
Linux Kernel Infrastructure for User-Level Device Drivers

Peter Chubb∗

peterc@gelato.unsw.edu.au

January, 2004

Abstract

Linux 2.5.x has good support now for user-mode device drivers — XFree being the biggest and
most obvious — but also there is support for user-mode input devices and for devices that hang off the
parallel port.

The motivations for user-mode device drivers are many:

• Ease of development (all the normal user-space tools can be used to write and debug, not re-
stricted to use of C only (could use Java, C++, Perl, etc), fewer reboot cycles needed, fewer
restrictions on what one can do with respect to reentrancy and interrupts, etc., etc.)

• Ease of deployment (kernel ↔ user interfaces change much more slowly than in-kernel inter-
faces; no licensing issues; no need for end-users to recompile to get module versions right, etc.,
etc.))

• Increased robustness (less likely that a buggy driver can cause a panic)

• Increased functionality. Some things are just plain easier to do in user space than in the kernel
— e.g., networking.

• Increased simplicity (rather than have, say, a generic IDE controller that has to understand the
quirks of many different kinds of controllers and drivers, you can afford to pick at run time the
controller you really need)

There are however some drawbacks, the main ones being performance and security.
Three recent developments have made it possible to implement an infrastructure for user-level

device drivers that perform almost as well (in some cases better than) in-kernel device drivers. These
are

1. the new pthreads library (and corresponding kernel changes: futexes, faster clone and exit, etc);

2. fast system call support; and

3. IOMMUs.

Now that many high-end machines have an IOMMU, it becomes possible, at least in theory, to
provide secure access to DMA to user processes.

Fast system calls allow the kernel ↔ user crossing to be extremely cheap, making user-process
interrupt handling feasible.

And fast context-switching and IPC for Posix threads, means that multi-threaded device drivers can
have the kind of performance that until recently was only available in-kernel.

∗This work was funded by HP, NICTA, the ARC, and the University of NSW through the Gelato programme
(http://www.gelato.unsw.edu.au)

1

http://www.gelato.unsw.edu.au

1 Introduction

Normal device drivers in Linux1 run in the
kernel’s address space with kernel privilege. This
is not the only place they can run — see figure 1.

Kernel A
Address Space Client B

Own C D
Kernel User

Privilege

Figure 1: Where a Device Driver can Live

Point A is the normal Linux device driver, linked
with the kernel, running in the kernel address
space with kernel privilege.

Device drivers can also be linked directly with the
applications that use them (Point B) — the
so-called ‘in-process’ device drivers proposed by
Keedy (1979) — or run in a separate process, and
be talked to by an IPC mechanism (for example,
an X server, point D). They can also run with
kernel privilege, but with only a subset of the
kernel address space (Point C) (as in the Nooks
system: Swift, Martin, Levy and Eggers, 2002).

2 Motivation

Traditionally, device drivers have been developed
as part of the kernel source. As such, they have to
be written in C, and they have to conform to the
(rapidly changing) interfaces and conventions
used by kernel code. Even though drivers can be
written as modules (obviating the need to reboot
to try out a new version of the driver2), in-kernel
driver code has access to all of kernel memory,
and runs with privileges that give it access to all
instructions (not just unprivileged ones) and to all
I/O space. As such, bugs in drivers can easily
cause kernel lockups or panics. And various
studies (e.g., Chou (2001) estimate that more than
85% of the bugs in an operating system are driver
bugs.

Device drivers that run as user code, however, can
use any language, can be developed using any

1Linux is a registered trademark of Linus Torvalds
2except that many drivers, including the siimage.o module,

currently cannot be unloaded

IDE, and can use whatever internal threading,
memory management, etc., techniques are most
appropriate. When the infrastructure for
supporting user-mode drivers is adequate, the
processes implementing the driver can be killed
and restarted almost with impunity as far as the
rest of the operating system goes.

Drivers that run in the kernel have to be updated
regularly to match in-kernel interface changes.
Third party drivers are therefore usually shipped
as source code (or with a compilable stub
encapsulating the interface) that has to be
compiled against the kernel the driver is to be
installed into.

Drivers for uncommon devices (or devices that the
mainline kernel developers do not use regularly)
tend to lag behind. For example, in the
2.6.0-test10 kernel, there are 80 drivers known to
be broken because they have not been updated to
match the current APIs, and a number more that
are still using APIs that have been deprecated.

