
Kernel data – First class citizens of the system

Dhammika Elkaduwe, Philip Derrin and Kevin Elphinstone

National ICT Australia∗and University of New South Wales
Sydney, Australia

firstname.lastname@nicta.com.au

Abstract

Kernel memory is a resource that must be managed care-
fully in order to ensure the efficiency and availability of
the system. The use of an inappropriate policy would
lead to suboptimal performance and even make the sys-
tem susceptible to denial of service attacks.

In this paper, we argue that user-level managers, with
their domain specific knowledge, can better manage the
kernel memory consumption of their clients than a static
in-kernel policy; and we present the kernel memory
management scheme ofseL4, where kernel memory is
represented as named, first class objects which are cre-
ated and managed by user-level managers according to
a suitable policy. The scheme is flexible enough to ex-
press a wide range of policies, and allows multiple poli-
cies to coexist.

1 Introduction

Traditionally, operating systems perform two roles.
They provide users with higher-level abstractions to op-
erate upon, and they are also responsible for the arbitra-
tion of resources between competing users or applica-
tions. The abstract resources provided by the operating
system require underlying hardware resources to imple-
ment the abstractions. For example, the state and meta-
data associated with a thread of execution is stored in
a thread control block (TCB), which requires physical
memory for storage. This applies similarly to other ab-
stractions provided by the kernel, such as address spaces
requiring page tables, IPC ports requiring port control
blocks, capabilities requiring capability storage nodes.
The resource ultimately consumed by the kernel to im-
plement its abstractions is physical memory (we ignore
devices for now), which is a limited resource. Any re-
source which is limited requires careful management,
and kernel data is no exception.

Without careful physical memory management in the
kernel, the system as a whole is susceptible to a range
of problems, including denial of service attacks, poor

∗National ICT Australia is funded by the Australian Government’s
Department of Communications, Information Technology, and the
Arts and the Australian Research Council through Backing Australia’s
Ability and the ICT Research Centre of Excellence programs.

predictability, underutilisation and general inefficiency,
and covert communication channels.

Denial of service (DoS) attacks are characterised by
an attacker preventing authorised users from obtaining
services. The common method of launching a resource
based DoS attack is to overload the system [LIJ97] with
a burst of operations that consumes resources. To guard
against such attacks the system must be capable of:

1. accounting resource use by identifiable entities in
the system,

2. using the accounting information to detect attacks,
and

3. recovering from any such attack.

Accounting for resource consumption is a non-trivial
task, especially when resources are shared between en-
tities. For example, consider a shared address space or a
shared server — the kernel is ignorant of the user-level
configuration and cannot account for these resources in
a sensible manner. Banga et al. [BDM99] claim that ac-
counting resources towards a process obstructs proper
resource accounting in large-scale server systems. The
Scout system [SP99], which targets multimedia, ac-
counts resources to apath — a stream of data flowing
through several subsystems. These exemplify the need
for flexibility in resource accounting — users must be
capable of selecting the resource principal and account
resources towards it.

On the other hand, detecting a resource based DoS
attack is hard. It is difficult to distinguish between a
legitimate high load and an attack. User-level managers,
with their domain specific knowledge, are able to detect
such an attempt with greater precision than the kernel.

Having detected an attack, the next problem is recov-
ery: resources must be reclaimed, either from the at-
tacking clients or from elsewhere, to maintain system
functionality. Once again, allowing a user-level man-
ager to decide which resources to reclaim has obvious
advantages — removing resources from users without
knowing their importance to the system might have sig-
nificant impact on performance.

Some systems require more elaborate policies rather
than a simple limit on the kernel memory consumption.
A real-time system, for instance, requires predictable



behaviour. However, if the kernel data of one appli-
cation can be evicted from the cache by another, the
predictability is lost. This warrants a cache colouring
scheme over kernel data. Users should be able to define
where to place the kernel objects in memory such that
one application will not affect the temporal behaviour
of another — a temporal partitioning policy for kernel
data. Advantages of temporal partitioning in the context
of real-time systems can be found elsewhere [BA03]. A
default kernel policy will not be expressive enough to
capture such needs — it must be sufficiently general to
serve a wide range of applications, and will always pro-
vide less optimal performance than a finely tuned pol-
icy. Applications are often ill-served by the default pol-
icy [AL91,Sto81], and can benefit significantly by man-
aging their own resources [EGK95, Han99]. With their
domain specific knowledge, application level resource
managers can much better manage the resource usage
of their clients than a general default policy.

2 Related Work

Several operating systems manage their kernel data
carefully. Eros [SSF99] and theCache kernel[CD94]
both view kernel physical memory as a cache of the ker-
nel data and as such can evict cache entries when cache
capacity is exceeded. While these systems are capable
of guarding against DoS attacks, they do not guarantee
predictability. Applications need to compete for space
in the kernel cache, which is also a limited resource. A
malicious task can flood the cache and thus degrade the
performance of other tasks.

