brings additional complexity to the prob-
lem but the efficiency of SAT is still exploited to discover counterexamples
quickly.

4.3.3 Related synthesis techniques

Bounded synthesis [Finkbeiner and Schewe, 2013] uses an SMT solver to
search for a bounded implementation for an LTL specification. Lazy synthe-
sis [Finkbeiner and Jacobs, 2012] similarly searches for a bounded partial
implementation and uses BDD based model checking to search for counterex-
amples in order to refine the partial implementation. Both of these techniques
are for full LTL synthesis, which is a different problem to the safety specifica-
tions solved in this chapter, but the overarching framework is similar.

Algorithms that avoid BDDs in favour of SAT solving have been proposed
for safety synthesis in the past [Bloem et al., 2014; Chiang and Jiang, 2015;

4.3. DISCUSSION 61

Morgenstern et al., 2013] but none of these take the approach of unrolling
the transition relation to a bound. In these previous works states belonging
to a winning region for one player are collected over a series of SAT queries
concerning single transitions. These works have more in common with the
extension of bounded realisability to unbounded games in Chapter 6.

4.3.4 Limitations

The performance of bounded realisability is influenced primarily on the
branching factor of the game tree. The worst case scenario occurs when
each environment action must be matched with a different controller action
and no state learning is possible. For example, consider a modified version of
the example given in Section 4.1.1 in which the environment requests are not
latched into a state variable.

• S = {error}. The only state is whether or not an error has occurred.

• U = {os_request}.

• C = {dev_cmd}.

• The transition relation δ is now:

err’← os_request 6= dev_cmd

• s0 = (err = 0).

Without a state variable to learn the algorithm is forced to explore all
possible actions to determine realisability. If the example is modified again
to allow for more types of requests by increasing the domain of the action
variables then it is easy to see the potential blow up. In Figure 4.8 the final
AGT for this example with a bound of 3 and action variables of size 3 is
shown. The figure shows the values of os_request in all possible paths
through the game. It is clear that this algorithm cannot scale with these kinds
of specifications. In this particular example learning that the state err = 0 is
losing for the environment a various game rounds will significantly reduce
the size of the tree. This example can be trivially extended so that learning
will no longer be helpful by introducing states that record the history of the
game. The extension can be done in a way that ensures that even with cube

62 CHAPTER 4. BOUNDED REALISABILITY

0 1 2

0

0 1 2

1

0 1 2

2

0

0 1 2

0

0 1 2

1

0 1 2

2

1

0 1 2

0

0 1 2

1

0 1 2

2

2

〈0, 3〉

Figure 4.8: AGT with large branching factor

generalisation a unique state is learned in every node of the tree and learning
does not reduce the search space.

It should be noted that it is trivial to solve this example with a BDD
solver, which can immediately prove that err = 0 is a winning region for the
controller. The extension to unbounded realisability in Chapter 6 will also be
able to handle this example by constructing the winning region.

4.3.5 Strengths

Bounded realisability is most useful in the case where the winning region of a
game has a large BDD but the winning strategy for the game is compact. It is
not fair to compare the incomplete bounded algorithm to a complete winning
region computation but we may consider the ability for each technique to find
counterexamples.

To demonstrate the usefulness of the algorithm we introduce a simple
warehouse robot controller. In this example the warehouse consists of four
loading bays and the robot is tasked with shipping items placed in the bays in
a timely fashion. We model the problem with a timer variable that begins at
one, ticks down to zero, and then resets back to one. At the beginning of the
cycle the environment may place items in any two bays. The robot then may
ship all items in one bay per timer tick and must clear all bays before the timer
resets. The example is trivial but it could be scaled on the number of bays,
number of items that the environment can load, and the length of the timer
to produce complex specifications. In this example we use integer values for
timer, ship, load0 and load1 to make the description more concise.

• S = {error, bay0, bay1, bay2, bay3, timer}.

4.3. DISCUSSION 63

• U = {load0, load1}.

• C = {ship}.

• The transition relation δ is now:

error’← timer = 1 ∧ (bay0 = 1 ∨ bay1 = 1 ∨ bay2 = 1 ∨ bay3 = 1)

bay0’← (timer = 1 ∧ (load0 = 0 ∨ load1 = 0))

∨ (timer 6= 1 ∧ ship = 0)

bay1’← (timer = 1 ∧ (load0 = 1 ∨ load1 = 1))

∨ (timer 6= 1 ∧ ship = 1)

bay2’← (timer = 1 ∧ (load0 = 2 ∨ load1 = 2))

∨ (timer 6= 1 ∧ ship = 2)

bay3’← (timer = 1 ∧ (load0 = 3 ∨ load1 = 3))

∨ (timer 6= 1 ∧ ship = 3)

timer’← (timer = 0) ? 1 : (timer− 1)

• s0 = (error = 0 ∧ bay0 = 0 ∧ bay1 = 0 ∧ bay2 = 0

∧ bay3 = 0 ∧ timer = 1)

The specification is clearly unrealisable given that in every cycle the en-
vironment can load items into two bays and the controller can only remove
items from one bay. A realisability solver that uses BDDs might attempt
to compute a winning region for the environment. The entire environment
winning region for this game contains all possible configurations in which
the environment loads two distinct bays. As shown in Figure 4.9, BDDs are
not succinct when used to represent formulas that are in this enumeration of
cubes style. If this problem was to scale the BDD would quickly consume a
large amount of space.

By instead using a SAT solver to check for the existence of a spoiling strat-
egy to the environment filling two bays, the bounded realisability algorithm
avoids computing the set of all environment winning states. The difference
between the two methodologies is similar to the difference between breadth
first search (BFS) and depth first search (DFS). The BDD driven approach
explores the game tree level by level similar to BFS and builds a compact set of
winning states. The SAT based algorithm presented here explores entire paths

64 CHAPTER 4. BOUNDED REALISABILITY

bay0

bay1

bay2

bay3

T

bay2

bay1

bay2

bay3

F

Figure 4.9: Environment winning region as a BDD.
Solid transitions are 1, dashed transitions are 0.

through the tree, similar to DFS, by searching for traces. Both approaches are
efficient on different classes of specifications.

4.4 Summary

In this chapter I presented the fundamental building block of this thesis, a new
algorithm for solving bounded realisability. In later chapters I will explain
extensions to this algorithm to increase its applicability and in Chapter 7 I will
present results and an evaluation of the contribution of this work.

• Here I introduce an algorithm for solving synthesis games that are
bounded to a fixed number of game rounds. The algorithm is a coun-
terexample guided abstraction refinement framework in which abstrac-
tions of the game are constructed from candidate strategies for the play-
ers. This is done in a way that allows a candidate strategy to be checked
for a spoiling strategy by playing the game abstraction on behalf of the
opponent. Spoiling strategies are counterexamples to a strategy that
may be used for refinement.

4.4. SUMMARY 65

• I presented several optimisations to the algorithm including computa-
tional learning of losing states and two heuristics for discovering more
useful candidate strategies.

• The design of the algorithm is inspired by the exponential blow up that
can result from constructing a symbolic representation of the winning
region as a BDD. In this algorithm the winning region is never computed
although some winning states are learned as an optimisation to prune
the search tree. In Chapter 6 we will see how this algorithm may be
extended to unbounded synthesis by approximating the winning region
during the execution of the algorithm.

5 Strategy Extraction

In the previous chapter I introduced an algorithm for solving realisability for
bounded safety games. In most applications of synthesis it is desirable to
construct a controller strategy rather than merely prove its existence. In this
chapter I will introduce a strategy extraction procedure that complements
the bounded reachability algorithm. This process takes abstract game trees
generated during reachability analysis and, using Craig interpolation, extracts
mappings of states to player actions. By using interpolation this step can be
done efficiently.

The problem solved in this chapter is related to the extraction of a Skolem
function for a QBF. Recall from Chapter 2 that a Skolem function f provides
a mapping from a prefix of universal variables ŷ0, ŷ1, . . . , ŷi to existential
variables x̂ such that when substituting x̂ for f(ŷ0, ŷ1, . . . , ŷi) the QBF is eq-
uisatisfiable. A Skolem function for a bounded realisability QBF gives a
mapping from a prefix of past environment actions to a controller action, i.e.
a strategy for that game round. A strategy for the entire game consists of a
Skolem function for every round. We simplify the problem by constructing
a single function π that maps states and environment actions to controller
actions. The game is deterministic, so an assignment to variables in the quan-
tifier prefix corresponds to exactly one state and action pair. If we guarantee
that all successors states reachable by playing according to the strategy in
round k have a winning strategy defined by π for a game bounded to k − 1

rounds then this function may be used as a Skolem function in every round of
the game. Thus we solve a simpler problem than Skolemisation of the entire
QBF.

67

68 CHAPTER 5. STRATEGY EXTRACTION

5.1 Algorithm

Recall that a safety game is a tuple (S,U , C, δ, s0) where S is a set of boolean
state variables, U a set of boolean environment action variables, C a set of
boolean controller action variables, δ defines a transition relation, and s0 is an
initial state. A set of states E provides the winning condition, the controller
must avoid error states and the environment must reach one. A winning
strategy for controller is a function πc : 2S × 2U → 2C that avoids error states
for the duration of the game. A controller strategy is then a mapping from
states and environment actions to controller actions. For convenience we use
W = S ∪ U to denote the set of boolean variables that serve as input to the
function defining a strategy.

In this chapter we will assume that the safety game is realisable and a
winning strategy for the controller exists. However, the technique is also easily
applied to unrealisable games to extract a spoiling strategy that is winning for
the environment. In computing realisability of a safety game the algorithm
constructs a certificate tree, which is an abstract game tree T such that for a
set of states s and game bound κ, s ∧ TREEFORMULA(κ, EXTEND(T)) is false.
In other words it is a game abstraction for which the environment has no
candidate strategy.

For strategy extraction, we extend the notion of abstract game trees. A
controller strategy defines a mapping from states and environment actions
to controller actions. It is useful then to refer to trees that have not only an
initial set of states but also define a set of actions that may be played by the
environment in those states. We label the root node of trees with a set σ ⊆ 2W .
We may now say that a tree is a certificate tree for a set of both states and
environment actions, i.e. it defines winning controller actions for all states and
initial environment actions in σ. The tree computed by bounded realisability
is labelled s0 ∧ > and so is a certificate tree for all environment actions in the
initial state of the game.

We use the certificate tree computed by the game solver as a starting point
for strategy generation. We know that the controller can win the game in κ
rounds by picking actions from the tree; however we do not yet know which
action to choose in which situation.

5.1. ALGORITHM 69

clk = 0
curr = 0
err = 0

clk = 1
curr = ∗
err = 0

clk = 0
curr = 1
err = 0

clk = ∗
curr = ∗
err = 1

(0, 0) (∗, 0)

(1, 1)

(∗, 1)

(∗, 1)

(∗, 0)
(∗,¬in)

Figure 5.1: Transition relation of the running example

5.1.1 Example

Figure 5.1 introduces the running example for this chapter. It shows a state
machine for a game (S,U , C, δ, s0) that describes the operation of a simpled
clocked flip-flop. For the example we model the clock as part of the game state
and assume that it oscillates in every game round. So S = {clk,curr,err}
are the state variables of the game and contains the clock, the current value
of the flip-flop, and an error bit respectively. The environment has a single
data bit variable: U = {in} and the controller has the next value of the
flip-flop: C = {next}. The diagram shows δ as a deterministic finite state
automaton with edges labelled by a tuple (in,next). We use ∗ as a wildcard
value to simplify the presentation. The circuit described by the specification
allows the environment to save a bit in into the flip-flop when the clock has
a falling edge (clk transitions from 1 to 0). The controller must correctly set
next so that curr always contains the correct data. The initial state, s0, is
(clk = 0 ∧ curr = 0 ∧ err = 0) and the error set is given by (err = 1).

Algorithm 10 shows the pseudocode of the strategy generation algorithm.
The algorithm proceeds in two phases: the first phase (GENLOCALSTRATS)
computes local strategies in nodes of T ; the second phase (COMPILESTRAT, K)
compiles all local strategies into a winning strategy function.

The GENLOCALSTRATS function recursively traverses the certificate tree
T , starting from the root, computing local strategies in each node. The main

70 CHAPTER 5. STRATEGY EXTRACTION

operation of the algorithm, called PARTITION, splits (T, σ) into j tuples (Ti, σi),
as shown in Figure 5.2. Each tree Ti is a copy of a single branch of T and
the series σ1 . . . σi forms a disjoint partitioning of σ, i.e. σi ⊆ σ ⊆ 2W . The
partitioning is constructed in such a way that the action ci that labels the root
edge of Ti is a winning controller action for states and environment actions in
σi.

Figure 5.3 illustrates how local strategies are generated from the winning
abstract game tree returned by the game solver for our running example.
Figure 5.3a shows T , the certificate tree of height 3 for the game. The algorithm
starts at the root of the tree and the initial set of states and actions is given by
σ = s0 ∧ > = (clk = 0 ∧ curr = 0 ∧ err = 0). The game tree defines only
one winning action in the root node, hence this action is winning in all states
of σ and against all actions and no partitioning is required. We now compute
the successor set reachable by playing action next = 0 against σ: i.e. we
compute the set σ′ ⊆ 2W

′
such that ∃S∃U∃C(δ(S,U , C,S ′) ∧ σ ∧ (next = 0)),

which evaluates to σ′ = (clk = 1 ∧ err = 0).

Next, we descend down the tree and consider subtree T ′ and its initial set
σ′ (Figure 5.3b). We partition σ′ into subsets σ′1 = (clk = 1∧err = 0∧in = 0)

and σ′2 = (clk = 1∧err = 0∧in = 1) that are winning for the left and right
subtrees of T ′ respectively, i.e., from (clk = 1 ∧ err = 0) the controller must
play action next = 0 when the environment plays in = 0, and next = 1 for
in = 1. Consider the resulting subtrees T ′1 and T ′2 with initial sets σ′1 and σ′2
(Figure 5.3c). We compute successor states as before: σ′′1 = (clk = 1∧curr =

0 ∧ err = 0) and σ′′2 = (clk = 1 ∧ curr = 1 ∧ err = 0), with corresponding
subtrees T ′′1 and T ′′2 (Figure 5.3d). Both subtrees have one branch; hence the
actions in those branches next = 0 and next = 1 are winning for σ′′1 and σ′′2
respectively.

c1 . . .
cn

〈σ, κ〉

(a) Before

c1

〈σ1, κ〉

. . .

cn

〈σn, κ〉

T1 Tn

(b) After

Figure 5.2: Partitioning

5.1. ALGORITHM 71

The algorithm returns the set of tuples (σ, c, k). Each tuple represents a
fragment of the strategy in some tree node, where σ ⊆ 2W is the winning set
in this node, c ∈ 2C is the controller action to play in this set, and k is the
distance from the node to the bottom of the tree.

