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Abstract. This paper reports on the use of the Coq proof assistant
for the formal verification of applet isolation properties in Java Card
technology. We focus on the confidentiality property. We show how this
property is verified by the card manager and the APIs, extending our
former proof addressing the Java Card virtual machine. We also show
how our verification method allows to complete specifications and to
enhance the secure design of the platform. For instance, we describe how
the proof of the integrity puts the light on a known bug. Finally, we
present the benefits of the use of high order modelling to handle the
complexity of the system, to prove security properties and eventually to
construct generic re-usable proof architectures.
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Introduction

A multi-application smart card can hold several applications coming from differ-
ent vendors of different sectors and possibly loaded after issuance. This implies
a new security model that has to assure the card issuer that the embedded
applications will not corrupt its system, and the application provider that its
applications are protected against the other ones.

In order to face these new security needs Java Card technology strengthens
the inherent security of Java technology with a complex mechanism to control
the sharing of information and services between on-card applications. This mech-
anism is known as the applet isolation principle, a central security issue in Java
Card technology (see [6]). This principle relies on the classical sandbox model of
Java security (see [14,10,21]) which consists in partitioning on-card applications
into contexts, and verifying accesses across these contexts. This verification is
supposed to face two main concepts: the integrity and the confidentiality of data
of applets. Confidentiality (integrity respectively) means that data are protected
from any unauthorized disclosure (modification respectively).

The work described here fits in the global objective of proving the correctness
of the security architecture of the Java Card platform. It deals with the formal
verification of the applet isolation principle. We actually focus on the formal
verification of the confidentiality property. Our formalization of this property
relies on the classical concept of non-interference (see [8,9]). We define the confi-
dentiality as a non-interference property between on-card applets, assuming that
they do not provide any shareable interfaces.
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In a former work (see [1]), we proved that the virtual machine ensures the
confidentiality property. At this level, confidentiality mainly relies on the firewall
mechanism used by the virtual machine which enforces a runtime checking during
bytecode interpretation.

Although the virtual machine is central in Java Card technology, it fits how-
ever in a complex architecture relying on several other components, also involved
in the execution process of an applet. These components are the API which pro-
vides system services to applets and the card manager which is in charge of the
communication module, the dispatching of the received commands, the loading
of new packages, etc. For instance, some global objects like the APDU buffer,
used by the applet to communicate with the external world, are managed by the
card manager, outside the control of the virtual machine. Given that the whole
security depends on the weakest link, proving the confidentiality at the virtual
machine level is not sufficient. Therefore, the next step consists in verifying that
the confidentiality property is respected during the whole process of applet’s
execution including card manager specific operations and API methods execu-
tions. The work presented here extends our former work concerning the virtual
machine to the card manager and the API. This consists of two main steps: the
formalization of the confidentiality property for these components and its formal
proof.

The formal verification relies on the formal modelling of the Java Card archi-
tecture which has been developed in FORMAVIE project1 (see [5]). This mod-
elling has been developed within the language of the Calculus of (Co)Inductive
Constructions and mechanically checked using the Coq proof-assistant (see [17]).

The paper is organized as follows: Section 1 gives an overview of Java Card
technology from the security point of view. Section 2 gives a brief account about
the formal modelling of the Java Card architecture which has been developed in
FORMAVIE project. In Section 3, we describe the proof architecture taking into
account the card management on one hand, and the API on the other hand; in
particular, we show how we extend the formal statement of the confidentiality
to the levels of the card manager and of the API. In Section 4, we point out
some results about the integrity property.

Acknowledgement. The authors acknowledge Pr. C. Paulin-Mohring for her ad-
vises for this work.

1 Security in Java Card Technology

1.1 The Java Card Platform

A Java Card based smart card is made of (see [11]):
– The operating system and the native methods2.

1 FORMAVIE project is an R&D project in the domain of information systems, par-
tially funded by the French government. The partners of the project are Schlum-
berger Systems, Trusted Logic and the French research institute INRIA.

2 i.e. written in a low level language.
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– The Java Card virtual machine whose task is to interpret bytecode programs
(the code obtained after Java compilation) and to enforce secure data sharing
between Java Card applications at runtime, in particular data confidentiality.

