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Verified Planner: Why?

• Planning systems are informally designed and implemented.
• Limits on critical applications
• We want to create a planner with

• Correctness: soundness and completeness
• Bounds memory and time consumption
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Bounds: Why?

• A verified planner requires the proof of fundamental theorems
about planning problems

• We verify upper bounds on lengths of plans
• If a problem is solvable, some plan satisfies that bound
• How do bounds help in a verified planner?

• Give a guarantee on resources needed and efficiency
• Provide correctness guarantees
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Verification: HOL4

• We used HOL4, an interactive higher-order logic proof
assistant

• Definitions, theorems and proofs are encoded in HOL
• Proofs are checked on top of a small trusted code base

• Failed proofs may suggest counter-examples
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Mechanising Bounds

In this work we report on

• Verifying bounds from Rintanen and Gretton’s IJCAI 2013
paper (R&G)

• A mistake in their formalisation of bounds and its repair
• A new theorem that led to tighter bounds
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The Planning Problem Definition

A planning problem (Π) can be defined as:

• Domain (D) : a set of Boolean variables representing the
planning problem states.

• Actions (A) : a set of tuples (p, e)
• Initial state (I) : a map from the domain to Boolean
• Goal state (G) : a map from the domain to Boolean

A solution is a sequence of actions (π) whose members are in A.
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An example problem: Logistics

• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π

D =

 T @C1,T @C2,T @C3,
P1@C1,P1@C2,P1@C3,P1@T ,
P2@C3, ,P2@C1,P2@C2,P2@T


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{Drive(ci , cj ) = ({T @ci}, {T @cj ,T @ci |ci ∈ {C1,C2,C3} ∧ cj ∈ {C1,C2,C3} ∧ ci 6= cj})}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 8/33



An example problem: Logistics

• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π

G =
{T@C1,T @C2,T @C3,P1@C3,P1@C1,P1@C2,P1@T ,P2@C1,P2@C2,P2@C3,P2@T}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 8/33
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• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π
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[Load(P1,C1); DriveC1,C2); Drive(C2,C3),UnLoad(P1,C3); Load(P2,C3);
Drive(C3,C2); Drive(C2,C1); UnLoad(P2,C1)]
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A Bound on Plan Length

Definition
The bound is defined as:

`(Π) = max
s∈S

min
π∈Π(s)

|π|

Our contribution builds on definitions of bounds by R&G

• A valid bound is the longest shortest execution between the
initial state and any other state in P(D)

• It is the diameter of the state transition graph, but, only from I.
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Theorems

• One way to deduce theorems about `(Π) is to appeal to state
space cardinality arguments.

• So, the most basic theorem that can be stated about `(Π) is:

Theorem

`(Π) < 2|D|
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Theorems on Bounds

• R&G suggested a hierarchical decomposition of Π to get
tighter bounds

• Their decomposition yields subexponential bounds

• The details require we introduce the concepts of dependency
graph and projection.
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Dependency graph

Definition
A dependency graph is a directed graph which:

• Has a node for each variable in D

• Has an edge from v1 to v2 (v1 → v2) iff

• v1 = v2 ; or
• there is an action a in A such that v1 is a precondition of a

and v2 is an effect of a; or
• there is an action a in A such that both v1 and v2 are

effects of a.
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Dependency graph: Example

[Reflexive arcs omitted]

Load(P1,C1) = ({P1@C1,T @C1}, {P1@T ,P1@C1})

P1@C1

P1@C2

P1@C3

P1@T

P2@C1

P2@C2

P2@C3

P2@TT@C1

T@C2

T@C3
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Lifted Dependency Graphs

Definition
A lifted dependency graph

• is a lifting (contraction) of the dependency graph;

• is a directed graph such that, for a partition P of D:

• there is a node for each s ∈ P
• An edge from node s1 to node s2 (s1 → s2) iff

• s1 is disjoint from s2; and
• ∃v1 ∈ s1, v2 ∈ s2 such that v1 → v2.
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P1@C1

P1@C2

P1@C3

P1@T

P2@C1

P2@C2

P2@C3

P2@TT@C1

T@C2

T@C3

{P1@C1, P1@C2, P1@C3, P1@T} {P2@C1, P2@C2, P2@C3, P2@T}

{T@C1, T@C2, T@C3}
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Projection

• Projection “limits” an x to a specific set of variables vs,
written x�vs.

• Can be applied to:

• An action (a�vs)
• An action sequence (π�vs)
• A state (s�vs)
• A problem (Π�vs)
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Leaf Ancestor Theorem

• Used when there is a branching structure in the dependency
graph.

• Can obtain subexponential bounds on plan lengths.