Putting together fragments of the winning strategy computed above, we
obtain the partial strategy shown below for this example. The compilation
process must obey certain rules in order to correctly produce a winning partial
strategy, the precise methodology is given below. A complete strategy can be
constructed by asigning arbitrary actions to all other states as they are known
to be unreachable by playing the partial strategy.

π(clk = 0 ∧ curr = 0 ∧ err = 0) = (next = 0)

π(clk = 1 ∧ err = 0 ∧ in = 0) = (next = 0)

π(clk = 1 ∧ err = 0 ∧ in = 1) = (next = 1)

π(clk = 0 ∧ curr = 1 ∧ err = 0) = (next = 1)

0

0

1

1

0

〈σ, 3〉

(a) T

0

0

1

1

〈σ′, 2〉

(b) T ′

0

0

〈σ′1, 2〉

1

1

〈σ′1, 2〉

(c) Partitioning of T ′ into T ′
1 and T ′

2

0

〈σ′′1 , 1〉

1

〈σ′′2 , 1〉

(d) T ′′
1 and T ′′

2

Figure 5.3: Operation of the strategy extraction algorithm on the example

72 CHAPTER 5. STRATEGY EXTRACTION

Algorithm 10 Computing a winning strategy

1: function GENSTRATEGY(T , k, σ)
2: Strat← GENLOCALSTRATS(T, k, σ)
3: return COMPILESTRAT(Strat, k)
4: end function

5: function GENLOCALSTRATS(T , k, σ)
6: [(e1, n1), . . . , (ej , nj)]← SUCC(T)
7: [(T1, σ1), . . . , (Tj , σj)]← PARTITION(T, k, σ)
8: Strat← {(σi, ACTION(ei),HEIGHT(k, T)) | i ∈ [1, . . . , j]}
9: for i = 1 to j do

10: (T ′i , σ
′
i)← NEXT(Ti, k, σi)

11: Strati ← GENLOCALSTRATS(T ′i , k − 1, σ′i)
12: Strat← Strat ∪ Strati
13: end for
14: return Strat
15: end function

5.1.2 Partitioning game trees

The algorithm described so far involves two potentially costly operations: win-
ning set partitioning and successor set computation. If implemented naïvely in
a SAT based approach these operations can lead to unacceptable performance.
Partitioning (σ, T) into a winning set for every 〈e, n〉 ∈ SUCC(T) requires
computing all σi ⊆ 2WT such that the formula (σ ∧Ce = c∧ δ(ST ,UT , Ce,Sn)∧
TREEFORMULA(k, n)) is unsatisfiable. Similarly, the c-successors of σ are com-
puted by determining all σ′ ⊆ 2S that satisfies (δ(S,U , C,S ′) ∧ σ ∧ C = c).
Both operations require elimination of existential quantifiers, which requires
an inefficient enumeration of satisfying assignments if implemented with
SAT. The key insight behind our solution is that both operations can be
efficiently approximated from the proof of unsatisfiability of the formula
σ ∧ TREEFORMULA(k, T), with the help of interpolation, as described below.
The resulting approximations are sound, i.e., preserve the correctness of the
resulting strategy.

The PARTITION function (Algorithm 11) computes a local strategy in the
root of an abstract game tree. It takes a tuple (T, k, σ), such that T is a cer-
tificate tree of height k for σ ∈ 2W and partitions σ into subsets σi such
that the controller can win a game of k rounds in the states and against the
environment actions contained in σi by choosing action ci.

5.1. ALGORITHM 73

Algorithm 11 Partitioning winning states

1: function PARTITION(T , k, σ)
2: σ̂ ← σ
3: T̂ ← T
4: for i = 1 to j do
5: (Ti, T̃)← SPLIT(T̂)
6: A← σ ∧ TREEFORMULA(k, T̃)
7: B ← TREEFORMULA(k, Ti)
8: I ← INTERPOLATE(A,B)
9: σi ← I(WT) ∧ σ̂

10: σ̂ ← σ̂ ∧ ¬σi
11: T̂ ← T̃
12: end for
13: return [(T1, σ1), . . . , (Tj , σj)]
14: end function

ci ci+1 cj

(T̂ , σ̂)

Ti Ti+1 Tj

. . .

(Ti, σi) (T̃ , σ̂ \ σi)

Figure 5.4: Splitting of T in the PARTITION function.

At every iteration, the algorithm splits the tree into the leftmost branch Ti
and the remaining tree (Figure 5.4). It then computes σi where the controller
wins by following the branch Ti, and removes σi from the current σ̂. At the
next iteration it considers the leftover tree T̃ and state-action set σ̂.

The algorithm maintains the invariant that T̂ is a certificate tree of height
k for σ̂, and hence σ̂ ∧ TREEFORMULA(k, T̂) is unsatisfiable. We decompose
this formula into two conjuncts A ∧B such that A and B only share state and
action variablesWT in the root node of T and that the interpolant I of A and
B consists of states and environment actions for which the controller can win
by following the Ti subtree. Hence I(WT) gives us the desired set σi.

Informally, A is a partial expansion of the game formula induced by T̃ . It
is satisfiable iff there exists a spoiling environment strategy from σ̂ against

74 CHAPTER 5. STRATEGY EXTRACTION

abstract game tree T̃ . B is a partial expansion of the game induced by Ti. It is
satisfiable iff there exists a spoiling environment strategy against Ti. Both A
and B can be satisfiable individually, but because T is a certificate tree their
conjunction is unsatisfiable.

The interpolant I of A and B implies ¬B, i.e., for any state and environ-
ment action in I, ci is a winning move. I is also implied by A, i.e., it contains
all states and environment actions in σ̂ for which the controller cannot win by
picking moves from T̃ as a subset. Equivalently, for any state and action in
σ̂ ∧ ¬I(WT), the controller can win by following T̃ , i.e., T̃ is a certificate tree
for σ̂ ∧ ¬I(WT), and we can apply the decomposition again to T̃ at the next
iteration.

We prove useful properties of the PARTITION function. We begin with the
proposition that A and B imply a decomposition of σ̂ ∧ TREEFORMULA(k, T̂).

Proposition 2. A ∧B =⇒ σ̂ ∧ TREEFORMULA(k, T̂).

Proof.

A ∧B = (σ̂ ∧ TREEFORMULA(k, T̃)) ∧ TREEFORMULA(k, Ti)

A ∧B = σ̂ ∧
(
E(ST̃)∨∨
〈e,n〉∈SUCC(T̃)

δ(ST̃ ,UT̃ , CT̃ ,Sn) ∧ ACTION(e) ∧ TREEFORMULA(k, n)

)

∧
(
E(STi) ∨ (δ(STi ,UTi , CTi ,Sni) ∧ ACTION(ei) ∧ TREEFORMULA(k, ni))

)
=⇒ σ̂ ∧

(
E(ST̂)∨∨
〈e,n〉∈SUCC(T̂)

δ(ST̂ ,UT̂ , CT̂ ,Sn) ∧ ACTION(e) ∧ TREEFORMULA(k, n)

)
= σ̂ ∧ TREEFORMULA(k, T̂)

Proposition 3. The following invariant is maintained throughout the execution of
PARTITION: T̂ is a certificate tree of height k for σ̂.

Proof. We prove by induction. It is a precondition of the function that T is
a certificate tree for σ, thus the invariant holds for the initial values T̂ =

5.1. ALGORITHM 75

T and σ̂ = σ. By the induction hypothesis (σ̂ ∧ TREEFORMULA(k, T̂)) is
unsatisfiable, so by Proposition 2 (A ∧B) must also be unsatisfiable. Hence
the interpolation operation in line 8 is well defined. By the properties of
interpolants, (A =⇒ I), hence (¬I =⇒ ¬A) or equivalently (¬I =⇒
¬(σ̂ ∧ TREEFORMULA(k, T̃)).

After T̂ and σ̂ are updated in line 11, their new values T̂ ′ and σ̂′ satisfy the
following equalities:

σ̂′ ∧ TREEFORMULA(k, T̂ ′) = σ̂ ∧ TREEFORMULA(k, T̃) ∧ ¬I

= ¬I ∧ σ̂ ∧ TREEFORMULA(k, T̃)

=⇒ ¬(σ̂ ∧ TREEFORMULA(k, T̃))

∧σ̂ ∧ TREEFORMULA(k, T̃)

= ⊥

and hence the invariant is maintained.

Proposition 4. Let T be a certificate tree for σ and let σ ∧ ¬E(ST) = ⊥. Then
[(T1, σ1), . . . , (Tj , σj)] = PARTITION(T, k, σ) is a local winning strategy in the root
of T , i.e., the following properties hold:

1. σ1, . . . , σj is a partitioning of σ:

σ =
∨
σi and ∀i, k.(i 6= k) =⇒ (σi ∧ σk = ⊥).

2. Ti is a certificate tree of height k for σi.

Proof. At every iteration of the algorithm, we partition σ̂ into σi = I(WT) ∧ σ̂
and σ̂ ∧ ¬I(WT). Hence, by construction, no σi overlaps with any σk.

At the final iteration of the algorithm, the tree T̃ consists of a single root
node without outgoing branches. Hence, A = σ̂ ∧ TREEFORMULA(k, T̃) =

σ̂∧¬E(ST̃) = σ̂. Since (A =⇒ I), we get (σ̂ =⇒ I) and therefore I ∧ σ̂ = σ̂,
i.e., all states and actions in σ̂ are included in the final set σj and hence the
partitioning completely covers the set σ: σ =

∨
σi.

We prove the second statement of the proposition. The set σi is computed
as I(WT) ∧ σ̂ at the ith iteration of the algorithm (line 9). Thus,

σi ∧ TREEFORMULA(k, Ti) = I(WT) ∧ σ̂ ∧ TREEFORMULA(k, Ti)

By the properties of interpolants,

I ∧B = I(WT) ∧ TREEFORMULA(k, Ti) = ⊥.

76 CHAPTER 5. STRATEGY EXTRACTION

Hence σi ∧ TREEFORMULA(k, Ti) = ⊥, i.e. Ti is a certificate tree for σi.

5.1.3 Computing successor states

The NEXT function (Algorithm 12) takes a set σ and its certificate tree T of
height k, such that there is exactly one outgoing edge, labelled c, from the
root node of T . T has a sole child subtree T ′ with root node n. The function
computes an overapproximation σ′ of the c-successors of σ, such that σ′ is
winning for the controller and T ′ is a certificate tree of height k − 1 for σ′.

Algorithm 12 Successor set

1: function NEXT(T, k, σ)
2: [(e, n)]← SUCC(T) . T has a single successor
3: A← σ ∧ δ(ST ,UT , CT ,Sn) ∧ ACTION(e)
4: B ← TREEFORMULA(k, n)
5: I ← INTERPOLATE(A,B)
6: return (n, I(Sn))
7: end function

Once again, we decompose the unsatisfiable formula σ ∧
TREEFORMULA(k, T) into two conjuncts A and B. A encodes one
round of the game from the set σ, where the controller plays action c.
B = TREEFORMULA(k, T ′) is a partial ∀-expansion of the game induced by
T ′. A and B only share state variables Sn (where n is the root node of T ′ and
single successor node of T) and their interpolant gives an approximation of
the set of successor states.

Proposition 5. Let T be a certificate tree for σ with a single outgoing edge, labelled
c in its root node, and let (T ′, I) = NEXT(T, σ). Then:

1. I is an overapproximation of the c-successors of σ, i.e., I ⊇ σ′ where

σ′ = ∃S∃U∃C(δ(S,U , C,S ′) ∧ σ ∧ c)

2. T ′ is a certificate tree of length k − 1 for σ′

Proof. The c-successor set σ′ of σ is defined by ∃S∃U(δ(S,U , C,S ′)∧σ∧c). The
matrix of this formula is exactly formula A. Hence the successor set is given
by σ′ = ∃S∃U(A). Since (A =⇒ I), σ′ =⇒ ∃S∃U(I). Since I is defined over
state variables in the root of T ′ only, the quantifiers can be removed: σ′ =⇒ I
or, in the relational form, I ⊇ σ′.

5.1. ALGORITHM 77

We prove the second property by the construction of the interpolant:
(I ∧ TREEFORMULA(k, T ′)) = (I ∧B) = ⊥.

The computed set is an overapproximation of the desired set of succes-
sor states but the second property of Proposition 5 guarantees that we can
continue the algorithm using the approximation. The interpolant contains ad-
ditional states that may not be c-successors of σ but we ensure that T ′ contains
a winning strategy for these states. As a result, the partial strategy potentially
covers additional unreachable states but is guaranteed to be correct.

5.1.4 Compiling the strategy

Finally, we describe how local strategies computed by GENLOCALSTRATS are
combined into a winning strategy for the game. This requires some care, as
individual partial strategies can be defined over overlapping sets of states.
We want the resulting strategy function to be deterministic; therefore for each
partial strategy we only add new states not yet covered by the computed
combined strategy. Function COMPILESTRATS (Algorithm 13) achieves this
by keeping track of all states W already added to the strategy. For every new
tuple (w, a, k), it restricts the set w to ¬W , which guarantees that no state
action pair can be added to the strategy twice.

Algorithm 13 Compiling the winning strategy

1: function COMPILESTRAT(Strat, k)
2: π ← ⊥, W ← ⊥
3: . Combine strategies in descending height order
4: for i = k to 1 do
5: for (w, c, k = i) ∈ Strat do
6: π ← π ∨ (w ∧ ¬W ∧ c)
7: W ←W ∨ w
8: end for
9: end for

10: return π
11: end function

Theorem 2 (Correctness of the algorithm). Let abstract game tree T of height κ
be a certificate tree for the set σ = s0 ∧ >, let π be a partial function returned by the
strategy generation algorithm, π = GENSTRATEGY(T, σ), and let π′ be an arbitrary

78 CHAPTER 5. STRATEGY EXTRACTION

extension of π to a complete function. Then π′ is a winning controller strategy for the
bounded game of length κ with initial state s0.