– The Application Programming Interface (API for short) which handles Java
Card specific features and also provides system services to embedded appli-
cations as class or library packages.

– The card manager which handles the life cycle of the card and its embedded
applications. It is in charge of loading Java Card applications and managing
inputs and outputs.

– The applets which are compiled Java Card applications.

A smart card communicates with the outside world when inserted into a Card
Acceptance Device (CAD for short). The CAD supplies the card with power and
establishes a data-carrying connection. The communication between the card
and the CAD is done by exchanging Application Protocol Data Units (APDU
for short). An APDU is a data packet containing either a command from the
host to the card or a response from the card to the host.

The card manager is the component which is in charge of the storage of Java
Card packages, applet installation and initialization, card resource management,
and communications. When the card is inserted into the CAD, first a reset oc-
curs, then the card manager enters into a loop, waiting for APDU commands
from the CAD. When an APDU command arrives, the card manager either se-
lects an applet to run as instructed in the command or forwards the command to
the running applet (the currently selected applet). By forwarding the command
to the currently selected applet, we actually mean requesting from the virtual
machine the execution of the process method of this applet. Once the process-
ing of the command is finished, the card manager takes back the control and
forwards the response to the CAD. The whole process repeats for each incoming
command.

1.2 The Java Card Sandbox Model

The applet isolation principle, i.e. the isolation regarding data access between ap-
plets embedded on the same card, is central for the security of multi-applicative
smart cards.

To enforce this principle, Java Card security implements a sandbox-like pol-
icy. Each applet is confined to a particular space called a context, which is as-
sociated to its package; and the verification of the isolation between contexts
is enforced at runtime by a firewall mechanism. More precisely, each package
defines a context and each applet it contains is associated to this context. In
addition, there is a privileged context – the JCRE context – devoted to system
operations (where JCRE stands for Java Card Runtime Environment).

Isolation of contexts relies on the concepts of object ownership and active
owner which are defined as follows:

– An owner is either an applet instance, or the system.
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– An object belongs to the owner who created it, i.e. the owner which was
active when it was created. The owner is then unique, determined at the
creation of the object and never changed.

– During the execution of a non-static method, the active owner is the owner
of the object that contains the method3.

– During the execution of a static method, the active owner is the one which
was active during the execution of the calling method. There is an exception
to this rule: to install a new applet instance, the static method install of
the class of the applet being installed is called by the system; during this
execution, the active owner is the applet instance to be created, instead of
the JCRE context. Therefore, any applet instance belongs to itself, as all the
objects it creates.

During the execution of a method, the currently active context is then defined
as the context of the active owner (the context of the system being the JCRE
context). For instance, when the card manager forwards an APDU command to
the selected applet, the process method of the applet is invoked and its context
becomes the currently active context.

An object can only be accessed by a subject within the same context, i.e.
when the object’s context is the currently active context. Object accesses across
contexts are allowed only in the four following cases:

1. Services and resources provided by the system (the entry point objects) be-
long to the JCRE context, but can be accessed by any object.

2. Applets and the system can share data through global arrays like the byte
array parameter of the method install or the APDU buffer. These global
arrays can be accessed from any context. However references to them cannot
be stored; this avoids their re-use in non specified situations.

3. When the currently active context is the JCRE context, methods and fields
of any object can be accessed.

4. Interaction between applets of different contexts is possible via shareable
interfaces: when a given applet wants to make some methods available for
other applets of different contexts, it provides an object whose class im-
plements a shareable interface, i.e. an interface which extends the interface
javacard.framework.Shareable. Such an interface defines a set of meth-
ods, that are the services that the applet in question makes accessible to
other applets. These methods can be invoked from any context.

1.3 The Firewall

To enforce the isolation between the contexts, Java Card technology provides a
dynamic check of these rules by the firewall (see [11]). This means that for each
bytecode instruction (getfield, putfield ...), a specific set of rules is defined.
When the virtual machine interprets a bytecode instruction, it checks that the
access conditions specified by the firewall rules are fulfilled. If they are not, a
SecurityException is thrown.

