

Mechanising Upper Bounds in Planning: First Steps Towards a Verified Planner

Mohammad Abdulaziz¹ NICTA and ANU

30 June 2014

¹Joint work with Michael Norrish and Charles Gretton

Outline

- Verified Planner
- Preliminaries
 - The Planning Problem
 - The Bound on Plan Length
- Theorems
- Verification
- Bounds and Decompositions

Verified Planner: Why?

- Planning systems are informally designed and implemented.
- Limits on critical applications
- · We want to create a planner with
 - Correctness: soundness and completeness
 - Bounds memory and time consumption

Bounds: Why?

- A verified planner requires the proof of fundamental theorems about planning problems
- We verify upper bounds on lengths of plans
- If a problem is solvable, some plan satisfies that bound
- How do bounds help in a verified planner?
 - Give a guarantee on resources needed and efficiency
 - Provide correctness guarantees

Verification: HOL4

- We used HOL4, an interactive higher-order logic proof assistant
- Definitions, theorems and proofs are encoded in HOL
- Proofs are checked on top of a small trusted code base
 - Failed proofs may suggest counter-examples

Mechanising Bounds

In this work we report on

- Verifying bounds from Rintanen and Gretton's IJCAI 2013 paper (R&G)
- A mistake in their formalisation of bounds and its repair
- A new theorem that led to tighter bounds

The Planning Problem Definition

A planning problem (Π) can be defined as:

- Domain (D): a set of Boolean variables representing the planning problem states.
- Actions (A): a set of tuples (p, e)
- Initial state (I): a map from the domain to Boolean
- Goal state (G): a map from the domain to Boolean

A solution is a sequence of actions (π) whose members are in A.

- 3 cities $\{C_1, C_2, C_3\}$ where objects can be located
- 1 truck $\{\mathcal{T}\}$ that drives from between any pair of different cities
- 2 parcels $\{P_1, P_2\}$ that can be loaded or unloaded onto trucks

Problem Π $D = \left\{ \begin{array}{l} T@C_1, T@C_2, T@C_3, \\ P_1@C_1, P_1@C_2, P_1@C_3, P_1@T, \\ P_2@C_3, P_2@C_1, P_2@C_2, P_2@T \end{array} \right\}$

- 3 cities $\{C_1, C_2, C_3\}$ where objects can be located
- 1 truck { T} that drives from between any pair of different cities
- 2 parcels $\{P_1, P_2\}$ that can be loaded or unloaded onto trucks

Problem Π

```
\begin{split} I &= \{ \\ T @ C_1, \overline{T@ C_2}, \overline{T@ C_3}, P_1 @ C_1, \overline{P_1@ C_2}, \overline{P_1@ C_3}, \overline{P_1@ T}, P_2 @ C_3,, \overline{P_2@ C_1}, \overline{P_2@ C_2}, \overline{P_2@ T} \} \end{split}
```


- 3 cities $\{C_1, C_2, C_3\}$ where objects can be located
- 1 truck {T} that drives from between any pair of different cities
- 2 parcels {P₁, P₂} that can be loaded or unloaded onto trucks

Problem Π

```
 \begin{split} & \mathsf{A} = \\ & \{ \textit{Load}(p,c) = (\{p@c, T@c\}, \{p@T, \overline{p@c}\}) \quad | p \in \{P_1, P_2\} \land c \in \{C_1, C_2, C_3\} \} \\ & \cup \\ & \{ \textit{UnLoad}(p,c) = (\{p@T, T@c\}, \{\overline{p@T}, p@c\}) | p \in \{P_1, P_2\} \land c \in \{C_1, C_2, C_3\} \} \\ & \cup \\ & \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_j, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \land c_j \in \{C_1, C_2, C_3\} \land c_i \neq \{C_1, C_2, C_3\} \} ) \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_j, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \land c_j \in \{C_1, C_2, C_3\} \land c_j \neq \{C_1, C_2, C_3\} \} ) \} \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_j, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \land c_j \in \{C_1, C_2, C_3\} \} \} ) \} \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_j, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \land c_j \in \{C_1, C_2, C_3\} \} \} ) \} \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_j, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \} \land c_j \in \{C_1, C_2, C_3\} \} \} \} ) \} \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_i, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \land c_j \in \{C_1, C_2, C_3\} \} \} \} ) \} \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_i, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \land c_j \in \{C_1, C_2, C_3\} \} \} \} ) \} \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_i, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \} \land c_j \in \{C_1, C_2, C_3\} \} \} ) \} \\ & = \{ \textit{Drive}(c_i, c_j) = (\{T@c_i\}, \{T@c_i, \overline{T@c_i} | c_i \in \{C_1, C_2, C_3\} \land c_j \in \{C_1, C_2, C_3\} \} \} ) \} ) \}
```