Proof. GENSTRATEGY generates a strategy π from the set of tuples Strat re-
turned by GENLOCALSTRATS. Each tuple (w, c, k) in Strat is generated by
PARTITION and, according to Proposition 4, c is a winning controller move
from w for a game of length k. By Proposition 5, all possible c-successors of w
are covered by subsequent iterations of PARTITION and therefore has some
tuple (w′, c′, k − 1) in Strat. By constructing π = GENSTRATEGY from Strat

in the order of highest k to lowest, we ensure that any mapping defined by π
for w′ is from a tuple with height ≥ k− 1 and so has a strategy that is winning
for the controller for a game of k − 1 rounds or more.

Therefore π defines a controller action for every state reachable from s0

by playing the strategy. Any extension of π to a complete function that maps
unreachable states to an arbitrary controller action must then be a winning
strategy since the controller is guaranteed to stay within the safe region W by
playing π.

5.2 Optimisations

5.2.1 Strategy extraction with learning

In Section 4.2.1 I described an optimisation to bounded realisability in which
computational learning is used to exclude known losing states from the search
tree. If this optimisation is enabled then the final certificate tree returned by
the realisability algorithm will assume that these states are winning. As a
result the tree will not contain the controller actions required to win from
these states. In this case we need to adjust the way that strategy extraction is
done so that the generated strategy includes these actions.

The modification is simple: partial strategies are extracted online during
the realisability check. Recall that a set of states b is learned to be losing for the
environment for height k when b ∧ TREEFORMULA(k, T) is unsatisfiable for
some subtree T . In other words, T is a certificate tree for b. Learning occurs in
FINDCANDIDATE (Algorithm 4), which calls LEARN (Algorithm 8) whenever
an unsatisfiable formula is generated. All subsequent calls to FINDCANDIDATE

use a modified version of TREEFORMULA that assumes that the environment
cannot win from (b, k). Algorithm 14 reproduces LEARN with an additional

5.2. OPTIMISATIONS 79

call to GENLOCALSTRATS in line 12. Instead of invoking GENLOCALSTRATS

once on the final certificate tree we invoke GENLOCALSTRATS on the certificate
tree for every learned state. We collect each of these partial strategies in a set
Strats, which is combined into a winning partial strategy with COMPILESTRAT

after bounded realisability terminates.

Algorithm 14 Learning with online strategy extraction

function LEARN(p, s, k, T, f)
ŝ← s
for s ∈ S do

sol← SATWITHASSUMPTIONS(ŝ \ {s}, f)
if sol = NULL then

ŝ← ŝ \ {s}
end if

end for
if p = cont then

Bc ← Bc ∨ ŝ
else

Strats← Strats ∪ GENLOCALSTRATS(T, k, ŝ ∧ >)
for i ∈ [0, . . . , k] do

Be[i]← Be[i] ∨ ŝ
end for

end if
end function

Theorem 3. Let G be a bounded safety game that is realisable with respect to an
error set E and a bound k. Let Strats be a set of partial strategies generated dur-
ing SOLVEABSTRACT, then π = COMPILESTRAT(Strats, k) is a winning partial
controller strategy for G.

Proof. We prove correctness inductively. At the first online call to GENLO-
CALSTRATS, Be is empty and by Theorem 2 Strat0 is a partial strategy for a
state-round pair (b0, k0). Strat0 is added to Strats.

In subsequent calls all interpolants are constructed such that for every
(b, k) ∈ Be, b is assumed to be winning for the controller at any height < k. So,
Stratj+1 is a partial strategy for a game beginning at bj+1 and of length kj+1

where every state-round pair (b0, k0), . . . , (bk, kj) is assumed to be winning.
As in Theorem 2, all tuples (w, c, k) in Stratj+1 are such that c is a winning
controller action from w for a game of length k if all (b0, k0), . . . , (bk, kj) is

80 CHAPTER 5. STRATEGY EXTRACTION

assumed to be winning. Likewise, every c-successor of w is either covered by
Stratj+1 or is contained in (b0, k0), . . . , (bk, kj).

Under the inductive hypothesis, Strats = Strat0 ∪ . . . ∪ Stratj contains
winning partial strategies for every (b0, k0), . . . , (bj , kj). Thus every state
assumed to be winning at the j + 1 iteration has a winning partial strategy in
Strat0 ∪ . . . ∪ Stratj and so Strat0 ∪ . . . ∪ Stratj+1 contains winning partial
strategies for all (b0, k0), . . . , (bj+1, kj+1).

Thus, Strats contains winning partial strategies for every state in Be.
SOLVEABSTRACT terminates when it discovers a certificate tree for the ini-
tial state s0. As with all certificate trees generated during execution the
algorithm learns from the tree via a call to LEARN. Thus, at termination
s0 ∈ Be[k] and Strats contains a winning partial strategy from s0. Therefore
π = COMPILESTRAT(Strats, k) is a winning partial controller strategy for the
game.

5.2.2 Ensuring compact interpolants

The implementation of strategy extraction (described in further detail in
Chapter 7) also contains an optimisation that ensures that the size of the
formulas used in the algorithm do not grow too large. Strategy extraction
generates many CNF formulas that are used to construct interpolants. Those
formulas also contain interpolants themselves, which are arbitrary formulas
that must first be converted to CNF. The usual Tseitin transformation converts
a formula to CNF by introducing variables and potentially increases the time
taken to determine (un)satisfiability and construct a new interpolant. We
optimise the implementation by constructing a BDD from each interpolant
and using the BDD to efficiently enumerate cubes. A set of cubes usually
requires fewer additional variables than an arbitrary circuit to represent in
CNF.

BDD sweeping is used to reduce the size of formulas by carefully con-
structing BDDs from subformulas to deduplicate equivalent parts of the
formula [Kuehlmann and Krohm, 1997]. The sweep is done carefully so that
no one BDD grows too large. For this optimisation a complete BDD sweep-
ing implementation was not required since in practice the BDDs constructed
from these interpolants never grew too large. However, if a problem instance
was found to generate interpolants that are difficult to represent then BDD
sweeping could be used here.

5.3. RELATED WORK 81

5.3 Related work

All existing strategy extraction algorithms for games were developed for use
with game solvers based on winning set compilation [Bloem et al., 2014]. Such
a solver generates a sequence of expanding state sets for which the game
is safe for 1, 2, . . . steps. The task of the strategy extraction algorithm is to
compute a function that in every winning state chooses a single move that
forces the game back into a safe state. In contrast, our strategy generation
algorithm does not require the game solver to compile winning regions, but
instead uses abstract game trees.

Another line of related work is strategy extraction algorithms for QBF
used in QBF certification. QBF strategy extraction methods are specific to the
underlying proof system used by the QBF search algorithm [Egly et al., 2013;
Goultiaeva et al., 2011; Lonsing and Biere]. A strategy in a QBF is an oracle
that, given the history of moves played in the game, outputs the next move
for the winning player. An additional procedure is required to convert this
oracle into a memory-free strategy function that maps a state to a controller
move. Our work can been seen as such a procedure for ∀Exp + Res proof
system based solvers [Janota, 2013].

5.4 Summary

I have presented a strategy extraction algorithm to extend bounded realisabil-
ity to bounded synthesis. The performance overhead of this approach will be
evaluated in Chapter 7.

• A strategy may be extracted from the certificate tree generated by the
bounded realisability algorithm. The winning controller actions are
given in the edges of the certificate tree and the algorithm must simply
assign actions to subsets of the combined state and environment action
space.

• A set of states and environment actions may be partitioned such that a
controller action is winning for each partition. This can be approximated
efficiently using Craig interpolation. Likewise, for a set of state and
environment actions the successor states with respect to a controller
action may be approximated by an interpolant. These two operations

82 CHAPTER 5. STRATEGY EXTRACTION

implemented by efficient approximations are sufficient to construct a
strategy from a certificate tree.

• The algorithm may also be used, with some modification, to extract a
spoiling strategy for the environment. Another modification enables
compatibility with the computational learning optimisation of bounded
realisability. In the next chapter I extend bounded realisability to un-
bounded games and give the corresponding adaptation of strategy ex-
traction.

6 Unbounded Realisability

In previous chapters I outlined an algorithm to solve bounded realisability
games and an extension that can extract strategies from the result. Bounded
realisability can be used to prove the existence of a winning strategy for
the environment on the unbounded game by providing a witness. For the
controller, the strongest claim that can be made is that the strategy is winning
as long as the game does not extend beyond the maximum bound. The work
described in this chapter can be used to address this by presenting another
extension to the algorithm that solves unbounded realisability games.

The baseline solution to this problem is to set a maximum bound such
that all runs in the unbounded game will be considered. The naïve approach
is to use size of the state space as the bound (2S) so that all states may be
explored by the algorithm. In model checking, a more nuanced approach is
to use the diameter of the system [Biere et al., 1999], which is the smallest
number d such that for any state x there is a path of length ≤ d to all other
reachable states. An analogous approach for solving games would require
computing the longest path the environment can enforce in the game and
setting the bound to its length. Computing a sufficient bound is expensive
and the subsequent bounded realisability check may be infeasible if the bound
is high.

Instead I present an approach that iteratively solves games of increasing
bound while learning bad states from abstract games using Craig interpolation.
We utilise the approximation properties of the interpolant to construct sets
of states that underapproximate the total losing set for the controller. By
underapproximating we avoid constructing a potentially large representation
of this set that could be the cause of infeasibility in a BDD solver. Later in this
chapter we will see that a careful construction of approximate sets enables

83

84 CHAPTER 6. UNBOUNDED REALISABILITY

a fixed point that is sufficient to prove the nonexistence of an environment-
winning strategy.

6.1 Algorithm

Recall the bounded realisability algorithm from Chapter 4. In Section 4.2.1 I
presented an optimisation that learns a subset of states losing for one of the
players every time a candidate cannot be found for an abstract game. In this
chapter I present I present an improved learning procedure that maintains
certain properties for sets of learned states. The bounded algorithm is repro-
duced in Algorithm 15 with additional calls to the new learning procedure.
The algorithm solves a game (S,U , C, δ, s0) with state variables S, environ-
ment variables U , controller variables C, transition relation δ, and initial states
s0. The safety condition of the game is defined by a set of error states E that
the controller must avoid and the environment must reach.

We extend the bounded synthesis algorithm to learn states losing for one
of the players from failed attempts to find candidate strategies. The learn-
ing procedure kicks in whenever FINDCANDIDATE cannot find a candidate
strategy for an abstract game tree. When a player cannot win a abstract game
of k rounds from a state s we have proven that s is a losing state for any
game with a height of k. We can learn additional losing states from the tree
via interpolation. This is achieved in line 19 in Algorithm 15, enabled in the
unbounded version of the algorithm, which invokes LEARN or LEARN to learn
controller or environment losing states respectively (Algorithm 16).

6.1.1 Learning with interpolation

Given two formulas F1 and F2 such that F1 ∧ F2 is unsatisfiable, it is possible
to construct a Craig interpolant I such that F1 → I, F2 ∧ I is unsatisfiable,
and I refers only to the intersection of variables in F1 and F2.

We use these properties to learn the states that are losing to the actions
in every subgame in an abstract game tree T beginning in a state s. We
assume that T is labelled with controller actions and that s is losing for
the environment; learning controller losing states is described below. We
choose a non-leaf node n of T with maximal depth, i.e., a node whose chil-
dren are leafs (Algorithm 16, line 3), with the aim of learning the states
that lose to the subgame beginning at n. Figure 6.1a shows a fragment

6.1. ALGORITHM 85

Algorithm 15 Unbounded realisability
1: function SOLVEABSTRACT(p, s, k, T)
2: cand← FINDCANDIDATE(p, s, k, T)
3: if k = 1 then return cand
4: T ′ ← T
5: loop
6: if cand = NULL then return NULL
7: 〈cex, l, u〉 ← VERIFY(p, s, k, T, cand)
8: if cex = false then return cand
9: T ′ ← APPEND(T ′, l, u)

10: cand← SOLVEABSTRACT(p, s, k, T ′)
11: end loop
12: end function
13: function FINDCANDIDATE(p, s, k, T)
14: T̂ ← EXTEND(T)
15: f ← if p = cont then TREEFORMULA(k, T̂) else TREEFORMULA(k, T̂)
16: sol← SAT(s(ST̂) ∧ f)
17: if sol = unsat then
18: . Unbounded solver learns states here
19: if p = cont then LEARN(s, T̂) else LEARN(s, T̂)
20: return NULL
21: else
22: return {〈n, c〉|n ∈ NODES(T) , c = SOL(n)}
23: end if
24: end function
25: function VERIFY(p, s, k, T, cand)
26: for l ∈ LEAVES(T) do
27: 〈k′, s′〉 ← OUTCOME(s, k, cand, l)
28: if p = CONT then
29: T ′ ← ∅
30: else
31: T ′ ← {cand(l)}
32: end if
33: a← SOLVEABSTRACT(OPPONENT(p), s′, k′, T ′)
34: if a 6= NULL then return 〈true, l, a〉
35: end for
36: return 〈false, ∅, ∅〉
37: end function

86 CHAPTER 6. UNBOUNDED REALISABILITY

c1 ci

n

...

. . .

. . .

. . .

(a) T

n

...

. . .

. . .

(b) T1

c1 ci

n

. . .

(c) T2

Figure 6.1: Splitting a certificate tree

of T containing n. First, we then split the tree at n such that both slices
T1 and T2 contain a copy of n (line 4). Figure 6.1b shows T1, which con-
tains all of T except the children of n, and T2 (Figure 6.1c), which contains
only n and its children. There is no candidate strategy for T so the for-
mula constructed by unrolling copies of transition relation with fixed con-
troller actions, s ∧ TREEFORMULA(k, T), is unsatisfiable. By construction,
(TREEFORMULA(k, T1) ∧ TREEFORMULA(k, T2)) =⇒ TREEFORMULA(k, T)

and so we know that (s∧ TREEFORMULA(k, T1) ∧ TREEFORMULA(k, T2)) is
also unsatisfiable.

We construct an interpolant with F1 = s(ST) ∧ TREEFORMULA(k, T1) and
F2 = TREEFORMULA(k, T2) (line 5). The only variables shared between F1

and F2 are the state variable copies belonging to node n. By the properties
of the interpolant, F2 ∧ I is unsatisfiable, therefore all states in I are losing
against abstract game tree T2 in Figure 6.1c. We also know that F1 → I, thus
I contains all states reachable at n by following T1 and avoiding error states.