3 Let us note that Java Card technology does not provide any multi-thread mechanism.



Using Coq to verify Java Card applet isolation properties 5

The execution of a methodm of a given applet consists of the interpretation of
the successive bytecode instructions of m, including the execution of the methods
of the API which are called in m. But the firewall mechanism enforced by the
virtual machine only occurs during the bytecode interpretation, i.e. when the
virtual machine interprets the methods written in Java. In particular, both the
operations done by the card manager and the execution of API methods which
are not written in Java are not under the control of the firewall.

On the one hand, the API methods are mostly implemented as native4 meth-
ods. For instance, the method javacard.framework.Util.arrayCopy(...) is native
for obvious performance reasons; while
javacard.framework.JCSystem.beginTransaction() is intrinsically native because
it is a direct request to the system. This implies that firewall rules cannot be
directly applied in this context since there is no bytecode instruction interpreta-
tion. Moreover no security mechanism is specified for the execution of API meth-
ods; decisions are left to the developer. However, such a mechanism is crucial for
Java Card security to make sense. For example, let us consider the method static

short arrayCopy(byte[] src, short srcOff, byte[] dest, short destOff, short

length) of the class javacard.framework.Util. This method intends to copy an
array of length length from the specified source src to the specified destination
array dest according to offsets srcOff and destOff. No security constraints
are imposed by the specifications about the owners of src and dest. Therefore,
without any additional constraints on the use of this API method, any applet
could steal the contents of any array of any other context, which definitely is
contrary to Java Card security goals. Therefore, some security constraints must
be added to the specification. In this case, the situation is clear: by extension of
the firewall rules, we have to impose that src and dest both are accessible from
the context of execution, i.e. the context of the caller of the method since this
last one is static; if not, a SecurityException must be thrown.

On the other hand, some information flow may also rely on the operations
occuring during the card management. For instance, such a flow could rely on
some of the globally shared resources (such as the APDU buffer, or the byte array
parameter) used by the card manager to communicate with applets. However,
unlike the case of the API, some security rules are specified for the card manager.
Still, the fact that these rules are sufficient to ensure the isolation of applets
remains to be proved.

The purpose here is thus to prove that under suitable conditions, the principle
of isolation of applets holds for all the life cycle of a Java Card based smart card,
from the card manager specific operations to the interpretation of each bytecode
instruction of a method of an applet, including calls to API methods.

2 The Modelling of Java Card Technology

Here we present the formal modelling of the Java Card platform developed in
FORMAVIE project (see [5]) on which the proof is based. The JCVM and the

4 i.e. written in a low level language.
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card manager have been formally modelled in the Coq system ([17]). This mod-
elling is exhaustive regarding Sun specification (see [11]). Moreover a part of the
API has also been modelled.

2.1 The Virtual Machine

The Java Card virtual machine has been modelled as a state machine, the JCVM.
A JCVM state encloses all the data needed by the virtual machine to interpret
bytecode instructions. It contains for example a heap which is an association table
mapping references to object instances. Whereas a JCVM transition between
two JCVM states represents the execution of a single bytecode instruction. The
definition of this state machine is fully described in [1].

2.2 The Card Manager

The card manager is in charge of managing the whole life cycle of the card. The
card life is divided into sessions. A session is the period from the time a card
is inserted into the CAD and is powered up until the time the card is removed
from the CAD. During a session, the card manager is in charge of dispatching the
commands it receives and returning the responses to the CAD. The modelling
of the card manager thus involves several concepts, depending on the level of
abstraction.

At the highest level, the card manager can be seen as a relation between an
infinite sequence of commands and an infinite sequence of responses, according
to an initial state of the JCVM. In accordance with the partitioning of the card
life into sessions, these sequences are represented by streams respectively defined
by:

Definition card_in := (Stream input_card_session).

Definition card_out := (Stream output_card_session).

where input card session represents a list of commands and output card session

a list of responses. A response is defined by:

Inductive typ_response : Set := Success : typ_response

| OutData : (list byte) -> typ_response

| Atr : typ_response

| Fail : status_word -> typ_response.

Inductive response : Set := NoResponse : response

| Response : typ_response -> response.