- 3 cities $\{C_1, C_2, C_3\}$ where objects can be located
- 1 truck { T} that drives from between any pair of different cities
- 2 parcels $\{P_1, P_2\}$ that can be loaded or unloaded onto trucks

Problem Π

```
\mathsf{G} = \{\mathsf{T} @ \mathsf{C}_1, \overline{\mathsf{T} @ \mathsf{C}_2}, \overline{\mathsf{T} @ \mathsf{C}_3}, P_1 @ \mathsf{C}_3, \overline{P_1 @ \mathsf{C}_1}, \overline{P_1 @ \mathsf{C}_2}, \overline{P_1 @ \mathsf{T}}, P_2 @ \mathsf{C}_1, \overline{P_2 @ \mathsf{C}_2}, \overline{P_2 @ \mathsf{C}_3}, \overline{P_2 @ \mathsf{T}}\}
```


- 3 cities $\{C_1, C_2, C_3\}$ where objects can be located
- 1 truck { T} that drives from between any pair of different cities
- 2 parcels $\{P_1, P_2\}$ that can be loaded or unloaded onto trucks

Problem Π

Solution:

[Load(P_1 , C_1); Drive(C_1 , C_2); Drive(C_2 , C_3), UnLoad(P_1 , C_3); Load(P_2 , C_3);

 $Drive(C_3, C_2)$; $Drive(C_2, C_1)$; $UnLoad(P_2, C_1)$]

A Bound on Plan Length

Definition

The bound is defined as:

$$\ell(\Pi) = \max_{s \in \mathcal{S}} \ \min_{\pi \in \Pi(s)} |\pi|$$

Our contribution builds on definitions of bounds by R&G

- A valid bound is the longest shortest execution between the initial state and any other state in P(D)
- It is the diameter of the state transition graph, but, only from I.

Theorems

- One way to deduce theorems about $\ell(\Pi)$ is to appeal to state space cardinality arguments.
- So, the most basic theorem that can be stated about $\ell(\Pi)$ is:

$$\ell(\Pi) < 2^{|D|}$$

Theorems on Bounds

 R&G suggested a hierarchical decomposition of Π to get tighter bounds

Their decomposition yields subexponential bounds

 The details require we introduce the concepts of dependency graph and projection.

Dependency graph

Definition

A dependency graph is a directed graph which:

- Has a node for each variable in D
- Has an edge from v_1 to v_2 $(v_1 o v_2)$ iff
 - $v_1 = v_2$; or
 - there is an action a in A such that v₁ is a precondition of a and v₂ is an effect of a; or
 - there is an action a in A such that both v₁ and v₂ are effects of a.

Dependency graph: Example

[Reflexive arcs omitted]

$$Load(P_1, C_1) = (\{P_1@C_1, T@C_1\}, \{P_1@T, \overline{P_1@C_1}\})$$

Dependency graph: Example

[Reflexive arcs omitted]

$$Load(P_1, C_1) = (\{P_1@C_1, T@C_1\}, \{P_1@T, \overline{P_1@C_1}\})$$

Dependency graph: Example

[Reflexive arcs omitted]

$$Load(P_1, C_1) = (\{P_1@C_1, T@C_1\}, \{P_1@T, \overline{P_1@C_1}\})$$

Lifted Dependency Graphs

Definition

A lifted dependency graph

- is a lifting (contraction) of the dependency graph;
- is a directed graph such that, for a partition P of D:
 - there is a node for each s ∈ P
 - An edge from node s_1 to node s_2 $(s_1 o s_2)$ iff
 - s₁ is disjoint from s₂; and
 - $\exists v_1 \in s_1, v_2 \in s_2 \text{ such that } v_1 \to v_2.$

Projection

- Projection "limits" an x to a specific set of variables vs, written x | vs.
- · Can be applied to:
 - An action (a|_{vs})
 - An action sequence $(\pi |_{vs})$
 - A state (s|_{vs})
 - A problem (∏_{vs})

- Used when there is a branching structure in the dependency graph.
- · Can obtain subexponential bounds on plan lengths.