We have discovered a set I of states losing for the environment and now
must record it. Care must be taken in this step because the learning procedure
operates on a bounded game. We have learned that there is no environment
strategy that forces the game into an error state from I in k rounds or less but
there may be a longer strategy that does force an error. We therefore record
learned environment-losing states along with associated bounds. To this end,
we maintain a conceptually infinite array of sets Bm[k] that are may-losing for
the controller, indexed by bound k. Bm[k] are initialised to > for all k > 0 and
Bm[0]← E. Whenever an environment-losing set I is discovered for a node

6.1. ALGORITHM 87

Algorithm 16 Learning algorithms
Require: s(ST)∧ TREEFORMULA(k, T) ≡ ⊥
Require: Must-invariant holds
Ensure: Must-invariant holds
Ensure: s ∧BM 6≡ ⊥ . s will be added to BM

1: function LEARN(s, T)
2: if SUCC(T) = ∅ then return
3: n← non-leaf node with min height
4: 〈T1, T2〉 ← GTSPLIT(T, n)
5: F1 ← s(ST) ∧ TREEFORMULA(k, T1)
6: F2 ← TREEFORMULA(k, T2)
7: I ← INTERPOLATE(F1, F2)
8: BM ← BM ∨ I
9: LEARN(s, T1)

10: end function
Require: s(ST)∧ TREEFORMULA(k, T) ≡ ⊥
Require: May-invariant holds
Ensure: May-invariant holds
Ensure: s ∧Bm[HEIGHT(k, T)] ≡ ⊥ . s will be removed from Bm

11: function LEARN(s, T)
12: if SUCC(T) = ∅ then return
13: n← non-leaf node with min height
14: 〈T1, T2〉 ← GTSPLIT(T, n)
15: F1 ← s(ST)∧ TREEFORMULA(k, T1)
16: F2 ← TREEFORMULA(k, T2)
17: I ← INTERPOLATE(F1, F2)
18: if strategy generation enabled then
19: for i = 1 to HEIGHT(k, n) do
20: Strats[i]← Strats[i] ∪ GENLOCALSTRATS(I, T2), Strats[i]
21: end for
22: end if
23: for i = 1 to HEIGHT(k, n) do
24: Bm[i]← Bm[i] \ I
25: end for
26: LEARN(s, T1)
27: end function

88 CHAPTER 6. UNBOUNDED REALISABILITY

n with bound HEIGHT(k, n) in line 13 of Algorithm 16, this set is subtracted
from Bm[i], for all i less than or equal to the bound (lines 14–16).

Learning of states losing for the controller is similar (LEARN in Algo-
rithm 16). The main difference is that environment-losing states are losing
for all game heights. Therefore we record these states in a single set BM of
must-losing states (Algorithm 16, line 6). This set is initialised to the error set
E and grows as new losing states are discovered.

Once the set of states losing for the subtree T2 has been recorded we con-
tinue to learn states from the other nodes in T1. This achieved by recursively
splitting the already reduced T1 and learning the states that lose to a different
subtree. In order to compute interpolants we have to ensure that the formulas
constructed from trees during recursive calls are unsatisfiable. For controller
losing trees we may have removed a subtree in which the environment forces
a visit to an error state and enabled a satisfying assignment to the SAT query.
To handle this case we introduce constraints to TREEFORMULA (and similarly
TREEFORMULA) to take into account previously learned states. Intuitively, we
capture T2 by forbidding the player from visiting the states that lose to the
actions in the tree. As a result any pairs of formulas constructed during the
recursive decomposition of T are unsatisfiable and enable interpolation.

6.1.2 Example

Consider a simple arbiter system in which the environment makes a request
for a number of resources (1 or 2), and the controller may grant access to
up to two resources. The total number of requests grows each round by the
number of environment requests and shrinks by the number of resources
granted by the controller in the previous round. The controller must ensure
that the number of unhandled requests does not accumulate to more than
2. Figure 6.2 shows the variables (6.4a), the initial state of the system (6.4b),
and the formulas for computing next-state variable assignments (6.4c) for this
example. We use primed identifiers to denote next-state variables and curly
braces to define the domain of a variable. To simplify the presentation we use
integer variables.

Consider node n in Figure 6.3a, which shows an abstract game tree for
which the environment has no winning action. At this node there are two
controller actions that prevent the environment from forcing the game into
an error state in one game round. We want to use this tree to learn the states

6.1. ALGORITHM 89

Uncontrollable Controllable State
request = {1,2} grant0 = {0,1} resource0 = {0,1}

grant1 = {0,1} resource1 = {0,1}
nrequests = {0,1,2,3}

(a) Variables

resource0 = 0; resource1 = 0; nrequests = 0;

(b) Initial State

resource0’ = grant0;

resource1’ = grant1;

nrequests’ = (nrequests + request >= resource0 + resource1)

? (nrequests + request - resource0 - resource1)

: 0;

(c) Transition Relation

Figure 6.2: Example

from which the controller can win playing one of these actions. Specifically,
we compute a subset of such states, using interpolation, which we will show
is sufficient to ensure convergence.

We construct an interpolant with F1 = s(ST) ∧ TREEFORMULA(k, T1) and
F2 = TREEFORMULA(k, T2) (line 5). The only variables shared between F1

and F2 are the state variable copies belonging to node n. By the properties
of the interpolant, F2 ∧ I is unsatisfiable, therefore all states in I are losing
against abstract game tree T2 in Figure 6.3c. We also know that F1 → I, thus
I contains all states reachable at n by following T1 and avoiding error states.

At node n, the interpolant (nrequests = 1 ∧ resource1 = 1) captures
the information we need. Any action by the environment followed by one of
the controller actions at n will be winning for the controller.

6.1.3 Convergence on a fixed point

Algorithm 18 shows the main loop of the unbounded synthesis algorithm. The
algorithm invokes the modified bounded synthesis procedure with increasing
bound k until the initial state is in BM (environment wins) or Bm reaches a

90 CHAPTER 6. UNBOUNDED REALISABILITY

gr0=1
gr1=0

gr0=1
gr1=1

n

gr0=0
gr1=1

gr0=1
gr1=1

gr0=1
gr1=1

〈s, k〉

(a) A losing AGT T

n

gr0=1
gr1=0

gr0=1
gr1=1

gr0=1
gr1=1

〈s, k〉

(b) Tree slice T1

gr0=1
gr1=0

gr0=1
gr1=1

n

(c) Tree slice T2

Figure 6.3: Splitting of an abstract game tree by the learning procedure.

fixed point (controller wins). We now prove that the algorithm will eventually
converge on a fixed point and that it guarantees that the game is realisable.

We define two global invariants of the algorithm. The may-invariant states
that sets Bm[i] decrease monotonically with i and that each Bm[i+ 1] overap-
proximates the states from which the environment can force the game into
Bm[i], i.e. Bm[i+1] overapproximates the uncontrollable predecessor ofBm[i].
The must-invariant guarantees that the must-losing set BM is an underapprox-
imation of the actual losing set B. Both invariants trivially hold after Bm and
BM have been initialised in the beginning of the algorithm. Further interac-
tion of the algorithm with the recorded learned states is constrained to LEARN

and LEARN so it suffices to prove these invariants for these functions only.

Proposition 6. Assuming the preconditions are met, LEARN satisfies its postcondi-
tions. Namely,

1. LEARN maintains the may-invariant:

∀(0 < i < k). Bm[i] ⊆ Bm[i+ 1], Upre(Bm[i]) ⊆ Bm[i+ 1].

6.1. ALGORITHM 91

Algorithm 17 Tree formula construction with Bm and BM

1: function TREEFORMULA(k, T)
2: if HEIGHT(k, T) = 0 then
3: return ¬BM (ST)
4: else
5: return ¬BM (ST)∧
6: ∧
〈e,n〉∈SUCC(T)

(δ(ST ,Ue, Cn,Sn) ∧ Ue = ACTION(e) ∧ TREEFORMULA(k, n))

7: end if
8: end function
9: function TREEFORMULA(k, T)

10: if HEIGHT(k, T) = 0 then
11: return E(ST)
12: else
13: return Bm[HEIGHT(k, T)](ST) ∧
14: (

E(ST)∨
∨

〈e,n〉∈SUCC(T)

(δ(ST ,Un, Ce,Sn)∧Ce = ACTION(e)∧TREEFORMULA(k, n))

)

15: end if
16: end function

2. LEARN ensures that s is removed from Bm:

s ∧Bm[HEIGHT(k, T)] ≡ ⊥

Proof. The precondition of LEARN states that s(ST) ∧ TREEFORMULA(k, T) ≡
⊥. We use the unsatisfiability of this formula to construct an interpolant.
Line (11–12) splits the tree T into T1 and T2, such that T2 has depth 1. Consider
formulas F1 = s(ST)∧ TREEFORMULA(k, T1) and F2 = TREEFORMULA(k, T2).
These formulas only share variables Sn. Their conjunction F1 ∧ F2 is un-
satisfiable, as by construction any solution of F1 ∧ F2 also satisfies s(ST) ∧
TREEFORMULA(k, T), which is unsatisfiable by the precondition. Hence the
interpolation operation is defined for F1 and F2.

Intuitively, the interpolant computed in line (13) overapproximates the set
of states reachable from s by following the tree from the root node to n, and

92 CHAPTER 6. UNBOUNDED REALISABILITY

Algorithm 18 Unbounded Synthesis
1: function SOLVEUNBOUNDED(G,E)
2: BM ← E
3: Bm[0]← E
4: for k = 1 . . . do
5: if SAT(s0 ∧BM) then
6: . Losing in the initial state
7: return unrealisable
8: end if
9: if ∃i < k. Bm[i] ≡ Bm[i+ 1] then

10: . Reached fixed point
11: return realisable
12: end if
13: Bm[k]← >
14: CHECKBOUND(k)
15: end for
16: end function
Require: May and must invariants hold
Ensure: May and must invariants hold
Ensure: s0 6∈ Bm[k] if there exists a winning controller strategy with bound k
Ensure: s0 ∈ BM if there exists a winning environment strategy with bound
k

17: function CHECKBOUND(k)
18: return SOLVEABSTRACT(env, s0, k, ∅)
19: end function

underapproximates the set of states from which the environment loses against
tree T2.

Formally, I has the property I ∧F2 ≡ ⊥. Since T2 is of depth 1, this means
that the environment cannot force the game intoBm[HEIGHT(k, n)−1] playing
against the counterexample moves in T2. Hence, I∩Upre(Bm[HEIGHT(k, n)−
1]) = ∅. Furthermore, since the may-invariant holds, I ∩ Upre(Bm[i]) = ∅, for
all i < HEIGHT(k, n). Hence, removing I from all Bm[i], i ≤ HEIGHT(k, n) in
line (15) preserves the may-invariant, thus satisfying the first post-condition.

Furthermore, the interpolant satisfies F1 → I, i.e., any assignment to Sn
that satisfies s(ST) ∧ TREEFORMULA(k, T1) also satisfies I. Hence, removing
I from Bm[HEIGHT(k, n)] makes s(ST) ∧ TREEFORMULA(k, T1) unsatisfiable,
and hence all preconditions of the recursive invocation of LEARN in line (17)
are satisfied.

6.1. ALGORITHM 93

At the second last recursive call to LEARN, tree T1 is empty, n is the
root node, TREEFORMULA(k, T1) ≡ Bm[HEIGHT(k, T1)](ST); hence s(ST) ∧
TREEFORMULA(k, T1) ≡ s(ST) ∧ Bm[HEIGHT(k, T1)](ST) ≡ ⊥. Thus the sec-
ond postcondition of LEARN holds.

Proposition 7. Assuming the preconditions are met, LEARN satisfies its postcondi-
tions. Namely,

1. LEARN maintains the must-invariant:

BM ⊆ B.

2. LEARN ensures that s is added to BM :

s ∧BM 6≡ ⊥

Proof. The proof of LEARN is similar to the above proof of LEARN. An in-
terpolant constructed from F1 = s(ST) ∧ TREEFORMULA(k, T1) and F2 =

TREEFORMULA(k, T2) has the property I ∧ F2 ≡ ⊥ and the precondition en-
sures that the controller is unable to force the game into BM playing against
the counterexample moves in T2. Thus adding I to BM maintains the must-
invariant satisfying the first postcondition.

Likewise, in the second last recursive call of LEARN with the empty tree
T1 and root node n: TREEFORMULA(k, T1) ≡ ¬BM (ST). Hence s(ST) ∧
TREEFORMULA(k, T1) ≡ s(ST) ∧ ¬BM (ST) ≡ ⊥. Therefore s ∧ BM 6≡ ⊥,
the second postcondition, is true.

Proposition 8. We prove the following for CHECKBOUND

1. CHECKBOUND maintains the may and must invariants

2. If the bounded game is realisable for k then CHECKBOUND terminates and
guarantees s0 6∈ Bm[k].

3. If the bounded game is unrealisable for k then CHECKBOUND terminates and
guarantees s0 ∈ BM .

Proof. Bm and BM are updated inside LEARN and LEARN only. Therefore, by
Propositions 6 and 7, CHECKBOUND maintains both invariants.

94 CHAPTER 6. UNBOUNDED REALISABILITY

From the correctness of SOLVEABSTRACT given in Chapter 4 (Theorem 1)
we have that CHECKBOUND terminates and during execution a certificate
tree is generated and checked by FINDCANDIDATE. In the modified version
of SOLVEABSTRACT, one of the learning procedures is called when FIND-
CANDIDATE returns NULL. Thus CHECKBOUND generates a call to a learning
procedure and passes s and a certificate tree T . Therefore, when the game is
realisable, Proposition 6 guarantees that s is removed from Bm[k]. Likewise,
when the game is unrealisable Proposition 7 guarantees that s is removed
from BM .

Theorem 4. Let G be a game with a safety condition defined by a set of error states
E. SOLVEUNBOUNDED(G,E) is guaranteed to terminate and correctly decide
realisability for G.