The definition of a command is the generalization of the notion of APDU com-
mand (describing only the selection of an applet and a plain command), in order
to take into account all the features of the card manager, such as the installation
of applets or the loading of packages:

Inductive command : Set :=

Select : apdu_comm -> command

| Command : apdu_comm -> command

| Load_File : cap_format -> command
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| Install : aid -> package_info -> install_params -> command

| Load_Install : cap_format -> aid -> package_info ->

install_params -> command

| Reset : command.

The card manager is then represented by the co-inductive type:

card_life : card_in -> jcre_state -> card_out -> Prop.

where the state records the packages installed on the card, together with the
state of the JCVM:

Record jcre_state : Set := JCRE_State { installed_packages : package_table;

execution_state :> jcvm_state }.

The card life is defined as an infinite sequence of sessions. Each session is
in turn modelled inductively using the modelling of the dispatching of a single
command. This last one is modelled by the predicate5:

dispatcher: package_table -> jcvm_state -> command ->

package_table -> jcvm_state -> response -> Prop.

that associates to an initial state of the JCVM and a received command, a final
state resulting from the execution of this command and an output response to be
sent back to the CAD. This predicate takes into account a set of loaded packages
and defines a new set of packages if a loading of new packages has occurred.

The execution of an APDU command involves the interpretation of the
process method by the virtual machine, including possible calls to API meth-
ods. For instance, the receiving of the command Select apdu causes an applet
to become the currently selected applet. This applet is the one associated to the
AID (Application IDentifier) mentioned in the argument apdu of the command.
Prior to the selection, the card manager shall deselect the previously selected
applet, by invoking its deselect method. Then it informs the applet of selection
by invoking its select method. The applet may refuse to be selected by return-
ing false or by throwing an exception. If it returns true, the actual Select
apdu command is supplied to the applet in a subsequent call to its process

method. The process method is then interpreted by the virtual machine. The
interpretation ends in a final state, returning the result of the method. The card
manager analyses this value and sends a response to the CAD.

2.3 Modelling the API.

The formal specification of each method of the API is defined by pre and post
conditions expressed on the JCVM states. These conditions are defined in a
relational way as inductive types.

Precondition. For each method, the precondition specifies the necessary con-
ditions on the JCVM state for the method to be invoked. It mainly defines the
form of the operand stack, which contains the arguments of the method. In
particular, it specifies the types of these arguments.

5 let us note that HOL predicates are encoded as Coq inductive types.
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Postcondition. The postcondition of a method specifies the returned value of
the method, together with the JCVM state resulting from the execution of the
method. Let us note that the result may be the throwing of an exception. Post-
conditions of API methods have to specify the resulting JCVM state because
some methods of the API are used as system entry points, i.e. they are used to
send requests to the system. This is the case of methods of the class JCSystem.
For instance, methods like beginTransaction() or commitTransaction() allow ap-
plets to use the transaction mechanism, which is managed by the system; there-
fore, the specification of these methods describe their effects on the state of the
system itself, and especially the part dealing with transaction.

Example. Let us consider for instance the method boolean equals(byte[]

bArray, short offset, byte length) of the class AID which checks if the specified
AID bytes in bArray (the ones starting at offset in bArray and of length
length) are the same as those encapsulated in this AID object instance. The
precondition of this method specifies that at the invocation, the operand stack
must have the form:

byte short reference reference ...

where the first item represents length, the second one offset, the third one
bArray and the fourth one the reference, let us say ref, to the object instance
of class AID on which the method is called. On top of the required types, the
precondition specifies that ref must be different from the null reference. The
modelling of this precondition in Coq is straightforward and is not described
here. Let us note that the precondition does not specify that bArray must be
different from null. Indeed in this case, the specification of the method is that
a NullPointerException must be thrown by the method; therefore, this is a
part of the behaviour of the method which is specified by the postcondition.

The postcondition is defined as an inductive type of signature equals post cond:

jcvm state -> equals info -> method state result -> Prop. This relation spec-
ifies the returned value of the method together with the resulting JCVM state
from the initial state at method invocation and the arguments. The returned
value and the resulting state are both enclosed in a term of type
method_state_result. The arguments are enclosed in a term of type equals_info
defined by the precondition from the initial state.

