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Verified Planner: Why?

Planning systems are informally designed and implemented.
Limits on critical applications
We want to create a planner with

Correctness: soundness and completeness
Bounds memory and time consumption



Bounds: Why?

A verified planner requires the proof of fundamental theorems
about planning problems

We verify upper bounds on lengths of plans
If a problem is solvable, some plan satisfies that bound
How do bounds help in a verified planner?

Give a guarantee on resources needed and efficiency
Provide correctness guarantees



Verification: HOL4

We used HOL4, an interactive higher-order logic proof
assistant

Definitions, theorems and proofs are encoded in HOL
Proofs are checked on top of a small trusted code base
Failed proofs may suggest counter-examples



Mechanising Bounds

In this work we report on
Verifying bounds from Rintanen and Gretton’s IJCAI 2013
paper (R&G)
A mistake in their formalisation of bounds and its repair
A new theorem that led to tighter bounds



The Planning Problem Definition

A planning problem (IT) can be defined as:
Domain (D) : a set of Boolean variables representing the
planning problem states.
Actions (A) : a set of tuples (p, e)
Initial state (/) : a map from the domain to Boolean
Goal state (G) : a map from the domain to Boolean

A solution is a sequence of actions (7) whose members are in A.



An example problem: Logistics

3 cities {Cy, C,, C3} where objects can be located
1 truck { T} that drives from between any pair of different cities
2 parcels { Py, P»} that can be loaded or unloaded onto trucks

Problem TT

D=(¢ TQCy, TQGC,, TQCs,
P;@Cy, P1@C,, P1QCs, P1@T,
P>QCs, , P,@Cy, P,QC,, P,OT



An example problem: Logistics

3 cities { Cy, C,, C3} where objects can be located
1 truck { T} that drives from between any pair of different cities
2 parcels { Py, P»} that can be loaded or unloaded onto trucks

Problem TT

I={
T@C+, T@C,, T@Cs, P1@Cy, Py@C,, Py0Cs, P1@T, P,@Cs, , P,@C;, P,0C;, P,0T}




An example problem: Logistics

3 cities {Cy, C,, C3} where objects can be located
1 truck { T} that drives from between any pair of different cities
2 parcels { Py, P»} that can be loaded or unloaded onto trucks

Problem TI
A= _
{Load(p, c) = ({p@c, TQc}, {p@T, p@c}) |p € {P1, P} Nce {Cy,Co, Cs}}
U
{UnLoad(p, c) = ({p@T, T@c}, {p@T, p@c})|p € {Ps, P2} A c € {Cy, Cz, Ca}}
U

{Drive(c,-, C]) = ({T@C,‘}, {T@C], T@C,'|C,‘ € {01, Cg, C3} A G € {01, CQ, C3} A Cj 75



An example problem: Logistics

3 cities {Cy, C,, C3} where objects can be located
1 truck { T} that drives from between any pair of different cities
2 parcels { Py, P,} that can be loaded or unloaded onto trucks

Problem TT

cH
{T@C,, TQC,, TOC3, P1@Cs, P1@Cy, P10C,, Pi@T, P,QCy, P,QC s, P,@C3, P,OT}




An example problem: Logistics ®

3 cities {Cy, C», C3} where objects can be located
1 truck { T} that drives from between any pair of different cities
2 parcels { Py, P,} that can be loaded or unloaded onto trucks

Problem TT

Solution:

[Load(P;, Cy); DriveCy, C,); Drive(Cy, Cs), UnLoad(P;, C3); Load(P-, C3);
Drive(Cs, Cy); Drive(Cs, Cy); UnLoad(P», Cy)]



A Bound on Plan Length

Definition
The bound is defined as:

((TT) = max min |7|
s€S mell(s)

Our contribution builds on definitions of bounds by R&G

A valid bound is the longest shortest execution between the
initial state and any other state in P(D)

It is the diameter of the state transition graph, but, only from /.