User/kernel interfaces tend to change much more
slowly than in-kernel ones; thus a user-mode
driver has much more chance of not needing to be
changed when the kernel changes. Moreover, user
mode drivers can be distributed under licences
other than the GPL, which may make them
attractive to some people.

User-mode drivers can be either closely or loosely
coupled with the applications that use them. Two
obvious examples are the X server (XFree86)
which uses a socket to communicate with its
clients and so has isolation from kernel and client
address spaces and can be very complex; and the
Myrinet drivers, which are usually linked into
their clients to gain performance by eliminating
context switch overhead on packet reception.

The Nooks work (Swift et al 2002) showed that by
isolating drivers from the kernel address space, the
most common programming errors could be made
recoverable. In Nooks, drivers are insulated from
the rest of the kernel by running them in a separate
address space, and replacing the driver ↔ kernel
interface with a new one that used cross-domain
procedure calls to replace any procedure calls in
the ABI, and that created shadow copies in the
protected address space of any shared variables.

This approach provides isolation, but also has
problems: as the driver model changes, there is

2

quite a lot of wrapper code that will have to be
changed to accommodate the changed APIs. Also,
the values of shared variables is frozen for the
duration of a driver ABI call. The Nooks work
was uniprocessor only; locking issues therefore
have not yet been addressed.

Windriver allows development of user mode
device drivers. It loads a proprietary device
module /dev/windrv6; user code can interact
with this device to setup and teardown DMA,
catch interrupts, etc.

3 Existing Support

Linux has good support for user-mode drivers that
do not need DMA or interrupt handling — see,
e.g., Nakatani (2002) .

The ioperm() and iopl() system calls allow
access to the first 65536 I/O ports; and one can
map the appropriate parts of
‘/proc/bus/pci/...’ to gain access to
memory-mapped registers.

It is usually best to use MMIO if it is available,
because on many 64-bit platforms there are more
than 65536 ports (and on some architectures the
ports are emulated by mapping memory anyway).

For particular devices — USB input devices,
SCSI devices, devices that hang off the parallel
port, and video drivers such as XFree86 — there
is explicit kernel support. By opening a file in
‘/dev’, a user-mode driver can talk through the
USB hub, SCSI controller, AGP controller, etc., to
the device. In addition, the input handler allows
input events to be queued back into the kernel, to
allow normal event handling to proceed.

‘libpci’ allows access to the PCI configuration
space, so that a driver can determine what
interrupt, IO ports and memory locations are
being used; (and to determine whether the device
is present or not).

There is an example driver to make the PC
Speaker ‘beep’ at 440Hz at
http://www.gelato.unsw.edu.au/patches/pcspeaker.c.
It shows how to use ioperm() to gain access to
various ports, and the use of inb and outb to adjust
the values in device registers.

Even from user space, of course, it is possible to
reprogram your machine so that it is unusable.

Other recent changes — an improved scheduler,
better and faster thread creation and
synchronisation, a fully preemptive kernel, and
faster system calls — mean that it is possible to
write a driver that operates in user space that is
almost as fast as an in-kernel driver.

4 Implementing the Missing Bits

The parts that are missing are:

1. the ability to claim a device from user space
so that other drivers do not try to handle it;

2. The ability to deliver an interrupt from a
device to user space,

3. the ability to set up and tear-down DMA
between a device and some process’s
memory, and

4. the ability to loop a device driver’s control
and data interfaces into the appropriate part
of the kernel (so that, for example, an IDE
driver can appear as a standard block device).

The work at UNSW covers only PCI devices, as
that is the only bus available on all of the
architectures we have access to (IA64, X86,
MIPS, PPC, alpha and arm), and does not yet
cover point 4.

4.1 PCI interface

Each device should have only a single driver.
Therefore one needs a way to associate a driver
with a device, and to remove that association
automatically when the driver dies. This has to be
implemented in the kernel, as it is only the kernel
that can be relied upon to clean up after a failed
process. The simplest way to keep the association
and to clean it up in Linux is to implement a new
filesystem, using the PCI namespace. Open files
are automatically closed when a process dies, so
cleanup also happens automatically.