All the postconditions of API methods follow the same scheme; in particular,
the signature of each postcondition is the following:
jcvm_state -> pre_info -> method_state_result -> Prop
where the type pre_info depends on the method being specified.

3 A Formal Validation Method based on Coq

3.1 Formalization of the Confidentiality

In [1], the confidentiality property has been formally stated at the level of the
virtual machine. Here the formalization is extended in order to address the card
manager level.
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Non-interference. Our modelling of the confidentiality is based on the classical
concept of non-interference (see [8,9,18]) which states that the confidentiality
of data is ensured if the values of these confidential data have no effect on the
behaviour of external entities.

In our framework, we consider a context C, a selected applet α not belonging
to C and a received command c which does not request the selection of an applet
of C (see Remark 2 at the end of this section). We want to verify that there is
no disclosure of data of the context C during the processing of c by α. Let FC(s)
denote the contents of the fields of all objects belonging to C, i.e. the data to be
protected, and FC(s) the contents of the fields of all objects not belonging to C.

Let us consider two states s1 and s′1 of the JCVM that may differ only on
data of the context C. This means that we have FC (s1) = FC(s′1) and that
nothing is assumed on the values of neither FC(s1) nor on the ones of FC(s′1).

Then, the confidentiality is ensured if the two processings of the same com-
mand c from s1 and s′1 respectively leads to two final states s2 and s′2 that may
differ only on data of the context C, and to two responses that are equal.

Equivalence of JCVM states. The simple equality of the states up to the confi-
dential data is too restrictive and a notion of equivalent states is in fact needed.
Indeed, when the virtual machine interprets the bytecode new, it needs a fresh
reference. This fresh reference is retrieved from the operating system of the card,
whose mechanism is not specified. This operation is non-deterministic. But the
execution of the bytecode new on two states that are equivalent should lead to
equivalent states, even if the fresh references which have been used are different.
So, we must consider the equality of terms concerned up to a one-to-one mapping
of references. But such a mapping can only be defined on references appearing
on the heap. Therefore the JCVM state equivalence is only defined for consis-
tent states, where a JCVM state is said to be consistent regarding references
(consistent for short) if it contains in its data structures only null references or
references appearing as index in the heap.

We can now define the equivalence of JCVM states up to one context.

Definition 1 (JCVM State Equivalence up to a Context).
Two consistent JCVM states s and s’ are said to be equivalent up to the context
C, which is denoted by s ∼C s′, if there exists a one-to-one mapping ϕ such
that all the components of s′ except the heap, as well as the objects of the heap
not belonging to C, are obtained from their counter-parts in s by replacing any
reference ρ by ϕ(ρ). No assumption is done about objects belonging to C.

Hypotheses. Let us now look at the hypotheses we have to assume to state
a coherent definition of the confidentiality. We must assume that C does not
provide any shareable interfaces, since it corresponds to one of the four cases
where access across context is authorized (see page 4). Moreover, α is the selected
applet in the initial state s1 (and thus in s′1), and therefore we have to suppose
that this applet does not belong to C, otherwise the objects belonging to C
could be accessed by any applet and in particular by α. For the same reasons,



10 June Andronick, Boutheina Chetali, and Olivier Ly

we must assume that the received command does not request the selection of
an applet belonging to C. Finally, C must be different from the JCRE context
since objects belonging to the JCRE context can be accessed from any context.

Statement. We are now able to state a formal definition of the confidentiality:

Definition 2 (Confidentiality Property).
Let C be a context different from the JCRE context, which does not provide any

shareable interfaces. Let s1 and s′1 be two consistent states such that s1 ∼C s′1.
Let us assume that the selected applet in s1 does not belong to C. Let c be a
command received from the CAD which is not a command of selection of an
applet of the context C. Let s2 (s′2 respectively) and r (r′ respectively) be the
state and the response resulting from the processing of c from s1 (s′1 respectively).
Then s2 ∼C s′2 and r = r′.