Theorems

One way to deduce theorems about ¢(IT) is to appeal to state
space cardinality arguments.

So, the most basic theorem that can be stated about ¢(IT) is:

Theorem

(1) < 2IP



Theorems on Bounds ®

R&G suggested a hierarchical decomposition of TT to get
tighter bounds

Their decomposition yields subexponential bounds

The details require we introduce the concepts of dependency
graph and projection.



D d h
ependency grap ®

Definition
A dependency graph is a directed graph which:
Has a node for each variable in D
Has an edge from vy to v» (vy — V) iff
Vi = Vo ;0Or
there is an action a in A such that v, is a precondition of a
and v, is an effect of a; or
there is an action a in A such that both vy and v, are
effects of a.



Dependency graph: Example e

NICTA

[Reflexive arcs omitted]

Load(P1, C1) = ({P1@Cy, T@C1}, {P1@T, P{QC})
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Dependency graph: Example e
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[Reflexive arcs omitted]

Load(P1, C1) = ({P1@C1, T@C1}, {P1@T, P4 ©C1})

Py @Cz T©C1 Pz@T P,@Cy
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Lifted Dependency Graphs

Definition
A lifted dependency graph
is a lifting (contraction) of the dependency graph;
is a directed graph such that, for a partition P of D:
there is a node for each s € P
An edge from node s; to node s, (51 — Sp) iff
sy Is disjoint from s,; and
dv; € 81, Vo € S5 such that vi — Vs.



NICTA
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Projection

Projection “limits” an x to a specific set of variables vs,
written x| .

Can be applied to:
An action (al )
An action sequence (7| ,)

A state (s} )
A problem (IT[ )



Leaf Ancestor Theorem

Used when there is a branching structure in the dependency
graph.
Can obtain subexponential bounds on plan lengths.

Theorem

VT Gus. DAG(GVS) = f(ﬂ) <Xy eleaves(Gvs)g(ﬂLvs Uancestors(vs))

I
I

o O O
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Leaf Ancestor Theorem

Used when there is a branching structure in the dependency
graph.
Can obtain subexponential bounds on plan lengths.

Theorem
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Leaf Ancestor Theorem: Example ®

Using cardinality arguments in Logistics, the bound (271 — 2)
is obtained, which is much tighter than (2" — 1).

Appealing further to problem constraints—e.g., a parcel
cannot be in two locations at once—yields even tighter

bounds.

{P1@Cy, P1@C,, P1@Cs3, P1@T} ‘ ’ {P2@Cy, P,@Cy, P,@C3, P,@T}




Leaf Ancestor Theorem: Example e

NICTA

« Using cardinality arguments in Logistics, the bound (27" — 2)
is obtained, which is much tighter than (2" — 1).

« Appealing further to problem constraints—e.g., a parcel
cannot be in two locations at once—yields even tighter
bounds.

{P2@Cy, P,@C,, P,@C3, P2@T}

Mechanising upper bounds in planning Mohammad Abdulaziz NICTA and ANU 18/33



Leaf Ancestor Theorem: Example e

NICTA

« Using cardinality arguments in Logistics, the bound (27" — 2)
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Some problems are not decomposable by the leaf ancestor theorem

« The leaf ancestor theorem only leads to:

g(]'[) < olsil+szl+ss|
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Child Parent Theorem

[Note: s = D\s]

Theorem
VITs. s43 = () < (£(Mg) + 1)((T]g) + 1)

This theorem is for when there is a “child parent relation” in
the lifted graph
There are two actions sets:

child actions with dom e C s; and

parent actions with domp C s Adome C vs



Child Parent Theorem O °

NICTA

Some cases are not decomposable by the leaf ancestor theorem

» The leaf ancestor and child parent theorems lead to:

é(ﬂ) < (2|vs1\ o 1)(2|v32| + 2\v53| _ 2) + 2|vs1| + 2|v32| + 2|vs4| -3
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Experiments

R&G’s approach can give tight bounds in domains like

LOGISTICS, SATELLITE, and ZENO
Solves previously open instances

Closed open instance of ROVERS with Qualitative

Preferences from IPC 2006
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Verification: Basic Theorem

Theorem
£(1T) < 21P

Verifying the first theorem is relatively straight-forward:

Prove that number of states traversed by any cycle—a
repetition of the same state—free plan is at most 2/°!