Proof. Assume that G is realisable, we use the may-invariant to show correct-
ness of SOLVEUNBOUNDED. The invariant guarantees that Bm[i] contains all
states from which the environment can force the game into an error state in
at most i steps. If Bm[i] ≡ Bm[i + 1] (line 6) then the invariant states that
Upre(Bm[i]) ⊆ Bm[i]. Thus, any state that the environment can use to force
the game into Bm[i] is contained within Bm[i]. In other words, Bm[i] over-
approximates the winning states for the environment. Proposition 8 ensures
that s0 6∈ Bm[k], and since the invariant ensures that Bm is monotonic then s0
must not be in Bm[i]. If s0 6∈ Bm[i] then s0 is not in the winning states for the
environment and the controller can always win from s0.

Alternatively, G is unrealisable. The must-invariant guarantees that the
environment can force the game into an error state from BM , therefore check-
ing whether the initial state is in BM (as in line 5) is sufficient to return
unrealisable.

Termination also follows from the invariants. Given that ∀(0 < i <

k). Bm[i] ⊆ Bm[i+1], i.e. Bm decreases monotonically by index, and there are
a finite set of states in the game; the algorithm is guaranteed to reach a fixed
point at a maximum bound of 2S . If the game is unrealisable there must exist
a finite length winning environment strategy, thus by iteratively increasing k
we guarantee termination.

6.1. ALGORITHM 95

Algorithm 19 Compiling the winning strategy

1: function COMPILESTRAT(Strats, i)
2: π ← ⊥, W ← ⊥
3: for (w, c, k) ∈ Strats[i] do
4: π ← π ∨ (w ∧ ¬W ∧ c)
5: W ←W ∨ w
6: end for
7: return π
8: end function

6.1.4 Strategy extraction

In the previous chapter I showed how to extract a strategy from the certificate
tree generated during the bounded realisability algorithm. I will now prove
that a similar approach extracts a correct strategy for an unbounded game
when strategy generation is done online as it is when the learning optimisation
is enabled for bounded realisability. In order to extract strategies online, line 20
becomes active in LEARN and a local strategy is generated for each learned
interpolant. The local strategies are collected in an array Strats, which is
indexed by the height of the subtree that enabled interpolation. Algorithm 19
shows a modified version of COMPILESTRAT that takes this array and the
index of Bm such that Bm[i+ 1] = Bm[i], and returns a winning strategy for
the game. As proved below, the local strategies from the sets of states removed
from the fixed point of Bm are sufficient to construct a winning strategy for
the controller.

Theorem 5. LetG be a safety game that is realisable with respect to an error setE. Let
Strats be a set of partial strategies generated during SOLVEUNBOUNDED(G,E),
then π = COMPILESTRAT(Strats) is a winning partial controller strategy for G.

Proof. Let (b, k) be a pair such that b is a set of states learned to be
environment-losing for a game of length k during execution of LEARN. Then
(b, k) has corresponding tree, T , that has a depth of one. We construct
[(w0, c0, k0), . . . , (wj , cj , kj)] = GENLOCALSTRATS(T, k, b). Since the tree is
of depth one, NEXT is never called. From the precondition of LEARN we
know that b(ST) ∧ TREEFORMULA(k, T) is false. Therefore interpolation in
PARTITION is well defined.

On termination of unbounded realisability we have an index i such that
Bm[i + 1] = Bm[i]. Every set of states removed from Bm[i + 1] has a corre-

96 CHAPTER 6. UNBOUNDED REALISABILITY

sponding local strategy in Strats[i + 1] that consists of one or more tuples
(w, c, k). By Proposition 4 (in Chapter 5), b(W) =

∨
iwi, i.e. there is a (w, c, k)

tuple for every state and environment action action in b.

Recall that each tuple is constructed from an interpolant that guarantees
w ∧ TREEFORMULA(i + 1, T) = ⊥ where T is a tree consisting of one edge
labelled c. We may expand the formula like so:

w ∧ TREEFORMULA(i+ 1, T)

=w ∧Bm[i+ 1](ST) ∧
(
E(ST)∨∨

〈e,n〉∈SUCC(T)

(δ(ST ,Un, Ce,Sn) ∧ Ce = ACTION(e) ∧ TREEFORMULA(i, n))

)

=w ∧Bm[i+ 1](ST) ∧
(
E(ST)∨

(δ(ST ,Un, Ce,Sn) ∧ Ce = c ∧ TREEFORMULA(i, n))

)
=w ∧Bm[i+ 1](ST) ∧

(
E(ST) ∨ (δ(ST ,Un, Ce,Sn) ∧ Ce = c ∧Bm[i](Sn))

)

By choosing c in w ∧Bm[i+ 1] the controller guarantees that the environment
cannot reach any state in the current set Bm[i]. Each set in Bm decreases over
the execution of the algorithm, so this property holds for the final value of
Bm[i]. Since Bm[i + 1] excludes only states for which this property is also
true we may simplify the property to state that from any w the controller can
guarantee that the controller cannot reach Bm[i].

Since Bm[i] = Bm[i+ 1], the only states excluded from Bm[i] are the same
as those removed from Bm[i + 1] in LEARN. So the set of successor states
of (w, c) are contained within the set of all pairs (b, i + 1). Thus, all states
reachable by playing local strategies Strats[i+ 1] have defined local strategies
also in Strats[i+ 1].

By Proposition 8, s0 6∈ Bm[i+ 1], so there is a strategy defined for all states
and environment actions in the initial state. As shown in Theorem 4, Bm[i+ 1]

overapproximates the winning region of the environment. Therefore, if the
controller plays according to π = COMPILESTRAT(Strats, i + 1) there is a
defined strategy from the initial state that ensures that the game stays outside
the environment’s winning region.

6.2. OPTIMISATIONS 97

6.2 Optimisations

6.2.1 Generalising the initial state

This optimisation allows us to learn may and must losing states faster. Starting
with a larger set of initial states we increase the reachable set and hence
increase the number of states learned by interpolation. This optimisation
requires a modification to SOLVEABSTRACT to handle sets of states, which is
not shown.

The optimisation is relatively simple and is inspired by a common greedy
heuristic for minimising unsat cores. Initial state s0 assigns a value to each
variable in S. If the environment loses 〈s0, k〉 then we attempt to solve for a
generalised version of s0 by removing one variable assignment at a time. If the
environment loses from the larger set of states then we continue generalising.
In this way we learn more states by increasing the reachable set. In our
benchmarks we have observed that this optimisation is beneficial on the
first few iterations of CHECKBOUND. Note that it is possible to discover
multiple sets in this way by iterating the procedure with different orders
on the variables removed from s0. However, in practice the benefit of these
additional sets was found to be outweighed by the cost of computing them.

Algorithm 20 Generalise s0 optimisation
function CHECKBOUND(k)

r ← SOLVEABSTRACT(env, s0, k, ∅)
if r 6= NULL then return r
s′ ← s0
for x ∈ S do

r ← SOLVEABSTRACT(env, s′ \ {x}, k, ∅)
if r = NULL then

. Remove the assignment to x from s′

s′ ← s′ \ {x}
end if

end for
return NULL

end function

98 CHAPTER 6. UNBOUNDED REALISABILITY

6.2.2 Generalising losing states

The same generalisation operation can be performed during computational
learning. When learning with interpolation the size of the learned set can vary
from exactly the reachable states to a large overapproximation of reachable
states. The interpolant is constructed with the property F1 =⇒ I, so by
increasing the number of states represented by F1 we also potentially increase
the size of I . F1 is given by s(ST1) ∧ TREEFORMULA(T1, k) and represents the
set of states reachable from s by playing the actions in T1. For correctness we
require that s is losing to the full tree T so we can increase the size of s by
generalising in the same way as the previous optimisation. We drop variables
from s such that the new assignment s′ is also losing to the actions in T . This
increases F1 and we may learn a larger interpolant. As with the previous
optimisation it would be possible to learn multiple assignments but this was
not found to be beneficial in practice.

6.2.3 Improving candidate strategies

Using heuristics to strengthen candidates in FINDCANDIDATE is an impor-
tant avenue for future optimisations as the quality of candidate strategies
affects the rate of convergence of the counterexample guided search. Here
I introduce some possible heuristics but leave a thorough investigation to
future work. The key insight is that the algorithm remains correct as long as
FINDCANDIDATE returns a strategy whenever one exists. There is significant
freedom to choose strategies according to a heuristic without losing soundness
or completeness.

In Chapter 4 I introduced strategy shortening to improve candidate strate-
gies in the bounded realisability algorithm. This is a heuristic that searches
for candidates that may reach known winning states earlier in the game.
For unbounded synthesis this optimisation is even more useful because it
allows the algorithm to learn losing states more quickly. Strategy shortening
attempts to push good actions closer to the root of the game tree. For learning
environment-losing states this can mean that states can potentially be proven
to be losing for larger values of k.

Another example heuristic is an additional SAT call in FINDCANDIDATE

that first checks for the existence of a strategy that loops by adding the re-
quirement that ∃i∃j(si = sj) in all runs s0, ..., sk. The motivation behind this

6.3. DISCUSSION 99

optimisation was that a controller strategy that forces a loop may be able to
force the game to stay within a set of states that are reachable inside the loop.
If this is possible then the algorithm can quickly converge on a fixed point
using this strategy to keep the game outside the overapproximation of then
environment’s winning region. In practice, such strategies are rarely found
and the additional call to the SAT solver was a waste of resources.

Another heuristic for future exploration is the use of QBF or 2QBF solvers
to check for actions that are winning for all opponent actions, i.e. partially
reintroducing universal quantifiers to the search. For instance, the quan-
tifier prefix on the formula constructed from a tree could be modified to
∀Uk∃Ck∃Uk−1∃Ck−1 . . . ∃U1∃C1 so that there must exist a winning run for all
possible actions the environment may take in the first round of the game.
This may help ensure that the controller’s candidate strategy does not rely on
the environment choosing a particular action in that round and reduce the
number of refinements to the game abstraction.

6.3 Discussion

Unbounded realisability is designed to take advantage of the strengths of
bounded realisability but provide the completeness offered by a fixed point
computation. These conflicting aims are addressed by approximation via
interpolation, which allows completeness without sacrificing performance to
an exploding symbolic representation.

6.3.1 Related work

Synthesis of safety games is a thoroughly explored area of research with
most efforts directed toward solving games with BDDs [Burch et al., 1990]
and abstract interpretation [Brenguier et al., 2014; Walker and Ryzhyk, 2014].
Satisfiability solving has been used previously for synthesis in a suite of
methods proposed by Bloem et al. [Bloem et al., 2014]. The authors propose
employing competing SAT solvers to learn clauses representing bad states,
which is similar to our approach but does not unroll the game. They also
suggest QBF solver, template-based, and Effectively Propositional Logic (EPR)
approaches.

SAT-based bounded model checking approaches that unroll the transition
relation have been extended to unbounded by using conflicts in the solver

100 CHAPTER 6. UNBOUNDED REALISABILITY

[McMillan, 2002], or by interpolation [McMillan, 2003]. However, there are no
corresponding adaptations to synthesis.

Incremental induction [Bradley, 2011] is another technique for unbounded
model checking that inspired several approaches to synthesis including the
work presented here. Morgenstern et al. [Morgenstern et al., 2013] proposed an
technique that computes sets of states that overapproximate the losing states
(similar to our Bm) and another set of winning states (similar to the negation
of BM). Their algorithm maintains a similar invariant over the sets of losing
states as our approach and has the same termination condition. It differs in
how the sets are computed, which it does by inductively proving the number
of game rounds required by the environment to win from a state. Chiang
and Jiang [Chiang and Jiang, 2015] recently proposed a similar approach that
focusses on computing the winning region for the controller forwards from
the initial state in order to take advantage of reachability information and bad
transition learning without needing to discard learnt clauses.

There are approaches to synthesis of LTL specifications that use bounds to
simplify the problem. The authors of [Finkbeiner and Schewe, 2013] suggest a
methodology directly inspired by bounded model checking and it has been
adapted to symbolic synthesis [Ehlers, 2012]. In contrast to the approach here
the bound is placed on the implementation instead of the number of game
rounds. Lazy synthesis [Finkbeiner and Jacobs, 2012] similarly constructs
implementations of a bounded size but does so in a counterexample guided
approach. Their approach is to use an SMT solver to produce a candidate
implementation and then check the implementation with a BDD based model
checker. These bounded synthesis techniques are similar in ideology to the
approach described here but are used to solve a different problem.

6.3.2 Limitations

Bounded synthesis is generally efficient for games without a high branching
factor, as discussed in Chapter 4. This limitation affects the unbounded solver
as can be seen in the synthesis competition results on specifications such as
the adder. In a correct adder the controller must set a variable c to be equal
to a+ b where a and b are environment variables. The unbounded synthesis
algorithm must construct a game tree consisting of all possible values to c in
order to prove realisability.

6.3. DISCUSSION 101

Uncontrollable Controllable State
stay = {0,1} reset = {0,1} counter = {0,..,2n-1}

err = {0,1}

(a) Variables

counter = 0; err = 0;

(b) Initial State

counter’ = if (stay)

counter

else if (counter == (2n-1)-1 ∧ reset)

0

else

counter + 1

err’ = (counter == 2n-1)

(c) Transition Relation

Figure 6.4: Parameterised counter example

The unbounded solver extends the bounded solver with learning. Learn-
ing states from the game tree does not introduce significant complexity to the
problem. However, there are cases in which learning can be slow to converge
on a fixed point. As a result the bounded algorithm must be iterated many
times with increasing bounds.

In the synthesis competition benchmarks there is a simple counter spec-
ification that helps illustrate the limitations of unbounded synthesis. The
specification is given a parameter n that determines the number of bits in the
counter. Figure 6.4 shows the specification. The environment has the choice
to increment the counter, or not. The controller can reset the counter when it
is half way to the maximum value. The controller is safe if the counter never
reaches its maximum value. Clearly a safe controller resets whenever it is able
to.

This example can induce two different interesting behaviours in the un-
bounded synthesis algorithm. Let us first consider the game tree in Figure 6.5a.
The controller strategy shown in this tree is to not reset the counter. This strat-
egy wins the bounded game for any counter with n ≥ 2 because there are
not enough game rounds for the counter to reach the error state. Let’s now

102 CHAPTER 6. UNBOUNDED REALISABILITY

reset=0

reset=0

〈s0, 2〉

(a) No reset candidate

reset=1

reset=1

〈s0, 2〉

(b) Reset candidate

Figure 6.5: Game trees for the counter specification

consider how the unbounded algorithm would learn from this tree when
n = 3. At the node of height 1, the largest interpolant that could be learned is
((err == 0)∧(counter < 6)). At the next node up the tree we might learn
((err == 0) ∧ (counter < 5)). With a tree of length k = 2n − 2 = 6 we
could have Bm with a difference of exactly one state in each successive index.
For high values of n it is infeasible to construct a formula in CNF for this many
unrollings of the transition relation, even though there is no branching.