Remark 1. This definition specifies the confidentiality at the level of the pro-
cessing of a single command, i.e. concerning the dispatcher predicate. This
processing of the command is specified from a JCVM state, according to loaded
packages. But the generalization to the card life is easily defined by stating that
the executions of the same stream of inputs from two equivalent JCRE states
respectively lead to the same stream of output. At this upper level, JCRE states
are considered, enclosing the JCVM state and the loaded packages used by the
dispatcher predicate.

Remark 2. The confidentiality property does not address commands which re-
quest the selection of an applet of the context C. The processing of such a
command puts into action the applet to be selected, say β, in the context C. In
particular, β becomes the active owner and C the currently active context6. As
mentioned on page 7, the method β.process(apdu) is then invoked. During the
execution of this method, β can read or modify the data belonging to its own
context, i.e., C. Actually β is responsible for protection of its context’s data. In
particular, it must ensure that no information disclosure may occur through the
execution of its method process or within the response sent back to the CAD.
Since this execution depends on the argument apdu for which β is not respon-
sible, β can deny its selection according to its proper security policy defined at
the level of the application, and not of the system.

3.2 Formal Verification

Architecture.
The verification of the isolation of applets has to be done at each step of the exe-
cution of a command received from the CAD. These steps are the following ones.
1) First, a pre-treatment is performed by the card manager in order to “prepare”
the initial state of the JCVM. For instance, if the command has to be processed
by the selected applet, the method public void process (APDU apdu) of this

6 See page 4 for the definition of active owner and currently active context.
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last one is called with the APDU object in argument. This APDU object is an
instance of the APDU class, created by the card manager from the data contained
in the received APDU command. Let us denote by

CM such a treatment of the
card manager.
2) Then the method (either process, install, select or deselect) is inter-
preted by the virtual machine. This interpretation consists of a finite sequence of
transitions. Each transition can be either a JCVM transition (denoted by VM−→),
i.e. the execution of a single bytecode instruction, or a call to a method m of the
API (denoted by

API(m)−→), i.e. a relation between the state at the call of m and the
resulting state obtained after the full execution of m.
3) Finally, the card manager performs final operations (also denoted by

CM ) in
order to build the response to send to the CAD according to the returned value
of the method, and also to prepare the state to receive the following command,
including for instance the zeroing of the APDU buffer.

Let us note however that the processing of some commands may not involve
the JCVM such as the loading of a new package.

The verification of the isolation at the level of the card manager implies a
proof at each step of this process:

ci ci+1

⇓ ⇓
. . .

CM © CM © VM−→© API(m)−→© VM−→ . . .
API(m’)−→ © VM−→© VM−→© CM © CM . . .

⇓ ⇓
ri ri+1

Concerning the specific operations of the card manager, the verification con-
sists in proving that the processing of commands and the building of the response
do not introduce any leak regarding isolation.

Concerning the interpretation of the method, we have to prove that neither
the interpretation of bytecode instructions nor the execution of methods of the
API violate the confidentiality of data of applets.

Proofs.
At the level of the card manager, we have proved the confidentiality property

as defined in Definition 2. The proof is done by case analysis on the kind of the
received command.

A large number of intermediate lemmas has been needed in order to prove
that the confidentiality is preserved during specific operations of the card man-
ager. These specific operations are the ones already mentioned as the loading
of new packages, the selection and deselection of applets, the dispatching of
commands, the management of APDU buffer, etc (∼ 14000 lines of coq script).

Furthermore the proof architecture is organized around two main lemmas,
corresponding to the two kinds of steps needed to process the command.

The first lemma concerns the confidentiality of the execution of one byte-
code instruction. It states that, assuming suitable hypotheses (in particular that
there is no shareable interface in C), if there are two JCVM transitions s1

VM−→s2
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and s′1
VM−→s′2 such that s1 ∼C s′1, then s2 ∼C s′2. This proof has already been

presented in [1] (∼ 16000 lines of coq script).
Similarly, the second main lemma states that for each method m of the API,

if s1
API(m)−→s2 and s′1

API(m)−→s′2 such that s1 ∼C s′1, then s2 ∼C s′2 and the results of
the executions are the same (∼ 5000 lines of coq script). This proof is presented
in detail in the next section.