$$\forall \ \Pi \ \textit{G}_{\textit{vs}}. \ \textit{DAG}(\textit{G}_{\textit{vs}}) \ \Rightarrow \ \ell(\Pi) \leq \Sigma_{\textit{vs} \ \in \textit{leaves}(\textit{G}_{\textit{vs}})} \ell(\Pi|_{\textit{vs} \ \cup \textit{ancestors}(\textit{vs})})$$

- Used when there is a branching structure in the dependency graph.
- · Can obtain subexponential bounds on plan lengths.

$$\forall \ \Pi \ \textit{G}_{\textit{vs}}. \ \textit{DAG}(\textit{G}_{\textit{vs}}) \ \Rightarrow \ \ell(\Pi) \leq \Sigma_{\textit{vs} \ \in \textit{leaves}(\textit{G}_{\textit{vs}})} \ell(\Pi|_{\textit{vs} \ \cup \textit{ancestors}(\textit{vs})})$$

- Used when there is a branching structure in the dependency graph.
- · Can obtain subexponential bounds on plan lengths.

$$\forall \ \Pi \ \textit{G}_{\textit{vs}}. \ \textit{DAG}(\textit{G}_{\textit{vs}}) \ \Rightarrow \ \ell(\Pi) \leq \Sigma_{\textit{vs} \ \in \textit{leaves}(\textit{G}_{\textit{vs}})} \ell(\Pi|_{\textit{vs} \ \cup \textit{ancestors}(\textit{vs})})$$

- Used when there is a branching structure in the dependency graph.
- · Can obtain subexponential bounds on plan lengths.

$$\forall \ \Pi \ \textit{G}_{\textit{vs}}. \ \textit{DAG}(\textit{G}_{\textit{vs}}) \ \Rightarrow \ \ell(\Pi) \leq \Sigma_{\textit{vs} \ \in \textit{leaves}(\textit{G}_{\textit{vs}})} \ell(\Pi|_{\textit{vs} \ \cup \textit{ancestors}(\textit{vs})})$$

- Used when there is a branching structure in the dependency graph.
- · Can obtain subexponential bounds on plan lengths.

$$\forall \ \Pi \ \textit{G}_{\textit{vs}}. \ \textit{DAG}(\textit{G}_{\textit{vs}}) \ \Rightarrow \ \ell(\Pi) \leq \Sigma_{\textit{vs} \ \in \textit{leaves}(\textit{G}_{\textit{vs}})} \ell(\Pi|_{\textit{vs} \ \cup \textit{ancestors}(\textit{vs})})$$

- Used when there is a branching structure in the dependency graph.
- · Can obtain subexponential bounds on plan lengths.

$$\forall \ \Pi \ \textit{G}_{\textit{vs}}. \ \textit{DAG}(\textit{G}_{\textit{vs}}) \ \Rightarrow \ \ell(\Pi) \leq \Sigma_{\textit{vs} \ \in \textit{leaves}(\textit{G}_{\textit{vs}})} \ell(\Pi|_{\textit{vs} \ \cup \textit{ancestors}(\textit{vs})})$$

Leaf Ancestor Theorem: Example

- Using cardinality arguments in Logistics, the bound $(2^{7+1}-2)$ is obtained, which is much tighter than $(2^{11}-1)$.
- Appealing further to problem constraints—e.g., a parcel cannot be in two locations at once—yields even tighter bounds.

Leaf Ancestor Theorem: Example

- Using cardinality arguments in Logistics, the bound $(2^{7+1}-2)$ is obtained, which is much tighter than $(2^{11}-1)$.
- Appealing further to problem constraints—e.g., a parcel cannot be in two locations at once—yields even tighter bounds.

Leaf Ancestor Theorem: Example

- Using cardinality arguments in Logistics, the bound $(2^{7+1}-2)$ is obtained, which is much tighter than $(2^{11}-1)$.
- Appealing further to problem constraints—e.g., a parcel cannot be in two locations at once—yields even tighter bounds.