In practice, unbounded synthesis can do well on this specification when
the SAT solver gives a candidate such as in Figure 6.5b. The optimisation
that generalises the losing state before interpolation is able to drop all bits of
the counter except the high bit. This gives ((err = 0) ∧ (counter < 3)),
which describes the safe region of the game. The procedure quickly converges
on this fixed point in this case.

6.3.3 Strengths

The strength of unbounded synthesis lies in the ability to approximate the
winning region. This can be seen on a scaled up version of the example used
in Section 6.1. The example as described is the n = 2,m = 2 instance of the
more general problem of an arbiter of n resources and an environment that
can make up to m requests at once. The general problem is realisable if n ≥ m
by a controller that always grants access to m resources. The problem for BDD
solvers is that it can be difficult to compactly represent all nCm combinations
of granted resources that make up the winning region. With unbounded syn-
thesis a fixed point can be reached by choosing just one winning combination

6.4. SUMMARY 103

and proving that the environment cannot force an escape from that small set
of states.

In Chapter 4 I showed that the strength of the bounded realisability algo-
rithm lies in quickly discovering counterexamples that are difficult to find
by representing the entire winning or losing region as a BDD. Unbounded
synthesis has similar advantages except that we can extend this advantage to
specifications that are realisable.

6.4 Summary

I have now shown how to extend bounded realisability to unbounded games
by interpolating abstract game trees to learn an overapproximation of the en-
vironment’s winning region. The resulting algorithm is a sound and complete
procedure for realisability that is efficient is certain cases where BDD based
methods are not. In the next chapter I will present an implementation of the
algorithm and show results.

• Chapter 4 introduced bounded realisability, which constructs game trees
as abstractions of the game. An optimisation was described that prunes
the search tree by learning the set of states that are losing for a particular
abstraction. In this chapter states are learned from the same game trees
with interpolation.

• Learning with interpolants ensures that certain properties are main-
tained on the losing states. By carefully maintaining invariants using
those properties a fixed point in environment losing states can be de-
tected.

• The constructed fixed point is an overapproximation of the total set of
environment losing states. Unbounded synthesis can be more efficient
than BDD solvers in cases where computing the entire set of states is
costly.

7 Evaluation

In this chapter I present benchmarking results for the implementations of
each previous chapter. Bounded realisability is implemented in a tool called
EVASOLVER as joint work between Nina Narodytska and myself. EVA-
SOLVER was built in C++ and is based on the source code of RAREQS [Janota
et al., 2012]. The tool calls out to Glucose [Audemard and Simon, 2009]
for SAT solving. Strategy extraction was later added to EVASOLVER using
PeRIPLO [Rollini et al., 2013] to construct interpolants. The implementation
also uses cudd [Somenzi, 2001] to reduce interpolants into cubes via BDDs.
I implemented unbounded realisability in a separate open source tool, TER-
MITESAT [Legg, 2016], which contains a reimplementation of the bounded
realisability algorithm. TERMITESAT is written in Haskell and also uses Glu-
cose for SAT solving, PeRIPLO for interpolant construction, and cudd to
reduce interpolants to cubes. TERMITESAT was submitted to the 2016 synthe-
sis competition and the results are shown below. As part of that submission
I added a hybrid mode to TERMITESAT that runs the unbounded synthesis
algorithm in parallel with Simple BDD Solver [Walker, 2014].

7.1 Bounded realisability

The algorithm is evaluated on four families of benchmarks derived from driver
synthesis problems. Bounded realisability is only able to prove the absence of
counterexample traces up to a certain length for safety games so the tool is
instead evaluated on benchmarks formulated as the dual reachability game.
EVASOLVER solves games in which the controller must reach a goal state.
The benchmarks are equivalent to unrealisable safety specifications. Each
benchmark models the data path of one of four I/O devices in the abstracted

105

106 CHAPTER 7. EVALUATION

form. In particular, we model the transmit buffer of an Ethernet adapter,
the send queue of a UART serial controller, the command queue of an SPI
Flash controller, and the IDE hard disk DMA descriptor list. In order to show
scalability, the models are parameterised by the size of the corresponding data
structure. Specifications are written in a simple input language based on the
NuSMV syntax [Henzinger et al., 2003]. The transition relation of the game is
given in the form of variable update functions s′ := f(S,U , C), one for each
state variable s ∈ S.

These benchmarks were selected in order to demonstrate the strengths
and weaknesses of the approach. In Section 7.3 a more extensive evaluation is
presented using a large suite of benchmarks.

We compare our solver against two existing approaches to solving games.
First, we encode input specifications as QBF instances and solve them us-
ing two state-of-the-art QBF solvers: RAREQS [Janota et al., 2012] and DE-
PQBF [Lonsing and Biere], having first run them through the bloqqer [Biere
et al., 2011] preprocessor. Second, we solve our benchmarks using the Ter-
mite [Walker and Ryzhyk, 2014] BDD-based solver that uses dynamic variable
reordering, variable grouping, transition relation partitioning, and other opti-
misations.

Our experiments, summarised in Figures 7.1 to 7.4, show that off-the-shelf
QBF solvers are not well-suited for solving games. Although our algorithm is
inspired by RAREQS, we achieve much better performance, since our solver
takes into account the structure of the game, rather than treating it as a generic
QBF problem.

All four benchmarks have very large sets of winning states. Nevertheless,
in the UART and IDE benchmarks, Termite is able to represent winning
states compactly with only a few thousand BDD nodes. It scales well and
outperforms EVASOLVER on these benchmarks. However, in the two other
benchmarks, Termite does not find a compact BDD-based representation of
the winning set. EVASOLVER outperforms Termite on these benchmarks as it
does not try to enumerate all winning states.

Detailed performance analysis shows that abstract game trees generated in
our benchmarks had average branching factors in the range between 1.03 and
1.2, with the maximal depth of the trees ranging from 3 to 58. This confirms
the the key premise behind the design of EVASOLVER, namely, solving many

7.1. BOUNDED REALISABILITY 107

5 10 15 20 25 30 35 40 45 50

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

EvaSolver
Termite
RAReQS
depQBF

Figure 7.1: UART

real-world synthesis problems requires considering only a small number of
opponent moves in every state of the game.

108 CHAPTER 7. EVALUATION

20 25 30 35 40 45 50

500

1,000

1,500

2,000

2,500

3,000

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

EvaSolver
Termite

Figure 7.2: IDE DMA

10 20 30 40 50 60 70 80 90 100

500

1,000

1,500

2,000

2,500

3,000

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

EvaSolver
Termite
RAReQS
depQBF

Figure 7.3: SPI

7.1. BOUNDED REALISABILITY 109

10 20 30 40 50 60 70

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

EvaSolver
Termite
RAReQS
depQBF

Figure 7.4: Ethernet

110 CHAPTER 7. EVALUATION

7.2 Strategy extraction

Strategy extraction is evaluated on the same set of driver synthesis bench-
marks. Figures 7.5 to 7.8 sumarise the results. For each family, we show
strategy generation time as a function of the number of state variables in the
specification for a selection of the hardest instances of the family solved by
EVASOLVER. Specifically, we show the time it took the base realisability solver
to determine the winner (the realisability line), as well as the total time taken
to solve the game and compute the winning strategy (the total line).

Table 7.1 shows a detailed breakdown of experimental results, including
the number of state variables for each instance (Vars) and the total time taken
by the solver (Total(s)), split between the time used to determine the winner
(and generate certificate trees) (Base(s)) and the strategy generation time
(Strategy(s)). The OH column shows the overhead of strategy extraction.

Profiling showed that non-negligible overhead was introduced by trans-
ferring CNFs from EVASOLVER’s internal representation to the representation
used by the interpolation library. This overhead can be almost completely
eliminated with additional engineering effort. Hence, I report the effective
overhead (EffOH) of strategy extraction if this engineering effort had been
done.

The Size column shows the size of the strategy, i.e., the number of (W,a, k)

tuples returned by the GENLOCALSTRATS function. The last three columns
report on the use of the PeRIPLO interpolation library in terms of the number
of interpolation operations performed by the algorithm when solving the in-
stance, the average and the maximal size of interpolants returned by PeRIPLO.
The size of an interpolant is reported by the size of its corresponding BDD.
This conversion is done by the tool as an optimisation to simplify interpolants
into cubes.

These results show that strategy generation adds a modest overhead to the
base solver. Effective overheads are about 12% for IDE and SPI, about 35% for
Ethernet and about 30% for UART. Most of this overhead is due to interpolant
computation. Moreover, experiments show that our algorithm scales linearly
with the time taken by the base solver to determine the winner.

7.2. STRATEGY EXTRACTION 111

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

Total
Realisability

Figure 7.5: Strategy Extraction (UART)

26 27 28 29 30 31 32 33 34 35

500

1,000

1,500

2,000

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

Total
Realisability

Figure 7.6: Strategy Extraction (IDE DMA)

112 CHAPTER 7. EVALUATION

20 40 60 80 100 120 140

500

1,000

1,500

2,000

2,500

3,000

3,500

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

Total
Realisability

Figure 7.7: Strategy Extraction (SPI)

5 10 15 20 25 30 35 40 45 50 55 60

500

1,000

1,500

2,000

Instance size (|S|)

Ti
m

e
(s

ec
on

ds
)

Total
Realisability

Figure 7.8: Strategy Extraction (Ethernet)

7.2. STRATEGY EXTRACTION 113

Vars Total(s) Base(s) Strategy(s) OH EffOH Size INum IAvg IMax
IDE benchmark

26 32.62 25.42 7.20 1.28 1.16 50 48 23 118
28 42.20 35.49 6.72 1.19 1.10 59 52 27 119
30 60.04 51.93 8.11 1.16 1.08 92 43 17 148
32 115.11 107.35 7.77 1.07 1.04 60 36 14 27
34 283.08 227.67 55.40 1.24 1.21 159 49 15 38

SPI benchmark
15 0.35 0.26 0.09 1.36 1.26 8 5 9 9
22 0.94 0.72 0.22 1.31 1.19 15 12 10 18
29 2.46 1.90 0.56 1.29 1.16 22 17 10 18
36 3.56 2.91 0.65 1.22 1.11 107 22 10 18
43 9.11 7.09 2.03 1.29 1.13 166 27 10 14
50 16.20 12.85 3.35 1.26 1.12 233 32 11 18
57 25.00 19.86 5.14 1.26 1.12 322 37 11 18
64 38.48 31.48 7.00 1.22 1.10 416 42 11 18
71 57.88 47.94 9.94 1.21 1.09 70 47 12 18
78 91.51 75.02 16.49 1.22 1.10 636 52 12 19
85 141.10 116.71 24.39 1.21 1.09 773 57 12 20
92 193.96 162.05 31.91 1.20 1.09 917 62 13 21
99 309.44 256.88 52.55 1.20 1.09 1059 67 13 22

106 449.49 377.48 72.00 1.19 1.09 1223 72 13 23
113 1645.44 1543.84 101.60 1.07 1.03 117 77 13 24
120 901.95 830.17 71.77 1.09 1.04 1637 82 14 25
127 2259.65 2143.40 116.25 1.05 1.02 139 87 14 26
134 2385.74 2193.65 192.09 1.09 1.04 152 92 14 27

Ethernet benchmarks
14 0.06 0.03 0.02 1.60 1.52 2 1 13 13
17 0.49 0.29 0.20 1.70 1.45 21 7 16 30
20 1.97 1.14 0.82 1.72 1.45 176 15 16 26
23 5.39 3.23 2.16 1.67 1.39 185 25 23 42
26 14.61 7.94 6.66 1.84 1.48 266 36 24 45
29 27.41 15.71 11.70 1.74 1.43 677 44 24 48
32 58.02 35.38 22.64 1.64 1.36 208 61 28 55
35 111.69 69.26 42.43 1.61 1.35 351 80 31 75
38 238.09 151.21 86.89 1.57 1.33 545 116 32 63
41 513.61 321.78 191.82 1.60 1.34 1525 154 35 72
44 845.51 530.68 314.83 1.59 1.34 2159 191 37 64
47 903.79 590.19 313.60 1.53 1.30 1547 228 38 71
50 1368.23 875.90 492.33 1.56 1.33 1670 236 38 85

UART benchmarks
15 2.86 2.19 0.67 1.31 1.19 12 40 6 14
20 3.16 2.33 0.83 1.36 1.20 20 14 12 23
21 10.06 6.96 3.09 1.44 1.24 35 34 9 26
26 27.89 18.55 9.34 1.50 1.27 65 60 13 41
27 63.68 41.49 22.20 1.53 1.29 93 94 13 44
28 137.24 90.68 46.56 1.51 1.27 103 136 13 42
29 270.66 178.75 91.92 1.51 1.27 134 184 15 47
34 553.29 360.76 192.53 1.53 1.28 191 246 16 54
35 938.68 612.63 326.05 1.53 1.28 285 307 16 69
36 1525.99 995.25 530.74 1.53 1.28 410 382 17 62
37 2464.13 1611.45 852.68 1.53 1.28 950 456 18 75
38 3927.64 2577.39 1350.25 1.52 1.28 1223 546 18 74
39 6030.77 4031.98 1998.79 1.50 1.26 674 633 18 72

Table 7.1: Detailed strategy extraction results

114 CHAPTER 7. EVALUATION

7.3 Unbounded realisability

Unbounded realisability is evaluated on the benchmarks of the 2015 synthesis
competition (SYNTCOMP’15). I also show the results of the 2016 competition,
which TERMITESAT was submitted to. Each competition benchmark com-
prises of controllable and uncontrollable inputs to a circuit that assigns values
to latches. One latch is configured as the error bit that determines the winner
of the safety game. The benchmark suite is a collection of both real-world and
toy specifications including generalised buffers, AMBA bus controllers, device
drivers, and converted LTL formulas. Descriptions of many of the benchmark
families used can be found in the 2014 competition report [Jacobs et al., 2015].