Scout [SP99] accounts resources towards a special
abstraction calledpath, and limits the resource usage.
Such limits would result in either underutilisation of
system resources or overcommitment. TheK42 kernel
[IBM02] segregates kernel memory into pinned mem-
ory and paged memory. Kernel pinned memory con-
tains all code and data required to do paging I/O, while
the rest of the kernel data can be paged out to back-
ing stores. These systems carefully manage kernel re-
sources in such a way as to fulfil a single overall system
policy. A single policy however, is designed with a par-
ticular focus and therefore willhurt the performance of
applications that do not fall within the original focus.

TheSPINsystem [BSP+95] allows uploading of code
at run time to the kernel, thus changing the system pol-
icy. However, the policy is still global, which may not
suit all the applications on the system.

Haeberlen and Elphinstone [HE03] implemented a
scheme of paging kernel data from user space. When
the kernel runs out of memory for a thread, it will be
reflected to the correspondingkpager. The kpager can
then map any page it possesses to the kernel, and later
preempt the mapping. However, the kpagers can not
control the type of data that will be placed in the mapped
page, leading to performance problems if a kpager inad-
vertently reclaims a page containing essential data.

This paper presents theseL4(Secure Embedded L4)
kernel-data management model. It is a microkernel
which addresses the issue of kernel data management by
exposingall dynamically allocated kernel data as first
class objects. The kernel itself does not create these ob-
jects; instead it provides an interface though which suf-
ficiently authorised user applications can create, man-
age and destroy them. Additionally, it provides mech-
anisms for delegating the authority over an object in a
controlled manner. The resulting system allows user-
level managers to define a suitable policy over the ker-
nel data managed by them, and allows coexistence of
different policies.

3 seL4 Overview

seL4 is a microkernel, and provides the same three ba-
sic abstractions as L4 [Lie95]: threads, address spaces
and interprocess communication. These abstractions are
provided via named, first-class kernel objects. Each
kernel object implements a particular abstraction — a
thread, for instance, is implemented by aTCB object.
Each of these objects supports one or more operations,
which authorised users may perform. Users obtain ker-
nel services by invoking these operations on the kernel
objects.

Authority over objects are conferred via capabilities
[DVH66]. In brief, a capability can be viewed as an
object reference coupled with a set of permissions over
that object. The object reference identifies a kernel ob-
ject, while the permissions dictate the kind of operations
the user can perform with it. Possession of a capabil-
ity with appropriate permissions is a necessary and suf-
ficient condition for invoking operations on the corre-
sponding kernel object.

If capabilities are to be used to confer authority, they
must be tamper-proof. In seL4, they are stored in-
side kernel objects calledCNodes— arrays of capa-
bilities, which may be inspected and modified only via
invocation of the CNode object itself — and therefore
are guarded against user tampering. Capabilities are
also immutable; while user-level programs may specify
some of a capability’s properties at the time it is created,
those properties may only be changed by removing the
capability and replacing it with another.

Each thread in the system is associated with acapa-
bility space, or CSpace. The CSpace is represented by
a guarded page table [Lie94], or GPT. It is essentially
a hierarchical collection of CNode objects, which con-
tain capabilities to kernel objects (including other CN-
odes). The CSpace defines a local name space for the
thread. It maps each validcapability indexto an object
reference and a set of permissions. User space threads
invoke kernel objects by performing system calls spec-
ifying the corresponding capability index in their local
name space.



3.1 seL4 Kernel Objects

Presently, the seL4 API defines six types of kernel ob-
ject, associated with the abstractions it provides.

TCB objects implement threads, which are seL4’s ba-
sic unit of execution.

Endpoint objects implement inter-process communi-
cation(IPC). Users send and receive messages by
invoking capabilities to these objects. Like L4 IPC,
this operation is synchronous; each thread invoking
an endpoint is suspended until a partner is avail-
able.

Asynchronous Endpoint objects are used to imple-
ment asynchronous IPC. Rather than containing
queues of waiting threads, they contain a buffer
which is used to store the content of a message af-
ter a sender has resumed execution.

CNode objects are arrays of2n (wheren > 0) capa-
bilities. They provide the abstraction of the capa-
bility address space, CSpace. Each CSpace is con-
structed from a tree of CNodes; invoking a CNode
allows a user-level server to manipulate a region of
an address space mapped by the tree of which that
CNode is the root.

User Data objects provide storage to back virtual
memory pages accessible to the user. Load and
store instructions can be considered invocations of
these objects. Their size may be any power of two
which is at least as large as the smallest possible
virtual memory mapping on the host architecture.

Untyped Memory objects provide the storage from
which all other kernel objects may be allocated.
Like user data objects, their size may vary, though
it is limited to powers of two. They can be invoked
to return capabilities to new kernel objects — in-
cluding smaller untyped memory objects.

4 User Level Object Management

With the exception of a small amount of statically allo-
cated physical memory for the kernel’s stack and code,
all the kernel memory is managed by user-level man-
agers. Most importantly, dynamic allocation of memory
for kernel objects is not done by the kernel. Instead, the
kernel provides a secure interface, through which users
can manage these objects — they are created, main-
tained and destroyed by user level managers. For ex-
ample, a thread is created by the user-level managers by
creating a TCB object, an address space by creating a
CNode object, and so on. Any object creation operation
must specify the area of memory that will be used to
store the object; this is done by providing a capability to
an Untyped Memory object.