A new system call, usr_pci_open(int
bus, int slot, int fn, const char
*name) returns a file descriptor. Internally, it
calls pci_enable_device() and
pci_set_master() to set up the PCI device

3

http://www.gelato.unsw.edu.au/patches/pcspeaker.c

after doing the standard filesystem boilerplate to
set up a vnode and a struct file.

Subsequent attempts to open the same PCI device
will fail with -EBUSY.

When the file descriptor is finally closed, the PCI
device can be released, and any DMA mappings
removed. All files are closed when a process dies,
so if there is a bug in the driver that causes it to
crash, the system recovers ready for the driver to
be restarted.

4.2 DMA handling

On low-end systems, it’s common for the PCI bus
to be connected directly to the memory bus, so
setting up a DMA transfer means merely pinning
the appropriate bit of memory (so that the VM
system can neither swap it out nor relocate it) and
then converting virtual addresses to physical
addresses.

Device 1

Device 2

Device 3

PCI bus

IOMMU

Main Memory

Figure 2: The IO MMU

Many modern architectures have an IO memory
management unit (see figure 2), to convert from
physical to I/O bus addresses — in much the same
way that the MMU converts virtual to physical
addresses. The MMU also protects one virtual
address space from another. Unfortunately, the IO
MMU cannot totally virtualise the PCI bus
addresses. It can be set up to prevent DMA via
bus addresses to arbitrary locations, but all
mappings are seen by all PCI devices.

On such systems, after the memory has been
pinned, the IOMMU has to be set up to translate
from bus to physical addresses; and then after the
DMA is complete, the translation can be removed
from the IOMMU.

There are, in general, two kinds of DMA, and this
has to be reflected in the kernel interface:

1. Bi-directional DMA, for holding
scatter-gather lists, etc., for communication
with the device. Both the CPU and the device
read and write to a shared memory area.
Typically such memory is uncached, and on
some architectures it has to be allocated from
particular physical areas. This kind of
mapping is called PCI-consistent; there is an
internal kernel ABI function to allocate and
deallocate appropriate memory.

2. Streaming DMA, where, once the device has
either read or written the area, it has no
further immediate use for it.

I implemented a new system call3,
usr_pci_map(), that does one of three things:

1. Allocates an area of memory suitable for a
PCI-consistent mapping, and maps it into the
current process’s address space; or

2. Converts a region of the current process’s
virtual address space into a scatterlist in
terms of virtual addresses (one entry per
page), pins the memory, and converts the
scatterlist into a list of addresses suitable for
DMA (by calling pci_map_sg(), which
sets up the IOMMU if appropriate), or

3. Undoes the mapping in point 2.

The file descriptor returned from
usr_pci_open() is an argument to
usr_pci_map(). Mappings are tracked as part
of the private data for that open file descriptor, so
that they can be undone if the device is closed (or
the driver dies).

Underlying usr_pci_map() are the kernel
routines pci_map_sg() and

3Although multiplexing system calls are in general dep-
recated in Linux, they are extremely useful while develop-
ing, because it is not necessary to change every architecture-
dependent ‘entry.S’ when adding new functionality

4

pci_unmap_sg(), and the kernel routine
pci_alloc_consistent().

4.2.1 The IOMMU

Some machines (including the ZX2000 series
from HP) interpose a translation look-aside buffer
between the PCI bus and main memory, allowing
even thirty-two bit cards to do single-cycle DMA
to anywhere in the sixty-four bit memory address
space.

As currently implemented, these devices allow
themselves to be bypassed if the card about to do
the DMA can address the memory it is DMAing
to. For fully secure user-space drivers, one would
want this capability to be turned off, and also to be
able to associate a range of PCI bus addresses
with a particular card, and disallow access by that
card to other addresses.

4.3 Interrupt Handling

There are essentially two ways that interrupts can
be passed to user level.

They can be mapped onto signals, and sent
asynchronously. This is a good intuitive match for
what an interrupt is, but has other problems:

1. One is fairly restricted in what one can do in
a signal handler, so a driver will usually have
to take extra context switches to respond to
an interrupt (into and out of the signal
handler, and then perhaps the interrupt
handler thread wakes up)

2. Signals can be slow to deliver on large
systems, as they require the process table to
be searched to find the appropriate target
process. It would be possible to short circuit
this to some extent.

3. One needs an extra mechanism for
registering interest in an interrupt, and for
tearing down the registration when the driver
dies.