Confidentiality Property for the API.
Here we focus on the execution of API methods. We saw that API meth-

ods are specified with pre and postconditions. In particular, for each method,
the postcondition specifies the JCVM state resulting from the execution of the
method. Therefore, the relation that we denoted by

API(m)−→ is defined by the post-
condition of the method m. We define a generic confidentiality property for the
API as follows:

Section ApiConfidentialityProperty.

Variable pre_info : Set.

Variable method_post_condition:

jcvm_state -> pre_info -> method_state_result -> Prop.

Variable confidentiality_condition: jcvm_state -> pre_info -> Prop.

Variable pre_info_isom: pre_info->(reference->reference)->pre_info.

Definition confidentiality_api :=

(* equivalent jcvm states at method invocation *)

(invkst,invkst’:jcvm_state)

(own:owner)(phi:(reference -> reference))

(jcvm_state_equivalence_up_to_one_context invkst invkst’ own phi) ->

(* equivalent parameters for the method *)

(inf,inf’:pre_info) inf’=(pre_info_isom inf phi) ->

(* the caller context is not the JCRE *)

~(jcvm_caller_context invkst JCRE_Context) ->

(* the context which must not be accessible *)

(own:owner) (jcvm_caller_context invkst (Applet_Context own)) ->

(hiddenown:owner) ~(same_owner own hiddenown) ->

(* the hypothesis for confidentiality *)

(confidentiality_condition invkst inf) ->

(* the execution *)

(poststate,poststate’:jcvm_state)

(res,res’:method_result)

(method_post_condition invkst inf (Meth_Res poststate res )) ->

(method_post_condition invkst’ inf’ (Meth_Res poststate’ res’)) ->

(jcvm_state_equivalence_up_to_one_context poststate poststate’ own phi)

/\ (res’=(method_result_isom res phi)).

End ApiConfidentialityProperty.

Remark 3. Since the arguments and the result of a method may contain refer-
ences, we must consider two executions from equivalents states, but also from
equivalent arguments; and we prove that the results are equivalent.
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Variables are used to instantiate the property to each method of the API:

– pre_info is a type depending on the method; it is designed to enclose the
parameters of the method (see page 8).

– method_post_condition is the specification of the postcondition of the
method.

– confidentiality_condition encloses the additional hypotheses, if any, to
ensure the confidentiality. It is shown on page 14 that the specification of
the security mechanism is not stated concerning the API. Therefore, it may
happen that some additional conditions have to be fulfilled in order to ensure
confidentiality; they are enclosed in this variable.

– pre_info_isom defines a specific equivalence for the type pre_info of the
parameters of the method.

Remark 4. Here no hypothesis is done concerning shareable interface, since the
API does neither provide nor call any.

To prove the confidentiality for the API, we instantiate this definition for
each method, and prove it. Let us look at the particular example of the method
boolean equals(byte[] bArray, short offset, byte length). The confidential-
ity property is obtained by instantiating pre_info with equals_info and
method_post_condition with equals_post_condition. To achieve the proof
of the property, we had to assume that bArray is accessible from the caller con-
text, which is the instantiation of confidentiality_condition. This gave rise
to the following result:

Theorem equals211_confidentiality:

let confidentiality_condition =

[invkst:jcvm_state; inf:equals_info]

(caller_array_access_security_constraints invkst (equalsinfo_arr inf))

in (confidentiality_api

equals_info equals211_post_cond confidentiality_condition).

We do not give the details of the definition of
caller_array_access_security_constraints

which expresses that bArray (here (equalsinfo arr inf)) is accessible from
the caller context according the security policy to regulate access across contexts
(see [11]).

Remark 5. For each method, the instantiation of the variable
confidentiality_condition actually completes the specification of the method
from the security point of view. Therefore, the collection of these conditions for
all the methods of the API specifies a sufficient security mechanism for the API
to enforce the confidentiality property. This is an important application of this
work.

Remark 6. Independently of our work, this condition has been added in Java
Card 2.2 specification (see [12]). However, we also did the proof of the same
property on the models of Java Card 2.2; it is very similar to the one for Java
Card 2.1.1; the only difference is that the security hypothesis is no longer needed.
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4 About the Integrity

Concerning the API, a similar method can be used to prove the integrity prop-
erty; it has been done in the case of the AID class.