Then employ the pigeonhole principle

Prove that for any plan, if there is a cycle, its removal
gives an admissible plan



Verification: Child Parent Theorem

BUG!
/ = _ma T (7T
s€

Problems:

Unreachable states
Unrefinable action sequences

Problem

0,
Xy} {x,y,2}),d
,Z

{x3), b= ({x}, {x,y}),
= ({w}, {x,y,2})

|



Verification: Child Parent Theorem

BUG!

= ma T {7 ¢(TT) = max min |7|
EIS 0 SES,TK'EA 7‘["6“ﬁ(7}'7s)

Problems:

Unreachable states
Unrefinable action sequences

Problem
| ={W,X,y,Z}
_ | Az 2= 0 0D0= . b,
M= A= { ¢ = ({x,yh {%.7.2}).d = ({w}, {x.y. 2}) }
G={w,x,y,z}



Verification: Child Parent Theorem: PROOF O ®

NICTA

Our proof is constructive

« Given an existing plan
BN .  EEEE _ EERENE. EDNE. . 4 B W BN N B B
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Verification: Child Parent Theorem: PROOF e
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Our proof is constructive
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u;
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Verification: Child Parent Theorem: PROOF O ®

NICTA

Our proof is constructive
« Given an existing plan
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Verification: Child Parent Theorem: PROOF

()e

NICTA

Our proof is constructive

Given an existing plan
BN .  EEEE _ EERENE. EDNE. . 4 B W BN N B B
Derive a new child plan conforming to ¢(TT|)
) ¢ ; m;
Replace the child part
BEE. EBEENE. EBENE. _EHN. ... 4 B e B
For each parent plan fragment derive a fragment conforming
to ((TTs)
| & O BB G B G P G 4 B e K [ B O

Put the new parent fragments in the plan

H;
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Verification: Child Parent Theorem: PROOF O ®

NICTA

Our proof is constructive
» Given an existing plan
ER. . EEEER_ EERENE._ENR.. 4 B e N H
« Derive a new child plan conforming to ¢(TT},)
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» Replace the child part
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Verification: Child Parent Theorem: PROOF O ®
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Verification: Disconnected Variable Sets Theorem

OO

Theorem
VITs. sAsAsAs=TT) < (TT]g)+ £(TTg) + 1

Our proof technique can be applied to this theorem.

Repeat the first step in theorem 3 proof twice, for s actions,
and for s actions

It implies that actions are either

s actions with dom p C s A dom e C s; or
S actions with domp C s Adome C s



Verification: Disconnected Set Theorem: PROOF e

NICTA

Our proof was constructive as well

» Given an existing plan
BN .  EEEE.  EEENE_ENE.. ‘AR RN 1
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Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)
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Verification of this tighter bound is underway

I
I

o O O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = Z(]‘[ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

o O O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = Z(]‘[ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

o O O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = Z(]‘[ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

@ O O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = Z(]‘[ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

O @ O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = Z(]‘[ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

O O ©



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = e(ﬂ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

o O O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = e(ﬂ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

|
I

® & O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = E(ﬂ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

O @ O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = E(ﬂ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

O O @



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = e(ﬂ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

|
I

o O O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = E(ﬂ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
I

o O O



Current Verification: Parent Children Theorem ®

Theorem
V1T Gs.DAG(Gs) = £(TT) < g e, N(5)

where,
N(S) = e(ﬂ Ls)(zs’Echildren(s) N(S/) + 1)