Once an object is created, the user-level manager that
created it can delegate all or part of the authority it pos-
sesses over the object to one or more of its clients. It
does this by granting each client a capability to the ker-
nel object, thereby allowing the client to obtain kernel
services by invoking the object.

This model allows user-level managers to account and
enforce suitable policies over the kernel memory used
by their clients. The explicit creation of kernel objects
allows more elaborate policies than simply limiting the
kernel memory consumption of each client.

5 Future Work

We have identified a number of areas of the seL4 API
which need further investigation to validate our ap-
proach.

Virtual memory implementations available on mod-
ern hardware sometimes dictate the page table format.
For example, the ARM and x86 platforms feature two-
level page tables. For such architectures, we believe that
it will be necessary to define an interface between the
hardware page table and the capability space. This may
take the form of a new platform-specific kernel object
type, which allows a user-level task to build page tables
from its set of available capabilities.

The mapping mechanism for tracking capability
derivations introduces a significant space overhead to
CNodes. Furthermore, the kernel needs to traverse this
structure and invalidate capabilities that point to objects
within a given region of memory before creating new
ones in it that region; this may, depending on the map-
ping structure, incur a significant time overhead. We are
investigating methods of reducing these costs.

Minimising crosstalk between applications is an im-
portant issue in real-time systems. Cache pollution —
where one application causes the cached working set
of another to be evicted from the cache — is one place
where applications can experience such unwanted inter-
action. We envisage reducing this by implementing a
page colouringscheme over kernel objects.

6 Conclusions

The seL4 kernel API is free of kernel resource manage-
ment policy — it does not require the kernel to make
any decisions about how, where or when to allocate ker-
nel memory. Instead, it provides a secure interface for
creating, managing and destroying kernel objects from
the user space. Thus, it allows user-level resource man-
agers to account and manage the resource usage of their
clients.

We believe that our mechanism is powerful and flexi-
ble enough to express a wide range of resource policies
concurrently on isolated subsystems.



References

[AL91] Andrew W. Appel and Kai Li. Virtual mem-
ory primitives for user programs. In4th ASP-
LOS, pages 96–107, 1991.

[BA03] Michael D. Bennett and Neil C. Audsley.
Partitioning support for the L4 microkernel.
Technical Report YCS-2003-366, Dept. of
Computer Science, University of York, 2003.

[BDM99] Gaurav Banga, Peter Druschel, and Jef-
frey C. Mogul. Resource containers: A new
facility for resource management in server
systems. In3rd OSDI, pages 45–58, New Or-
leans, LA, USA, Feb 1999. USENIX.

[BSP+95] Brian N. Bershad, Stefan Savage, Prze-
mysław Pardyak, Emin G̈un Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers,
and Susan Eggers. Extensibility, safety and
performance in the SPIN operating system.
In 15th SOSP, pages 267–284, Copper Moun-
tain, CO, USA, Dec 1995.

[CD94] David R. Cheriton and K. Duda. A caching
model of operating system functionality. In
1st OSDI, pages 14–17, Monterey, CA, USA,
Nov 1994.

[DVH66] J.B. Dennis and E.C. Van Horn. Program-
ming semantics for multiprogrammed com-
puters.CACM, 9:143–55, 1966.

[EGK95] Dawson R. Engler, Sandeep K. Gupta, and
M. Frans Kaashoek. AVM: Application-level
virtual memory. In5th HotOS, pages 72–77,
May 1995.

[Han99] Steven M. Hand. Self-paging in the Nemesis
operating system. In3rd OSDI, pages 73–86,
New Orleans, LA, USA, Feb 1999. USENIX.

[HE03] Andreas Haeberlen and Kevin Elphinstone.
User-level management of kernel memory. In
8th Asia-Pacific Comp. Syst. Arch. Conf, vol-
ume 2823 ofLNCS, Aizu-Wakamatsu City,
Japan, Sep 2003. Springer Verlag.

[IBM02] IBM K42 Team. Utilizing Linux Kernel Com-
ponents in K42, Aug 2002. Available from
http://www.research.ibm.com/K42/.

[Lie94] Jochen Liedtke. Page table structures for fine-
grain virtual memory.IEEE Technical Com-
mittee on Computer Architecture Newsletter,
1994.

[Lie95] Jochen Liedtke. Onµ-kernel construction. In
15th SOSP, pages 237–250, Copper Moun-
tain, CO, USA, Dec 1995.

[LIJ97] Jochen Liedtke, Nayeem Islam, and Trent
Jaeger. Preventing denial-of-service attacks
on a µ-kernel for WebOSes. In6th Ho-
tOS, pages 73–79, Cape Cod, MA, USA, May
1997. IEEE.

[SP99] Oliver Spatscheck and Larry L. Petersen. De-
fending against denial of service attacks in
scout. In3rd OSDI, New Orleans, Louisiana,
Feb 1999.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: A fast capabil-
ity system. In17th SOSP, pages 170–185,
Charleston, SC, USA, Dec 1999.

[Sto81] Michael Stonebraker. Operating system sup-
port for database management.CACM,
24:412–418, 1981.