The notion of integrity is simpler than the one of confidentiality since its
violation is “observable”. Indeed, the integrity is ensured during the execution
of a method if the values of the confidential data at the end of the execution are
the same that the ones at the beginning. Thus, with the notation of Section 3.1,
the integrity for the API can by formally stated as follows.

Definition 3 (Integrity Property for the API).
Let m be an API method, C a context and s a JCVM state. If the calling context

in s, i.e. the one of the caller of the method m, is different from C and from the
JCRE context, and if s

API(m)−→s′ then FC(s) = FC(s′).

This gives rise to the definition of a generic integrity property to be instantiated
and proved for each method of the API.

Example. Let us look here at the following example, well known from Java Card
technology developer community. Let us consider the method byte getBytes(byte[]

dest, short offset) of the class javacard.framework.AID which is supposed
to put in the array dest all the AID bytes encapsulated within the AID instance
from which the method is called (offset specifies where the AID bytes begin
within dest). Here the security problem concerns the access to the array dest.
The basic extension of the firewall rules is not sufficient to ensure applet isolation.
Indeed, this natural extension would be to allow access to dest only if the context
of execution of the method is the JCRE context, or is the same as the context
of dest. Following such a policy would introduce a security hole. Indeed, AID in-
stances are provided by the system and belong to it. Any applet α can get such an
instance, say a, via the method javacard.framework.JCSystem.lookupAID(...).
Now, if α invokes a.getBytes(dest,offset), there is a context switch into the
JCRE context since a belongs to the system; this gives to the method all the
rights to access any object in any context. In particular, the method can put the
bytes enclosed in a into dest, whatever the context of this last one is. It partic-
ular, even if the context of dest is different from the context of α, the content
of dest is erased. In conclusion, α would be able to modify any byte array in an
other context in an indirect way via the JCRE context. This is again contrary to
Java Card security goals. So, a stronger security rule must be enforced to control
the use this method: dest must be accessible from the context of the caller of
the method.

This information leak has also been revealed during the development of the
proof of integrity. Indeed, the introduction of an additional hypothesis has been
necessary to complete the proof:

Theorem getBytes211_integrity:

let integrity_condition =

[invkst:jcvm_state; getbinf:getB_info]

(caller_array_access_security_constraints invkst (getbinfo_arr getbinf))

in (integrity_api getB_info getBytes211_post_cond integrity_condition).
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Similarly to the case of the method equals, this rule has been added in Java
Card 2.2 specification.

Conclusion

The security mechanism of the API is not specified by Sun specification; it is
actually left to the design and implementation stages. The present work proposes
a formal method to complete the functional specification of the API in the
objective of ensuring the applet isolation. This method is extended to the card
management in order to ensure that the confidentiality holds for the whole Java
Card platform.

Let us emphasize that the use of a proof assistant handling higher order logic
has been crucial in this work. The definition of infinite traces describing the exe-
cutions of a machine as well as that of propositions over those traces are directly
expressed in terms of the mechanisms for supporting co-inductive definitions.
Moreover the formalization of the confidentiality property uses quantification on
bijections between Java references.

Related Work. In the framework of Java Card technology, the problem of con-
fidentiality has been investigated in [7]. This work concerns applet interactions
and focuses on the qualification of admissible information flows. Verification of
applet isolation has also been investigated in [13] by setting up a type system
at applet source code level to check applet isolation. More generally, formal ver-
ification techniques have been investigated for Java source code (see e.g. [19]).
These works deal with the application level and not with the underlying system.
Our approach is complementary: we focus on the verification of applet isolation
at the level of the Java Card platform itself.

Java Card platform security has been investigated in [2,4,3]. In particular,
these studies established a correspondence between offensive and defensive Java
Card virtual machine. Verification of the Java Card API has also been investi-
gated in [16,15,20]. Here we focus on applet isolation and especially on confiden-
tiality, adding another building block to prove Java Card security.

Future Work. A first direction to investigate is to generalize our result about
applet isolation, in order for instance to take into account the case of share-
able interfaces. A second direction consists in checking the property for actual
implementation of the Java Card platform.
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