Some problems are not decomposable by the leaf ancestor theorem

• The leaf ancestor theorem only leads to:

$$\ell(\Pi) < 2^{|s_1| + |s_2| + |s_3|}$$

Child Parent Theorem

[Note: $\overline{s} = D \backslash s$]

$$\forall \Pi s. \ s \not\to \overline{s} \Rightarrow \ell(\Pi) < (\ell(\Pi|_{\overline{s}}) + 1)(\ell(\Pi|_{s}) + 1)$$

- This theorem is for when there is a "child parent relation" in the lifted graph
- There are two actions sets:
 - **1** child actions with $dom \ e \subseteq s$; and
 - ② parent actions with $dom \ p \subseteq \overline{s} \land dom \ e \subseteq \overline{vs}$

Child Parent Theorem

Some cases are not decomposable by the leaf ancestor theorem

The leaf ancestor and child parent theorems lead to:

$$\ell(\Pi) \leq (2^{|vs_1|}-1)(2^{|vs_2|}+2^{|vs_3|}-2)+2^{|vs_1|}+2^{|vs_2|}+2^{|vs_4|}-3$$

Experiments

- R&G's approach can give tight bounds in domains like LOGISTICS, SATELLITE, and ZENO
- Solves previously open instances
 - Closed open instance of ROVERS with Qualitative Preferences from IPC 2006

Verification: Basic Theorem

$$\ell(\Pi) < 2^{|D|}$$

- Verifying the first theorem is relatively straight-forward:
 - Prove that number of states traversed by any cycle—a repetition of the same state—free plan is at most $2^{|D|}$
 - Then employ the pigeonhole principle
 - Prove that for any plan, if there is a cycle, its removal gives an admissible plan

BUG!

$$\ell(\Pi) = \max_{s \in S} \min_{\pi \in \Pi(s)} |\pi|$$

- Problems:
 - Unreachable states
 - Unrefinable action sequences

Problem

$$\Pi = \begin{bmatrix} I = \{\overline{w}, \overline{x}, \overline{y}, \overline{z}\} \\ A = \begin{cases} a = (\emptyset, \{x\}), b = (\{x\}, \{\overline{x}, y\}), \\ c = (\{x, y\}, \{\overline{x}, \overline{y}, z\}), d = (\{w\}, \{x, y, z\}) \end{bmatrix} \end{bmatrix}$$

$$G = \{\overline{w}, x, y, z\}$$

BUG!

$$\ell(\Pi) = \max_{\mathbf{s} \in S} \min_{\pi \in \Pi(\mathbf{s})} |\pi| \qquad \ell(\Pi) = \max_{\mathbf{s} \in S, \pi \in A} \min_{\pi' \in \Pi^{\preceq}(\pi, \mathbf{s})} |\pi|$$

- Problems:
 - Unreachable states
 - · Unrefinable action sequences

Problem

$$\Pi = \begin{bmatrix} I = \{\overline{w}, \overline{x}, \overline{y}, \overline{z}\} \\ A = \begin{cases} a = (\emptyset, \{x\}), b = (\{x\}, \{\overline{x}, y\}), \\ c = (\{x, y\}, \{\overline{x}, \overline{y}, z\}), d = (\{w\}, \{x, y, z\}) \end{bmatrix} \end{bmatrix}$$

Our proof is constructive

Given an existing plan

- Given an existing plan
 - ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■
- Derive a new child plan conforming to $\ell(\Pi|_s)$

Our proof is constructive

Given an existing plan

```
\blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; ....; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare
```

• Derive a new child plan conforming to $\ell(\Pi|_s)$

Our proof is constructive

Given an existing plan

```
■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■; ....; ■; ■...; ■; ■...; ■
```

• Derive a new child plan conforming to $\ell(\Pi \! \mid_s)$

Our proof is constructive

Given an existing plan

```
■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■; ....; ■; ■...; ■
```

• Derive a new child plan conforming to $\ell(\Pi |_s)$

Our proof is constructive

Given an existing plan

```
■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■; ....; ■; ■...; ■; ■...; ■
```

• Derive a new child plan conforming to $\ell(\Pi |_s)$

Replace the child part

Our proof is constructive

Given an existing plan

```
· ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■; ....; ■; ■...; ■; ■...; ■
```

• Derive a new child plan conforming to $\ell(\Pi |_s)$

Replace the child part

- Given an existing plan
 - ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Derive a new child plan conforming to $\ell(\Pi |_s)$
- Replace the child part
 - ■; ■...; ■; ■; ■...; ■; ■...; ■; ■...; ■; ■...; ■
- For each parent plan fragment derive a fragment conforming to $\ell(\Pi \! \mid_{\overline{s}})$