For these reasons I decided to map interrupts onto
file descriptors. ‘/proc’ already has a directory
for each interrupt (containing a file that can be
written to to adjust interrupt routing to

processors); I added a new file to each such
directory. Suitably privileged processes can open
and read these files.

The files have open-once semantics; subsequent
attempts to open them will return −1 with
EBUSY.

When an interrupt occurs, the in-kernel interrupt
handler disables just that interrupt in the interrupt
controller, and then does an up() operation on a
semaphore.

When a process reads from the file, it enables the
interrupt, then calls down() on a semaphore,
which will block until an interrupt arrives.

The actual data transferred is immaterial, and in
fact none ever is transferred; the read()
operation is used merely as a synchronisation
mechanism.

Obviously, one cannot share interrupts between
devices if there is a user process involved. The
in-kernel driver merely passes the interrupt onto
the user-mode process; as it knows nothing about
the underlying hardware, it cannot tell if the
interrupt is really for this driver or not. As such it
always reports the interrupt as ‘handled’.

5 Driver Structure

The user-mode drivers developed at UNSW are
thus structured as a preamble, an interrupt thread,
and a control thread (see figure 3).

The preamble:

1. Uses ‘libpci.a’ to find the device or
devices it is meant to drive,

2. Calls usr_pci_open() to claim the
device, and

3. Spawns the interrupt thread, then

4. Goes into a loop collecting client requests.

The interrupt thread:

1. Opens ‘/proc/irq/irq/irq’

2. Loops calling read() on the resulting file
descriptor and then calling the driver proper
to handle the interrupt.

5

Generic
IRQ Handler

usrdrv
Driver

Architecture−dependent
DMA support

Driver

pci_map_sg()
pci_unmap_sg()

pci_map()
pci_unmap()

Client

IPC or
function calls

pci_read_config()

read()

User

Kernel

libpci

Figure 3: Architecture of a User-Mode Device
Driver

3. The driver handles the interrupt, calls out to
the control thread(s) to say that work is
completed or that there has been an error,
queues any more work to the device, and
then repeats from step 2.

The control thread queues work to the driver then
sleeps on a semaphore. When the driver, running
in the interrupt thread, determines that a request is
complete, it signals the semaphore so that the
control thread can continue. (The semaphore is
implemented as a pthreads mutex).

The driver has to do three system calls per I/O:
one to wait for the interrupt, one to set up DMA
and one to tear it down afterwards.

This could be reduced to two calls, by combining
the DMA setup and teardown into a single system
call.

The driver relies on system calls and threading, so
the fast system call support available in IA64
Linux, and the NPTL are very important to get
good performance. Each physical I/O involves at
least four system calls, plus whatever is necessary
for client communication: a read() on the
interrupt FD, calls to set up and tear down DMA,
and a futex() operation to wake the client.

6 Results

Device drivers were coded up by Leslie (2003) for
a CMD680 IDE disc controller, and by another
PhD student here for a DP83820 Gigabit ethernet
controller

6.1 IDE driver

The disc driver was linked into a program that
read 64 Megabytes of data from a Maxtor 80G
disc into a buffer, using varying read sizes.
Control measurements were made using Linux’s
in-kernel driver, and a program that read 64M of
data from the same on-disc location using the raw
device interface and the same read sizes.

At the same time as the tests, a low-priority
process attempted to increment a 64-bit counter as
fast as possible. The number of increments was
calibrated to processor time on an otherwise idle
system; reading the counter before and after a test
thus gives an indication of how much processor
time is available to processes other than the test
process.

The initial results were disappointing; the
user-mode drivers spent far too much time in the
kernel. This was tracked down to kmalloc();
so the usr_pci_map() function was changed
to maintain a small cache of free mapping
structures instead of calling kmalloc() and
kfree() each time. This resulted in the
performance graphs in figure 4.

The two drivers compared are the new CMD680
driver running in user space using both the NPTL
and the old LinuxThreads, and Linux’s in-kernel
SIS680 driver. As can be seen, there is very little
to choose between them when the requested
transfer size is above 16k. The new Posix threads
implementation is slightly faster than the old one.

The graphs show average of ten runs; the standard
deviations were calculated, but are negligible.