Theorem

∀ Π Gvs. DAG(Gvs) ⇒ `(Π) ≤ Σvs ∈leaves(Gvs)`(Π�vs ∪ancestors(vs))
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Leaf Ancestor Theorem: Example

• Using cardinality arguments in Logistics, the bound (27+1 − 2)
is obtained, which is much tighter than (211 − 1).

• Appealing further to problem constraints—e.g., a parcel
cannot be in two locations at once—yields even tighter
bounds.

{P1@C1, P1@C2, P1@C3, P1@T} {P2@C1, P2@C2, P2@C3, P2@T}

{T@C1, T@C2, T@C3}
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Some problems are not decomposable by the leaf ancestor theorem

s1

s2 s3

• The leaf ancestor theorem only leads to:

`(Π) < 2|s1|+|s2|+|s3|
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Child Parent Theorem

[Note: s = D\s]

s

s

Theorem

∀ Π s. s 6→ s ⇒ `(Π) < (`(Π�s) + 1)(`(Π�s) + 1)

• This theorem is for when there is a “child parent relation” in
the lifted graph

• There are two actions sets:
1 child actions with dom e ⊆ s; and
2 parent actions with dom p ⊆ s ∧ dom e ⊆ vs
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Child Parent Theorem

Some cases are not decomposable by the leaf ancestor theorem

vs1

vs2 vs3

• The leaf ancestor and child parent theorems lead to:

`(Π) ≤ (2|vs1| − 1)(2|vs2| + 2|vs3| − 2) + 2|vs1| + 2|vs2| + 2|vs4| − 3
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Experiments

• R&G’s approach can give tight bounds in domains like
LOGISTICS, SATELLITE, and ZENO

• Solves previously open instances
• Closed open instance of ROVERS with Qualitative

Preferences from IPC 2006
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Verification: Basic Theorem

Theorem

`(Π) < 2|D|

• Verifying the first theorem is relatively straight-forward:
• Prove that number of states traversed by any cycle—a

repetition of the same state—free plan is at most 2|D|

• Then employ the pigeonhole principle
• Prove that for any plan, if there is a cycle, its removal

gives an admissible plan
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Verification: Child Parent Theorem

• BUG!

((((
((((

((((hhhhhhhhhhhh
`(Π) = max

s∈S
min
π∈Π(s)

|π|

`(Π) = max
s∈S,π∈Ȧ

min
π′∈Π�(π,s)

|π|

• Problems:
• Unreachable states
• Unrefinable action sequences

Problem

Π =


I = {w , x , y , z}

A =

{
a = (∅, {x}), b = ({x}, {x , y}),
c = ({x , y}, {x , y , z}), d = ({w}, {x , y , z})

}
G = {w , x , y , z}


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Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �; .....;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)

�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �; .....;�;�...;�; �; �;�...;�

• Replace the child part

�;�...;�; �;�...;�; �;�...;�; �; .....;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �; .....;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan
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Verification: Disconnected Variable Sets Theorem

ss

Theorem

∀ Π s. s 6→ s ∧ s 6→ s ⇒ `(Π) < `(Π�s) + `(Π�s) + 1

• Our proof technique can be applied to this theorem.
• Repeat the first step in theorem 3 proof twice, for s actions,

and for s actions
• It implies that actions are either

1 s actions with dom p ⊆ s ∧ dom e ⊆ s; or
2 s actions with dom p ⊆ s ∧ dom e ⊆ s
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Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �; .....;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �; .....;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions

�;�...;�; �...;�; �;�;�...;�; �; .....;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �; .....;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan
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Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway
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Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan
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This is repeated recursively on the DAG in reverse topological order
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Decompositions: Case 1

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k2 + k2 + k1k3 + 2k1 + k3

• With child parent theorem and the disconnected sets
theorem `(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

• With parent children theorem
`(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

k1

k2k3
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Decompositions: Case 2

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k3 + k1k4 + k2k4 + 2k1 + k2 + k3 + k4

• With child parent theorem and the disconnected sets theorem
`(Π) ≤ k1k3 + k2k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

• With parent children theorem
`(Π) ≤ k1k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

k1 k2

k3 k4
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Future Work

• Tighter verified bounds
• Correctness of a planning system

• Planning algorithms
• e.g., prove correctness of a SAT encoding
• e.g., prove correctness of a state space exploration

scheme
• Planning implementations

• of SAT solvers,
• of algorithms above
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Conclusion

• We verified bounds from Rintanen and Gretton 2013 (R&G)
• Found and fixed a mistake in their formalisation
• Proved a new theorem that leading to novel tighter bounds

• The world’s first verified planner awaits!
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