7.3.1 Benchmarking

The benchmarks were run on a cluster of Intel Quad Core Xeon E5405 2GHz
CPUs with 16GB of memory. The solvers were allowed exclusive access to
a node for one hour to solve an instance. The results of this benchmarking
are shown, along with the synthesis competition results [SYNTCOMP, 2015],
in Table 7.2. The competition was run on Intel Quad Core 3.2Ghz CPUs
with 32GB of memory, also on isolated nodes for one hour per instance. The
competition results differ significantly from our own benchmarks due to this
more powerful hardware. For our benchmarks we report only the results for
solvers we were able to run on our cluster. The unique column lists the number
of instances that only that tool could solve in the competition (excluding our
solver). In brackets is the number of instances that only that tool could solve,
including our solver.

Our implementation was able to solve 103 out of the 250 specifications
in the alloted time, including 12 instances that were not solved by any other
solver in the sequential track of the competition. The unique instances we
solved are listed in Table 7.3.

Five of the instances unique to our solver are device driver instances and
another five are from the stay family. This supports the hypothesis that
different game solving methodologies perform better on certain classes of
specifications. Note that the driver benchmark instances in the competition are
unrelated to those presented in Section 7.1 and were developed independently.

7.3. UNBOUNDED REALISABILITY 115

Solver Solved Solved Unique
(Competition) (Benchmarks)

Simple BDD Solver (2) 195 189 10 (6)
AbsSynthe (seq2) 187 139 2
Simple BDD Solver (1) 185 175
AbsSynthe (seq3) 179 134
Realizer (sequential) 179
AbsSynthe (seq1) 173 139 1
Demiurge (D1real) 139 136 5 (2)
Aisy 98
TermiteSAT 103 12

Table 7.2: Synthesis Competition 2015 Results

1. 6s216rb0_c0to31 7. driver_c10n
2. cnt30y 8. stay18y
3. driver_a10n 9. stay20n
4. driver_a8n 10. stay20y
5. driver_b10y 11. stay22n
6. driver_b8y 12. stay22y

Table 7.3: Instances uniquely solved by our approach

I also present a cactus plot of the number of instances solved over time
(Figure 7.9). We have plotted the best configuration of each solver we bench-
marked. The solvers shown are DEMIURGE [Bloem et al., 2014], the only
SAT-based tool in the competition, the winner of the sequential realisability
track SIMPLE BDD SOLVER 2 [Walker and Ryzhyk, 2014], and AbsSynthe
(seq3) [Brenguier et al., 2014].

The results show that although TERMITESAT does not solve as many total
instances as other solvers, it is able to solve a significant number of problem
instances that no other individual solver could. Although TERMITESAT was
the only sequential solver to decide these instances, in the parallel track of
the competition DEMIURGE was able to solve many of them by combining
several different approaches. A combination of unbounded synthesis, the SAT
approaches in DEMIURGE, and a traditional BDD solver may be a significant
step forward for synthesis.

116 CHAPTER 7. EVALUATION

5 10 15 20 25 30 35 40 45 50 55 60

20

40

60

80

100

120

140

160

180

200

Time (minutes)

In
st

an
ce

s
so

lv
ed

TermiteSAT
Demiurge
Simple BDD Solver
AbsSynthe

Figure 7.9: Benchmarks: Number of instances solved over time.

7.3. UNBOUNDED REALISABILITY 117

Solver Solved Unique
Simple BDD Solver (w/ Abstraction) 175 1
Simple BDD Solver (w/ Abstraction 2) 167 1
SafetySynth 164 0
Simple BDD Solver 164 0
SafetySynth (Alt) 163 0
AbsSynthe (S3) 161 4
AbsSynthe (S2) 151 0
SDF 149 0
AbsSynthe (S1) 147 0
Demiurge D1real 129 6
TermiteSAT 97 4

Table 7.4: SYNTCOMP’16: sequential realisability track

7.3.2 Synthesis Competition Results

I report the results of the sequential realisability track of the 2016 synthesis
competition [SYNTCOMP, 2016] in Table 7.4 and the parallel realisability track
in Table 7.5. The number of instances solved over time is shown in Figures 7.10
and 7.11 for the best configurations of each tool. In the parallel realisability
track I submitted two configurations of TERMITESAT. The portfolio config-
uration runs the unbounded realisability algorithm in parallel with SIMPLE

BDD SOLVER. The hybrid configuration does the same but the SAT based
solver shares the states learned to be losing for the controller with the BDD
solver. Information is not shared in the opposite direction so that the SAT
based solver isn’t negatively affected by large winning regions. It may be
possible to share more information but this is left to future work.

The results show that although TERMITESAT does not perform as well in
the sequential track, the combination of SAT based unbounded realisability
with a traditional BDD solver performs very well in the parallel track. This
supports the argument that different approaches are suited to different classes
of specifications and that by combining solving techniques a greater coverage
of problem instances is possible.

118 CHAPTER 7. EVALUATION

Solver Solved Unique
AbsSynthe P1 181 1
TermiteSAT Hybrid 180 0
TermiteSAT Portfolio 179 0
Demiurge P3real 156 5
AbsSynthe P3 148 0
AbsSynthe P2 141 0

Table 7.5: SYNTCOMP’16: parallel realisability track

5 10 15 20 25 30 35 40 45 50 55 60

20

40

60

80

100

120

140

160

180

200

Time (minutes)

In
st

an
ce

s
so

lv
ed

TermiteSAT
Demiurge
Simple BDD Solver
AbsSynthe
SafetySynth
SDF

Figure 7.10: SYNTCOMP’16 sequential track: Instances solved over time

7.3. UNBOUNDED REALISABILITY 119

5 10 15 20 25 30 35 40 45 50 55 60

20

40

60

80

100

120

140

160

180

200

Time (minutes)

In
st

an
ce

s
so

lv
ed

TermiteSAT
Demiurge
AbsSynthe

Figure 7.11: SYNTCOMP’16 parallel track: Instances solved over time

120 CHAPTER 7. EVALUATION

7.4 Summary

• Bounded realisability and strategy extraction is implemented in a tool
named EVASOLVER. Unbounded realisability is implemented in a tool
named TERMITESAT, which is open source and available online.

• Bounded realisability was evaluated on device driver benchmarks that
showcase the strengths and weaknesses of the approach. The results
show that the approach can outperform a BDD based solver on certain
classes of specifications.

• The same benchmarks were used to evaluate the performance of strategy
extraction. It was found to have a small effective overhead compared to
the cost of determining the realisability of the game.

• Unbounded realisability was evaluated on the benchmarks of the synthe-
sis competition. It was found to be effective on some problem instances
that were unsolved in the sequential track of the competition. The tool
was submitted to the 2016 competition and a hybrid approach combin-
ing unbounded realisability with a BDD solver performed well in the
parallel track.

8 Conclusion

Controller synthesis may one day become the tool of choice for designers of
reactive systems. As an approach to software correctness its advantages are
clear but the future of synthesis is held back by computational complexity. In
this thesis I presented a technique that takes one small step towards feasibility
by focussing on a particular class of specifications.

The basis of this methodology is a counterexample guided bounded realis-
ability algorithm. The algorithm constructs abstractions of the safety game
and existentially searches for player strategies. The approach is similar to
existing QBF methodologies but is able to perform better than those by taking
advantage of knowledge of the structure of the problem. Bounded realisabil-
ity is implemented in two tools: EVASOLVER and TERMITESAT. The latter of
these is open source and available online. The approach was evaluated by
benchmarking EVASOLVER against two QBF solvers: DEPQBF and RAREQS,
as well as a BDD-based driver synthesis tool TERMITE. The results showed
that bounded synthesis was able to outperform the BDD methods on classes
of specifications for which the BDD representation of the winning region is
exponential in the number of state variables.

I also presented an algorithm to extract the strategy from the certificate
generated during bounded realisability. A certificate tree contains all of the
actions required to prove that the game is realisable but does not contain
enough information to construct a player strategy. I proposed an approach
that uses Craig interpolation construct the set of states from which a player
should choose a particular action in the certificate tree. Strategy extraction
was implemented as part of EVASOLVER and benchmarking showed that it
introduces a linear overhead.

121

122 CHAPTER 8. CONCLUSION

Additionally I presented an approach that extends the algorithm to solve
unbounded games. The bounded realisability algorithm is able to show that
there is no counterexamples traces of a certain length. In order to show that
there is no counterexample of any length I proposed an approach that overap-
proximates the set of winning states for the controller. Overapproximation is
achieved by carefully constructing interpolants in such a way that maintains
two invariants that ensure that a fixed point in the computation is sufficient
to prove realisability. Similar to the bounded realisability algorithm, this
unbounded realisability approach can perform well in cases where a compact
BDD representation of the winning region does not exist.

I implemented unbounded realisability in the open source TERMITESAT
tool and submitted it to the synthesis competition. Although the submission
was not competitive by itself it was able to solve several problem instances
that no other solver could. I also implemented a hybrid approach within
the tool that runs unbounded realisability in parallel with a BDD solver and
shares some learned states. This hybrid approach performed very well in the
parallel track of the competition. These results support the argument that
unbounded synthesis is useful as part of a complete synthesis toolkit in order
to solve problem instances that are infeasible for BDD based approaches.

In summary, I have presented a synthesis algorithm inspired by counterex-
ample guided QBF and bounded model checking. I implemented the algo-
rithm and demonstrated its usefulness in cases where traditional approaches
are infeasible.

List of Figures

2.1 Example BDD . 13

4.1 Structure of device driver example 42

4.2 State automata representation of example δ. 43

4.3 Execution of bounded realisability on the example. 44

4.4 Continued example algorithm execution 46

4.5 Continued example algorithm execution (2) 47

4.6 Height of an AGT node . 48

4.7 Projection of a candidate strategy 51

4.8 AGT with large branching factor 62

4.9 Environment winning region as a BDD 64

5.1 Transition relation of the running example 69

5.2 Partitioning . 70

5.3 Operation of the strategy extraction algorithm on the example . . 71

5.4 Splitting of T in the PARTITION function. 73

6.1 Splitting a certificate tree . 86

6.2 Example . 89

6.3 Splitting of an abstract game tree by the learning procedure. . . . 90

6.4 Parameterised counter example . 101

6.5 Game trees for the counter specification 102

7.1 UART . 107

7.2 IDE DMA . 108

7.3 SPI . 108

7.4 Ethernet . 109

7.5 Strategy Extraction (UART) . 111

123

124 List of Figures

7.6 Strategy Extraction (IDE DMA) . 111
7.7 Strategy Extraction (SPI) . 112
7.8 Strategy Extraction (Ethernet) . 112
7.9 Benchmarks: Number of instances solved over time. 116
7.10 SYNTCOMP’16 sequential track: Instances solved over time . . . 118
7.11 SYNTCOMP’16 parallel track: Instances solved over time 119

List of Tables

7.1 Detailed strategy extraction results 113
7.2 Synthesis Competition 2015 Results 115
7.3 Instances uniquely solved by our approach 115
7.4 SYNTCOMP’16: sequential realisability track 117
7.5 SYNTCOMP’16: parallel realisability track 118

125

List of Algorithms

1 FiniteRun: Determines the existence of a finite run from I to E 27
2 Counterexample guided QBF 35
3 Solve an abstract bounded game 49
4 Find a candidate strategy . 50
5 Verify a candidate strategy . 50
6 Tree formulas for Controller and Environment 52
7 Modified Tree Formulas with Bad State Avoidance 55
8 Learn an expanded cube of losing states 56
9 Strategy Shortening . 57
10 Computing a winning strategy 72
11 Partitioning winning states . 73
12 Successor set . 76
13 Compiling the winning strategy 77
14 Learning with online strategy extraction 79
15 Unbounded realisability . 85
16 Learning algorithms . 87
17 Tree formula construction with Bm and BM 91
18 Unbounded Synthesis . 92
19 Compiling the winning strategy 95
20 Generalise s0 optimisation . 97

127

Bibliography

SYNTCOMP 2015 results. http://syntcomp.cs.uni-saarland.de/

syntcomp2015/experiments/, a. Accessed: 2016-09-12.

SYNTCOMP 2016 results. http://syntcomp.cs.uni-saarland.de/

syntcomp2016/experiments/, b. Accessed: 2016-09-12.

Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic reachability
analysis based on SAT-solvers. In Susanne Graf and Michael Schwartzbach,
editors, Proceedings of the 6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 1785 of Lecture Notes
in Computer Science, pages 411–425, Berlin, Germany, 2000. Springer Berlin
Heidelberg.

Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthe-
sis for discrete and timed systems. In Panos Antsaklis, Wolf Kohn, Anil
Nerode, and Shankar Sastry, editors, Hybrid Systems II, chapter 1, pages
1–20. Springer Berlin Heidelberg, 1995. ISBN 978-3-540-47519-4.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern sat solvers. In Craig Boutilier, editor, Proceedings of the 21st Interna-
tional Joint Conference on Artifical Intelligence, pages 399–404, Pasadena, CA,
USA, 2009. Morgan Kaufmann Publishers Inc.

Abdelwaheb Ayari and David A. Basin. QUBOS: Deciding quantified boolean
logic using propositional satisfiability solvers. In Mark D. Aagaard and
John W. O’Leary, editors, Proceedings of the 4th International Conference on
Formal Methods in Computer-Aided Design, volume 2517 of Lecture Notes in
Computer Science, pages 187–201, Portland, OR, USA, 2002. Springer Berlin
Heidelberg.

Armin Biere. Resolve and expand. In Holger H. Hoos and David G. Mitchell,
editors, Revised Selected Papers of the 7th International Conference on Theory

129

http://syntcomp.cs.uni-saarland.de/syntcomp2015/experiments/
http://syntcomp.cs.uni-saarland.de/syntcomp2015/experiments/
http://syntcomp.cs.uni-saarland.de/syntcomp2016/experiments/
http://syntcomp.cs.uni-saarland.de/syntcomp2016/experiments/

130 BIBLIOGRAPHY

and Applications of Satisfiability Testing, volume 3542 of Lecture Notes in Com-
puter Science, pages 59–70, Vancouver, BC, Canada, 2005. Springer Berlin
Heidelberg.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In W. Rance Cleaveland, editor,
Proceedings of the 5th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems, volume 1579 of Lecture Notes in Computer
Science, pages 193–207, London, UK, UK, 1999. Springer Berlin Heidelberg.

Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination
for QBF. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Pro-
ceedings of the 23rd International Conference on Automated Deduction, volume
6803 of Lecture Notes in Computer Science, pages 101–115, Wrocław, Poland,
2011. Springer Berlin Heidelberg.

Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Könighofer, and Florian
Lonsing. SAT-based methods for circuit synthesis. In Koen Claessen and
Viktor Kuncak, editors, Proceedings of the 14th International Conference on For-
mal Methods in Computer-Aided Design, pages 31–34, Lausanne, Switzerland,
2014. FMCAD Inc.

Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi. Solving QBF instances
with nested SAT solvers. In Beyond NP Workshop 2016 at the 30th International
Conference on Artificial Intelligence, Phoenix, Arizona, USA, 2016.

Aaron R. Bradley. SAT-based model checking without unrolling. In Ranjit
Jhala and David Schmidt, editors, Proceedings of the 12th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation, volume 6538
of Lecture Notes in Computer Science, pages 70–87, Austin, TX, USA, 2011.
Springer Berlin Heidelberg.

Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, and Ocan
Sankur. AbsSynthe: Abstract synthesis from succinct safety specifications.
In Krishnendu Chatterjee, Rüdiger Ehlers, and Susmit Jha, editors, Pro-
ceedings of the 3rd Workshop on Synthesis, pages 100–116, Vienna, Austria,
2014.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

BIBLIOGRAPHY 131

J. Richard Büchi. On a decision method in restricted second order arithmetic.
In Petr Hájek, Luis Valdés-Villanueva, and Dag Westerstȧhl, editors, Pro-
ceedings of the 12th International Congress on Logic, Methodology and Philosophy
of Science, pages 1–11, Oviedo, Spain, 1962. Stanford University Press.

H.K. Büning, M. Karpinski, and A. Flögel. Resolution for quantified boolean
formulas. Information and Computation, 117(1):12–18, 1995.

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states and beyond. In
Proceedings of the 5th Annual Symposium on Logic in Computer Science, pages
428–439, Philadelphia, PA, USA, 1990. IEEE Computer Society.

Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to
evaluate quantified boolean formulae. In Proceedings of the 15th National
Conference on Artificial Intelligence and 10th Innovative Applications of Artificial
Intelligence Conference, pages 262–267, Madison, WI, USA, 1998. AAAI Press
/ The MIT Press.

CBS News, 2010. Toyota ’Unintended Acceleration’ Has Killed 89. CBS News,
2010.

Ting-Wei Chiang and Jie-Hong R. Jiang. Property-directed synthesis of reactive
systems from safety specifications. In Diana Marculescu and Frank Liu,
editors, Proceedings of the International Conference on Computer-Aided Design,
pages 794–801, Austin, TX, USA, 2015. IEEE Computer Society.

Alonozo Church. Logic, arithmetic and automata. In V. Stenström, editor,
Proceedings of the International Congress of Mathematicians, pages 23–35, Stock-
holm, Sweden, 1962. Almqvist & Wiksell.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and
Aravinda Prasad Sistla, editors, Proceedings of the 12 International Confer-
ence on Computer Aided Verification, pages 154–169, Chicago, IL, USA, 2000.
Springer Berlin Heidelberg.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Dexter Kozen,

132 BIBLIOGRAPHY

editor, Workshop on Logics of Programs, pages 52–71, Yorktown Heights, NY,
USA, 1981. Springer Berlin Heidelberg.

Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifi-
cation of finite-state concurrent systems using temporal logic specifications.
ACM Transactions Programming Languages Systems, 8(2):244–263, 1986.

Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

Mark Dowson. The Ariane 5 software failure. SIGSOFT Software Engineering
Notes, 22(2), 1997.

Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science, 89(4):543–560, 2003.

Niklas Eén, Alexander Legg, Nina Narodytska, and Leonid Ryzhyk. SAT-
based strategy extraction in reachability games. In Blai Bonet and Sven
Koenig, editors, Proceedings of the 29th Conference on Artificial Intelligence,
pages 3738–3745, Austin, TX, USA, 2015. AAAI Press.

Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution:
Proof generation and strategy extraction in search-based QBF solving. In
Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Pro-
ceedings of the 10th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, volume 8312 of Lecture Notes in Computer Science,
pages 291–308, Almaty, Kazakhstan, 2013. Springer Berlin Heidelberg.

Rüdiger Ehlers. Symbolic bounded synthesis. Formal Methods in System Design,
40(2):232–262, 2012.

Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and
compositional algorithms for LTL synthesis. Formal Methods in System
Design, 39(3):261–296, 2011.

Bernd Finkbeiner and Swen Jacobs. Lazy synthesis. In Viktor Kuncak Andrey
Rybalchenko, editor, Proceedings of the 13th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation, pages 219–234, Philadelphia,
PA, USA, 2012. Springer Berlin Heidelberg.

BIBLIOGRAPHY 133

Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Journal
on Software Tools for Technology Transfer, 15(5–6):519–539, 2013.

Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Learning
for quantified boolean logic satisfiability. In Proceedings of the 18th Conference
on Artificial Intelligence, pages 649–654, Edmonton, Alberta, Canada, 2002.
AAAI Press / The MIT Press.

Alexandra Goultiaeva, Vicki Iverson, and Fahiem Bacchus. Beyond CNF:
A circuit-based QBF solver. In Oliver Kullmann, editor, Proceedings of the
12th International Conference on Theory and Applications of Satisfiability Testing,
volume 5584 of Lecture Notes in Computer Science, pages 412–426, Swansea,
UK, 2009. Springer Berlin Heidelberg.

Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform
approach for generating proofs and strategies for both True and False QBF
formulas. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pages 546–553, Barcelona, Spain, 2011. AAAI Press.

Susanne Graf and Hassen Saidi. Construction of abstract state graphs of
infinite systems with PVS. In Orna Grumberg, editor, Proceedings of the
9th International Conference on Computer Aided Verification, volume 1254 of
Lecture Notes in Computer Science, pages 72–83, Haifa, Israel, 1997. Springer
Berlin Heidelberg.

Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. Sat-based
image computation with application in reachability analysis. In Warren A.
Hunt and Steven D. Johnson, editors, Proceedings of the 3rd International
Conference on Formal Methods in Computer-Aided Design, volume 1954 of
Lecture Notes in Computer Science, pages 391–408, Austin, TX, USA, 2000.
Springer Berlin Heidelberg.

Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Counterexample-
guided control. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and
Gerhard J. Woeginger, editors, Proceedings of the 30th International Colloquium
on Automata, Languages and Programming, volume 2719 of Lecture Notes
in Computer Science, pages 886–902, Eindhoven, The Netherlands, 2003.
Springer.

134 BIBLIOGRAPHY

Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus
Hell, Robert Könighofer, Guillermo A. Pérez, Jean-François Raskin, Leonid
Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup, and Adam Walker.
The first reactive synthesis competition (SYNTCOMP 2014). Computing
Research Repository, 2015.

Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke.
Solving QBF with Counterexample Guided Refinement, volume 7317 of Lecture
Notes in Computer Science, pages 114–128. Springer Berlin Heidelberg, Trento,
Italy, 2012.

Mikoláš Joao Marques-Silva Janota. On propositional QBF expansions and q-
resolution. In Matti Järvisalo and Allen Van Gelder, editors, Proceedings of the
16th International Conference on Theory and Applications of Satisfiability Testing,
volume 7962 of Lecture Notes in Computer Science, pages 67–82, Helsinki,
Finland, 2013.

Mikoláš Janota and Joao Marques-Silva. Solving QBF by clause selection.
In Qiang Yang and Michael Wooldridge, editors, Proceedings of the 24th
International Joint Conference on Artificial Intelligence, pages 325–331, Buenos
Aires, Argentina, 2015. AAAI Press.

William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke. A non-prenex,
non-clausal QBF solver with game-state learning. In Ofer Strichman and
Stefan Szeider, editors, Proceedings of the 13th International Conference on
Theory and Applications of Satisfiability Testing, volume 6175 of Lecture Notes
in Computer Science, pages 128–142. Springer, Springer Berlin Heidelberg,
2010.

Dexter Kozen. Results on the propositional µ-calculus. In Mogens Nielsen and
Erik Meineche Schmidt, editors, Proceedings of the 9th Colloquium on Automata,
Languages and Programming, volume 140 of Lecture Notes in Computer Science,
pages 348–359, Aarhus, Denmark, 1982. Springer Berlin Heidelberg.

Saul Kripke. Semantical considerations on modal logic. In Acta Philosophica
Fennica, volume 16, pages 83–94. 1963.

Andreas Kuehlmann and Florian Krohm. Equivalence checking using cuts
and heaps. In Proceedings of the 34th Annual Design Automation Conference,
pages 263–268, Anaheim, CA, USA, 1997. ACM.

BIBLIOGRAPHY 135

Alexander Legg. TermiteSAT. http://www.github.com/alexlegg/

TermiteSAT, 2016.

Alexander Legg, Nina Narodytska, and Leonid Ryzhyk. A SAT-based coun-
terexample guided method for unbounded synthesis. In Swarat Chaudhuri
and Azadeh Farzan, editors, Proceedings of the 28th International Conference
on Computer Aided Verification, volume 9780 of Lecture Notes in Computer
Science, pages 364–382, Toronto, ON, Canada, 2016. Springer.

Florian Lonsing and Armin Biere. Integrating dependency schemes in search-
based QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Proceed-
ings of the 13th International Conference on Theory and Applications of Satisfiabil-
ity Testing, volume 6175 of Lecture Notes in Computer Science, pages 158–171.
Springer Berlin Heidelberg.

Kenneth L. McMillan. Applying SAT methods in unbounded symbolic model
checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings
of the 14th International Conference on Computer Aided Verification, volume 2404
of Lecture Notes in Computer Science, pages 250–264, Copenhagen, Denmark,
2002.

Kenneth L. McMillan. Interpolation and SAT-based model checking. In
Warren A. Hunt and Fabio Somenzi, editors, Proceedings of the 15th Interna-
tional Conference on Computer Aided Verification, volume 2725 of Lecture Notes
in Computer Science, pages 1–13, Boulder, CO, USA, 2003. Springer Berlin
Heidelberg.

Kenneth L. McMillan. Applications of craig interpolants in model checking.
In Nicolas Halbwachs and Lenore D. Zuck, editors, Proceedings of the 11th
International Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 3440 of Lecture Notes in Computer Science, pages 1–12,
Edinburgh, UK, 2005. Springer Berlin Heidelberg.

Andreas Morgenstern, Manuel Gesell, and Klaus Schneider. Solving games
using incremental induction. In Einar Broch Johnsen and Luigia Petre,
editors, Proceedings of the 10th International Conference on Integrated Formal
Methods, volume 7940 of Lecture Notes in Computer Science, pages 177–191,
Turku, Finland, 2013. Springer Berlin Heidelberg.

http://www.github.com/alexlegg/TermiteSAT
http://www.github.com/alexlegg/TermiteSAT

136 BIBLIOGRAPHY

Nina Narodytska, Alexander Legg, Fahiem Bacchus, Leonid Ryzhyk, and
Adam Walker. Solving games without controllable predecessor. In Armin
Biere and Roderick Bloem, editors, Proceedings of the 26th International Confer-
ence on Computer Aided Verification, volume 8559 of Lecture Notes in Computer
Science, pages 533–540, Vienna, Austria, 2014.

Patricia Parrish. Bookout v. Toyota Motor Corporation. District Court, Okla-
homa County, OK, USA, 2013.

Florian Pigorsch and Christoph Scholl. Exploiting structure in an AIG based
QBF solver. In Luca Benini, Giovanni De Micheli, Bashir M. Al-Hashimi, and
Wolfgang Müller, editors, Proceedings of the Conference on Design, Automation
and Test in Europe, pages 1596–1601, Nice, France, 2009. IEEE.

Florian Pigorsch and Christoph Scholl. An AIG-based QBF-solver using
SAT for preprocessing. In Proceedings of the 47th Annual Design Automation
Conference, pages 170–175, Anaheim, CA, USA, 2010. ACM.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive (1) designs.
In E. Allen Emerson and Kedar S. Namjoshi, editors, Proceedings of the 7th
International Conference on Verification, Model Checking, and Abstract Inter-
pretation, volume 3855 of Lecture Notes in Computer Science, pages 364–380.
Springer, 2006.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, Providence, RI,
USA, 1977. IEEE Computer Society.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Pro-
ceedings of the 16th ACM Symposium on Principles of Programming Languages,
pages 179–190, Austin, TX, USA, 1989. ACM.

Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In
Roope Kaivola and Thomas Wahl, editors, Proceedings of the 15th Conference
on Formal Methods in Computer-Aided Design, pages 136–143, Austin, TX,
USA, 2015. IEEE.

Simone Fulvio Rollini, Leonardo Alt, Grigory Fedyukovich, Antti Eero Jo-
hannes Hyvärinen, and Natasha Sharygina. PeRIPLO: A framework for

BIBLIOGRAPHY 137

producing effective interpolants in sat-based software verification. In Ken-
neth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Proceed-
ings of the 19th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, volume 8312 of Lecture Notes in Computer Science,
pages 683–693, Stellenbosch, South Africa, 2013. Springer.

Fabio Somenzi. CUDD: CU decision diagram package. http://vlsi.

colorado.edu/~fabio/CUDD/, 2001.

Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Faron Moller and Graham Birtwistle, editors, Proceedings of the 8th Higher
Order Workshop on Logics for Concurrency - Structure versus Automata, volume
1043 of Lecture Notes in Computer Science, pages 238–266, Banff, Alberta,
Canada, 1996. Springer Berlin Heidelberg.

Adam Walker. Simple BDD Solver. http://www.github.com/

adamwalker/syntcomp, 2014.

Adam Walker and Leonid Ryzhyk. Predicate abstraction for reactive synthe-
sis. In Koen Claessen and Viktor Kuncak, editors, Proceedings of the 14th
International Conference on Formal Methods in Computer-Aided Design, pages
219–226, Lausanne, Switzerland, 2014. FMCAD Inc.

Poul F. Williams, Armin Biere, Edmund M. Clarke, and Anubhav Gupta.
Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model
Checking, volume 1855 of Lecture Notes in Computer Science, pages 124–138.
Springer Berlin Heidelberg, Chicago, IL, USA, 2000.

Lintao Zhang and Sharad Malik. Towards a Symmetric Treatment of Satisfaction
and Conflicts in Quantified Boolean Formula Evaluation, volume 2470 of Lecture
Notes in Computer Science, pages 200–215. Springer Berlin Heidelberg, Ithaca,
NY, USA, 2002.

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://www.github.com/adamwalker/syntcomp
http://www.github.com/adamwalker/syntcomp