- Given an existing plan
 - ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Derive a new child plan conforming to $\ell(\Pi |_s)$
- Replace the child part
 - ■; ■...; ■; ■; ■...; ■; ■...; ■; ■,; ■; ■...; ■; ■...; ■
- For each parent plan fragment derive a fragment conforming to $\ell(\Pi|_{\overline{s}})$
 - ■; ■...; ■; ■; ■...; ■; ■...; ■; ■...; ■;

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Derive a new child plan conforming to $\ell(\Pi |_s)$
- Replace the child part
- ■; ■...; ■; ■; ■...; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- For each parent plan fragment derive a fragment conforming to $\ell(\Pi|_{\overline{s}})$

- Given an existing plan
 - ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Derive a new child plan conforming to $\ell(\Pi |_s)$
- Replace the child part
- ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■,; ■; ■...; ■
- For each parent plan fragment derive a fragment conforming to $\ell(\Pi|_{\overline{s}})$
- Put the new parent fragments in the plan

- Given an existing plan
 - ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Derive a new child plan conforming to $\ell(\Pi |_s)$
- Replace the child part
- ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■...; ■; ■...; ■
- For each parent plan fragment derive a fragment conforming to $\ell(\Pi|_{\overline{s}})$
- Put the new parent fragments in the plan

- Given an existing plan
 - ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Derive a new child plan conforming to $\ell(\Pi {\mid}_s)$
- Replace the child part
 - $\blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare ...; \blacksquare$
- For each parent plan fragment derive a fragment conforming to ℓ(Π|_s)
- Put the new parent fragments in the plan

Verification: Disconnected Variable Sets Theorem

Theorem

$$\forall \ \Pi \ s. \ \overline{s} \not\rightarrow s \land s \not\rightarrow \overline{s} \Rightarrow \ell(\Pi) < \ell(\Pi|_{\overline{s}}) + \ell(\Pi|_{s}) + 1$$

- Our proof technique can be applied to this theorem.
- Repeat the first step in theorem 3 proof twice, for s actions, and for s actions
- It implies that actions are either
 - **1** s actions with $dom p \subseteq s \land dom e \subseteq s$; or
 - 2 \overline{s} actions with $dom p \subseteq \overline{s} \land dom e \subseteq \overline{s}$

Our proof was constructive as well

• Given an existing plan

NICTA

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■;
- Take all vs actions and shorten them to conform to $\ell(\Pi|_{vs})$

Our proof was constructive as well

Given an existing plan

```
■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■; ....; ■; ■...; ■; ■...; ■
```

• Take all vs actions and shorten them to conform to $\ell(\Pi|_{vs})$

Our proof was constructive as well

• Given an existing plan

```
\blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; ....; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare
```

• Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$

Our proof was constructive as well

Given an existing plan

```
\blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare; ....; \blacksquare; \blacksquare ...; \blacksquare; \blacksquare ...; \blacksquare
```

• Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$

Replace the vs actions

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions

- Given an existing plan
 - . ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions
 - ■; ■...; ■; ■...; ■; ■; ■...; ■;; ■; ...;

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■,; ■; ■...; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions
 - ■; ■...; ■; ■...; ■; ■; ■...; ■; ■;; ■; ...; ■; ■...; ■
- Take all \overline{vs} actions and shorten them to conform to $\ell(\Pi|_{\overline{vs}})$

NICTA

Our proof was constructive as well

- Given an existing plan
 - · ■; ■...; ■; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions
 - ■; •...; ■; ■...; ■; ■; ■...; ■; ■;; ■; ...; ■; ■...; ■
- Take all \overline{vs} actions and shorten them to conform to $\ell(\Pi|_{\overline{vs}})$
 - ■; ■...; ■;

 $\blacksquare ; \blacksquare ; \blacksquare ...; \blacksquare ;$

■; **■**; **■**...; **■**

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions
 - ■; ■...; ■; ■...; ■; ■; ■...; ■;; ■; ...; ■; ■...; ■
- Take all \overline{vs} actions and shorten them to conform to $\ell(\Pi |_{\overline{vs}})$

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions
 - ■; ■...; ■; ■...; ■; ■; ■...; ■;; ■; ...; ■; ■...; ■
- Take all \overline{vs} actions and shorten them to conform to $\ell(\Pi |_{\overline{vs}})$
- Replace sations in the plan

NICTA

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions
- ■; ■...; ■; ■...; ■; ■; ■...; ■; ■;; ■; ...; ■
- Take all \overline{vs} actions and shorten them to conform to $\ell(\Pi |_{\overline{vs}})$
- Replace \overline{vs} actions in the plan
 - **★**; ■...; **★**; ■...; **■**; **★**; **★**...; **■**; **■**;; **■**; **■**; **★**...;