Verification of this tighter bound is underway

I
!

o O O



Verification: Parent Children Theorem: PROOF e

NICTA

For a variable set vs; in the graph

« Given an existing plan
EEEEREEEEEEEREEEEEEEEEDE DN DN

Mechanising upper bounds in planning Mohammad Abdulaziz NICTA and ANU 29/33



Verification: Parent Children Theorem: PROOF e

For a variable set vs; in the graph
Given an existing plan
EEEEEEREEEEREEEEEEEEED DD BEE DN,
For each vs; action fragment, derive a fragment conforming to
f(]—H/VS,')



Verification: Parent Children Theorem: PROOF e

NICTA

For a variable set vs; in the graph
» Given an existing plan
EEEEEEEEEEEREEEEEEEEEND B R,
» For each vs; action fragment, derive a fragment conforming to

K(HLVS/)
| B | | B K | B B R | B B R

Mechanising upper bounds in planning Mohammad Abdulaziz NICTA and ANU 29/33



Verification: Parent Children Theorem: PROOF e

NICTA

For a variable set vs; in the graph
« Given an existing plan
EEEEEEREEEEREEEEEEEEED DD BEE DN,
« For each vs; action fragment, derive a fragment conforming to

O(TT]ys,)
) & (B @ NN NN

Mechanising upper bounds in planning Mohammad Abdulaziz NICTA and ANU 29/33



Verification: Parent Children Theorem: PROOF e

NICTA

For a variable set vs; in the graph
« Given an existing plan
EEEEEEREEEEREEEEEEEEED DD BEE DN,
« For each vs; action fragment, derive a fragment conforming to
((TMlys,)
) 4 N LB & ¢ CH AR

» Put the new vs; actions fragments in the plan

Mechanising upper bounds in planning Mohammad Abdulaziz NICTA and ANU 29/33



Verification: Parent Children Theorem: PROOF e

NICTA

For a variable set vs; in the graph

« Given an existing plan
EEEEEEEEEEEEEEEEEEDEEEDNE BN,

» For each vs; action fragment, derive a fragment conforming to
E(HLVS,')
) 4 N NN NN

« Put the new vs; actions fragments in the plan
A EEEEEE N NN BN

Mechanising upper bounds in planning Mohammad Abdulaziz NICTA and ANU 29/33



Verification: Parent Children Theorem: PROOF e

NICTA

For a variable set vs; in the graph

« Given an existing plan
EEEEEEEEEEEEEEEEEEDEEEDNE BN,

» For each vs; action fragment, derive a fragment conforming to
E(HLVS,')
) 4 N NN NN

« Put the new vs; actions fragments in the plan
EEEEEEEEEEEEENRENN BN

Mechanising upper bounds in planning Mohammad Abdulaziz NICTA and ANU 29/33



Verification: Parent Children Theorem: PROOF e

NICTA

For a variable set vs; in the graph

» Given an existing plan
EEEREEEEEEEEE DD EENE BN N,

» For each vs; action fragment, derive a fragment conforming to
é(nLVS,‘)
) & N N CH AR

« Put the new vs; actions fragments in the plan
EREEEEEEEEEEEEERE NN BN

This is repeated recursively on the DAG in reverse topological order
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There are multiple ways to decompose a planning problem fo
get bounds

With leaf ancestor theorem (the algorithm in R&G)

((TT) < kiks + kiks + koka + 2Ky + ko + ks + kq

With child parent theorem and the disconnected sets theorem
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Future Work

Tighter verified bounds
Correctness of a planning system
Planning algorithms
e.g., prove correctness of a SAT encoding
e.g., prove correctness of a state space exploration
scheme
Planning implementations
of SAT solvers,
of algorithms above



Conclusion

We verified bounds from Rintanen and Gretton 2013 (R&G)
Found and fixed a mistake in their formalisation

Proved a new theorem that leading to novel tighter bounds

The world’s first verified planner awaits!
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