Each transfer request takes five system calls to do,
in the current design. The client queues work to
the driver, which then sets up DMA for the
transfer (system call one), starts the transfer, then
returns to the client, which then sleeps on a
semaphore (system call two). The interrupt thread
has been sleeping in read(), when the controller
finishes its DMA, it cause an interrupt, which

6

 0

 10

 20

 30

 40

 50

 60

 1 4 16 64 256 1024 4096
 10

 15

 20

 25

 30

 35

 40

 45

 50

 55
C

P
U

 (
%

)

T
hr

ou
gh

pu
t (

M
B

/s
)

Transfer size (kb)

User driver, nptl
User driver, LinuxThreads

Kernel driver

Figure 4: Throughput and CPU usage for the user-mode IDE driver on Pentium-4

wakes the interrupt thread (half of system call
three). The interrupt thread then tears down the
DMA (system call four), and starts any queued
and waiting activity, then signals the semaphore
(system call five) and goes back to read the
interrupt FD again (the other half of system call
three).

When the transfer is above 128k, the IDE
controller can no longer do a single DMA
operation, so has to generate multiple transfers

The time spent in this driver is divided as shown
in figure 5

Signal
Client

UserMode
Handler

Work

Queue
NewScheduler

Latency

IRQ

2.2 1

DMA...

Scheduler LatencyHardware

Kernel Stub
0.4

Figure 5: Timeline (in µseconds)

6.2 Reliability and Failure Modes

In general the user-mode drivers are very reliable.
Bugs in the drivers that would cause the kernel to
crash (for example, a null pointer reference inside

an interrupt handler) cause the driver to crash, but
the kernel continues. The driver can then be fixed
and restarted.

7 Future Work

The main focusses of our work now lie in:

1. Reducing the need for context switches and
system calls by merging system calls, and by
trying new driver structures.

2. Adding mechanisms for looping back the
‘top end’ of the user mode drivers into the
kernel, so that, for example, the disc driver in
user space can talk to a file system running in
the kernel. We’re looking at Jeremy Elson’s
work on FUSD, but as it supports only
character devices, we’re also writing our
own.

3. Improving robustness and reliability of the
user-mode drivers, by experimenting with the
IOMMU on the ZX1 chipset of our
Itanium-2 machines.

7

4. Measuring the reliability enhancements, by
using artificial fault injection to see what
problems that cause the kernel to crash are
recoverable in user space.

5. User-mode filesystems.

In addition there are some housekeeping tasks to
do before this infrastructure is ready for inclusion
in a 2.7 kernel:

1. Replace the ad-hoc memory cache with a
proper slab allocator.

2. Clean up the system call interface

8 Where d’ya Get It?

Patches against the 2.6 kernel are sent to the
Linux kernel mailing list, and are on
http://www.gelato.unsw.edu.au/patches

Sample drivers will be made available from the
same website.

References

[1] Andy Chou, Junfeng Yang, Benjamin Chelf,
Seth Hallem, and Dawson R. Engler. An
empirical study of operating systems errors.
In Symposium on Operating Systems
Principles, pages 73–88, 2001.
http://citeseer.nj.nec.com/article/chou01empirical.html.

[2] Jeremy Elson. A framework for user level file
systems.

http://www.circlemud.org/˜jelson/software/fusd,
October 2003.

[3] Windriver.

www.jungo.com/windriver.html, 2003.

[4] J. L. Keedy. A comparison of two process
structuring models. MONADS Report 4,
Dept. Computer Science, Monash University,
1979.

[5] Ben Leslie and Gernot Heiser. Towards
untrusted device drivers. Technical Report
UNSW-CSE-TR-0303, Operating Systems
and Distributed Systems Group, School of

Computer Science and Engineering, The
University of NSW, March 2003.

CSE techreports website
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW-
0303.pdf.

[6] Bryce Nakatani. ELJOnline: User mode
drivers.

http://www.linuxdevices.com/articles/AT5731658926.html,
2002.

[7] Michael Swift, Steven Martin, Henry M.
Leyand, and Susan J. Eggers. Nooks: an
architecture for reliable device drivers. In
Proceedings of the Tenth ACM SIGOPS
European Workshop, Saint-Emilion, France,
Sept 2002.

8

http://www.gelato.unsw.edu.au/patches
http://citeseer.nj.nec.com/article/chou01empirical.html
http://www.circlemud.org/~jelson/software/fusd
http://www.jungo.com/windriver.html
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW-0303.pdf
http://www.linuxdevices.com/articles/AT5731658926.html