NICTA

- Given an existing plan
 - ■; ■...; ■; ■; ■...; ■; ■; ■...; ■; ■;; ■; ■...; ■; ■...; ■
- Take all vs actions and shorten them to conform to $\ell(\Pi |_{vs})$
- Replace the vs actions
 - ■; ■...; ■; ■...; ■; ■; ■...; ■; ■;; ■; ...; ■; ■...; ■
- Take all \overline{vs} actions and shorten them to conform to $\ell(\Pi |_{\overline{vs}})$
- Replace \overline{vs} actions in the plan
 - ■...; ■...; ■; ■; ...; ■; ■;; ■; ...; ■

Theorem

$$\forall \ \Pi \ \textit{G}_{\texttt{S}}.\textit{DAG}(\textit{G}_{\texttt{S}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{S} \ \in \textit{G}_{\texttt{S}}}\textit{N}(\textit{s})$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \ \Pi \ \textit{G}_{\texttt{S}}.\textit{DAG}(\textit{G}_{\texttt{S}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{S} \ \in \textit{G}_{\texttt{S}}}\textit{N}(\textit{s})$$

where,

$$N(s) = \ell(\Pi {\mid}_s)(\Sigma_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; G_s. \mathit{DAG}(G_s) \Rightarrow \ell(\Pi) \leq \Sigma_{s \; \in G_s} \mathit{N}(s)$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\Pi {\mid}_s)(\Sigma_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \ \Pi \ \textit{G}_{\textit{s}}.\textit{DAG}(\textit{G}_{\textit{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\textit{s} \ \in \textit{G}_{\textit{s}}}\textit{N}(\textit{s})$$

where,

$$N(s) = \ell(\Pi {\mid}_s)(\Sigma_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \ \Pi \ \textit{G}_{\textit{s}}.\textit{DAG}(\textit{G}_{\textit{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\textit{s} \ \in \textit{G}_{\textit{s}}}\textit{N}(\textit{s})$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\prod \downarrow_s)(\sum_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\Pi {\mid}_s)(\Sigma_{s' \in children(s)} N(s') + 1)$$

Theorem

$$\forall \; \Pi \; \textit{G}_{\texttt{s}}.\textit{DAG}(\textit{G}_{\texttt{s}}) \Rightarrow \ell(\Pi) \leq \Sigma_{\texttt{s} \; \in \textit{G}_{\texttt{s}}}\textit{N}(\texttt{s})$$

where,

$$N(s) = \ell(\Pi {\mid}_s)(\Sigma_{s' \in children(s)} N(s') + 1)$$

For a variable set vs; in the graph

• Given an existing plan

For a variable set vs; in the graph

- Given an existing plan
- For each vs_i action fragment, derive a fragment conforming to $\ell(\Pi|_{vs_i})$

For a variable set vsi in the graph

Given an existing plan

• For each vs_i action fragment, derive a fragment conforming to $\ell(\Pi|_{vs_i})$

VS_i

■; ■;

■; ■; ■;

■; ■; ■;

For a variable set vs_i in the graph

- Given an existing plan
- For each vs_i action fragment, derive a fragment conforming to $\ell(\Pi|_{vs_i})$
 - `#;■

■;)■;

■; (**); (**);

■; ■; ■;

For a variable set vs_i in the graph

- Given an existing plan
- For each vs_i action fragment, derive a fragment conforming to $\ell(\Pi|_{vs_i})$
- Put the new vs_i actions fragments in the plan

For a variable set vs_i in the graph

Given an existing plan

• For each vs_i action fragment, derive a fragment conforming to $\ell(\Pi\!\!\mid_{vs_i})$

• Put the new *vs_i* actions fragments in the plan

For a variable set vs_i in the graph

Given an existing plan

• For each vs_i action fragment, derive a fragment conforming to $\ell(\Pi\!\!\mid_{vs_i})$

• Put the new vs_i actions fragments in the plan

For a variable set vs_i in the graph

- Given an existing plan
- For each vs_i action fragment, derive a fragment conforming to $\ell(\prod|_{vs_i})$
- Put the new vs_i actions fragments in the plan

This is repeated recursively on the DAG in reverse topological order

 There are multiple ways to decompose a planning problem to get bounds

- There are multiple ways to decompose a planning problem to get bounds
- With **leaf ancestor** theorem (the algorithm in R&G) $\ell(\Pi) \le k_1k_2 + k_2 + k_1k_3 + 2k_1 + k_3$

- There are multiple ways to decompose a planning problem to get bounds
- With **leaf ancestor** theorem (the algorithm in R&G) $\ell(\Pi) \le k_1 k_2 + k_2 + k_1 k_3 + 2k_1 + k_3$
- With **child parent** theorem and the **disconnected sets** theorem $\ell(\Pi) \le k_1k_2 + k_2 + k_1k_3 + k_1 + k_3$

- There are multiple ways to decompose a planning problem to get bounds
- With **leaf ancestor** theorem (the algorithm in R&G) $\ell(\Pi) \le k_1 k_2 + k_2 + k_1 k_3 + 2k_1 + k_3$
- With **child parent** theorem and the **disconnected sets** theorem $\ell(\Pi) \le k_1k_2 + k_2 + k_1k_3 + k_1 + k_3$
- With **parent children** theorem $\ell(\Pi) \le k_1k_2 + k_2 + k_1k_3 + k_1 + k_3$

- There are multiple ways to decompose a planning problem to get bounds
- With **leaf ancestor** theorem (the algorithm in R&G) $\ell(\Pi) \le k_1 k_2 + k_2 + k_1 k_3 + 2k_1 + k_3$
- With **child parent** theorem and the **disconnected sets** theorem $\ell(\Pi) \le k_1k_2 + k_2 + k_1k_3 + k_1 + k_3$
- With **parent children** theorem $\ell(\Pi) \le k_1 k_2 + k_2 + k_1 k_3 + k_1 + k_3$

Mohammad Abdulaziz NICTA and ANU

 There are multiple ways to decompose a planning problem to get bounds

- There are multiple ways to decompose a planning problem to get bounds
- With leaf ancestor theorem (the algorithm in R&G) $\ell(\Pi) \le k_1 k_3 + k_1 k_4 + k_2 k_4 + 2k_1 + k_2 + k_3 + k_4$

- There are multiple ways to decompose a planning problem to get bounds
- With leaf ancestor theorem (the algorithm in R&G) $\ell(\Pi) \le k_1 k_3 + k_1 k_4 + k_2 k_4 + 2k_1 + k_2 + k_3 + k_4$
- With child parent theorem and the disconnected sets theorem $\ell(\Pi) \le k_1k_3 + k_2k_3 + k_1k_4 + k_2k_4 + k_1 + k_2 + k_3 + k_4$

- There are multiple ways to decompose a planning problem to get bounds
- With leaf ancestor theorem (the algorithm in R&G) $\ell(\Pi) \le k_1 k_3 + k_1 k_4 + k_2 k_4 + 2k_1 + k_2 + k_3 + k_4$
- With child parent theorem and the disconnected sets theorem $\ell(\Pi) \le k_1 k_3 + k_2 k_3 + k_1 k_4 + k_2 k_4 + k_1 + k_2 + k_3 + k_4$
- With parent children theorem

$$\ell(\Pi) \le k_1 k_3 + k_1 k_4 + k_2 k_4 + k_1 + k_2 + k_3 + k_4$$

- There are multiple ways to decompose a planning problem to aet bounds
- With leaf ancestor theorem (the algorithm in R&G) $\ell(\Pi) < k_1 k_3 + k_1 k_4 + k_2 k_4 + 2k_1 + k_2 + k_3 + k_4$
- With child parent theorem and the disconnected sets theorem $\ell(\Pi) \leq k_1 k_3 + \frac{k_2 k_3}{k_3} + k_1 k_4 + k_2 k_4 + k_1 + k_2 + k_3 + k_4$
- With parent children theorem

$$\ell(\Pi) \le k_1 k_3 + k_1 k_4 + k_2 k_4 + k_1 + k_2 + k_3 + k_4$$

Future Work

- Tighter verified bounds
- Correctness of a planning system
 - Planning algorithms
 - e.g., prove correctness of a SAT encoding
 - e.g., prove correctness of a state space exploration scheme
 - Planning implementations
 - of SAT solvers,
 - of algorithms above

Conclusion

- We verified bounds from Rintanen and Gretton 2013 (R&G)
- Found and fixed a mistake in their formalisation
- Proved a new theorem that leading to novel tighter bounds
- The world's first verified planner awaits!