
Mechanising Upper Bounds in Planning:
First Steps Towards a Verified Planner

Mohammad Abdulaziz1

NICTA and ANU

30 June 2014
NICTA Funding and Supporting Members and Partners

1Joint work with Michael Norrish and Charles Gretton
Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 1/33

Outline

• Verified Planner

• Preliminaries
• The Planning Problem
• The Bound on Plan Length

• Theorems

• Verification

• Bounds and Decompositions

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 2/33

Verified Planner: Why?

• Planning systems are informally designed and implemented.
• Limits on critical applications
• We want to create a planner with

• Correctness: soundness and completeness
• Bounds memory and time consumption

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 3/33

Bounds: Why?

• A verified planner requires the proof of fundamental theorems
about planning problems

• We verify upper bounds on lengths of plans
• If a problem is solvable, some plan satisfies that bound
• How do bounds help in a verified planner?

• Give a guarantee on resources needed and efficiency
• Provide correctness guarantees

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 4/33

Verification: HOL4

• We used HOL4, an interactive higher-order logic proof
assistant

• Definitions, theorems and proofs are encoded in HOL
• Proofs are checked on top of a small trusted code base

• Failed proofs may suggest counter-examples

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 5/33

Mechanising Bounds

In this work we report on

• Verifying bounds from Rintanen and Gretton’s IJCAI 2013
paper (R&G)

• A mistake in their formalisation of bounds and its repair
• A new theorem that led to tighter bounds

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 6/33

The Planning Problem Definition

A planning problem (Π) can be defined as:

• Domain (D) : a set of Boolean variables representing the
planning problem states.

• Actions (A) : a set of tuples (p, e)
• Initial state (I) : a map from the domain to Boolean
• Goal state (G) : a map from the domain to Boolean

A solution is a sequence of actions (π) whose members are in A.

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 7/33

An example problem: Logistics

• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π

D =

 T @C1,T @C2,T @C3,
P1@C1,P1@C2,P1@C3,P1@T ,
P2@C3, ,P2@C1,P2@C2,P2@T



Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 8/33

An example problem: Logistics

• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π

I = {
T@C1,T @C2,T @C3,P1@C1,P1@C2,P1@C3,P1@T ,P2@C3, ,P2@C1,P2@C2,P2@T}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 8/33

An example problem: Logistics

• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π

A =
{Load(p, c) = ({p@c,T @c}, {p@T , p@c}) |p ∈ {P1,P2} ∧ c ∈ {C1,C2,C3}}

∪
{UnLoad(p, c) = ({p@T ,T @c}, {p@T , p@c})|p ∈ {P1,P2} ∧ c ∈ {C1,C2,C3}}

∪
{Drive(ci , cj) = ({T @ci}, {T @cj ,T @ci |ci ∈ {C1,C2,C3} ∧ cj ∈ {C1,C2,C3} ∧ ci 6= cj})}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 8/33

An example problem: Logistics

• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π

G =
{T@C1,T @C2,T @C3,P1@C3,P1@C1,P1@C2,P1@T ,P2@C1,P2@C2,P2@C3,P2@T}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 8/33

An example problem: Logistics

• 3 cities {C1,C2,C3} where objects can be located
• 1 truck {T} that drives from between any pair of different cities
• 2 parcels {P1,P2} that can be loaded or unloaded onto trucks

Problem Π

Solution:
[Load(P1,C1); DriveC1,C2); Drive(C2,C3),UnLoad(P1,C3); Load(P2,C3);
Drive(C3,C2); Drive(C2,C1); UnLoad(P2,C1)]

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 8/33

A Bound on Plan Length

Definition
The bound is defined as:

`(Π) = max
s∈S

min
π∈Π(s)

|π|

Our contribution builds on definitions of bounds by R&G

• A valid bound is the longest shortest execution between the
initial state and any other state in P(D)

• It is the diameter of the state transition graph, but, only from I.

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 9/33

Theorems

• One way to deduce theorems about `(Π) is to appeal to state
space cardinality arguments.

• So, the most basic theorem that can be stated about `(Π) is:

Theorem

`(Π) < 2|D|

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 10/33

Theorems on Bounds

• R&G suggested a hierarchical decomposition of Π to get
tighter bounds

• Their decomposition yields subexponential bounds

• The details require we introduce the concepts of dependency
graph and projection.

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 11/33

Dependency graph

Definition
A dependency graph is a directed graph which:

• Has a node for each variable in D

• Has an edge from v1 to v2 (v1 → v2) iff

• v1 = v2 ; or
• there is an action a in A such that v1 is a precondition of a

and v2 is an effect of a; or
• there is an action a in A such that both v1 and v2 are

effects of a.

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 12/33

Dependency graph: Example

[Reflexive arcs omitted]

Load(P1,C1) = ({P1@C1,T @C1}, {P1@T ,P1@C1})

P1@C1

P1@C2

P1@C3

P1@T

P2@C1

P2@C2

P2@C3

P2@TT@C1

T@C2

T@C3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 13/33

Dependency graph: Example

[Reflexive arcs omitted]

Load(P1,C1) = ({P1@C1,T @C1}, {P1@T ,P1@C1})

P1@C1

P1@C2

P1@C3

P1@T

P2@C1

P2@C2

P2@C3

P2@TT@C1

T@C2

T@C3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 13/33

Dependency graph: Example

[Reflexive arcs omitted]

Load(P1,C1) = ({P1@C1,T @C1}, {P1@T ,P1@C1})

P1@C1

P1@C2

P1@C3

P1@T

P2@C1

P2@C2

P2@C3

P2@TT@C1

T@C2

T@C3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 13/33

Lifted Dependency Graphs

Definition
A lifted dependency graph

• is a lifting (contraction) of the dependency graph;

• is a directed graph such that, for a partition P of D:

• there is a node for each s ∈ P
• An edge from node s1 to node s2 (s1 → s2) iff

• s1 is disjoint from s2; and
• ∃v1 ∈ s1, v2 ∈ s2 such that v1 → v2.

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 14/33

P1@C1

P1@C2

P1@C3

P1@T

P2@C1

P2@C2

P2@C3

P2@TT@C1

T@C2

T@C3

{P1@C1, P1@C2, P1@C3, P1@T} {P2@C1, P2@C2, P2@C3, P2@T}

{T@C1, T@C2, T@C3}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 15/33

Projection

• Projection “limits” an x to a specific set of variables vs,
written x�vs.

• Can be applied to:

• An action (a�vs)
• An action sequence (π�vs)
• A state (s�vs)
• A problem (Π�vs)

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 16/33

Leaf Ancestor Theorem

• Used when there is a branching structure in the dependency
graph.

• Can obtain subexponential bounds on plan lengths.

Theorem

∀ Π Gvs. DAG(Gvs) ⇒ `(Π) ≤ Σvs ∈leaves(Gvs)`(Π�vs ∪ancestors(vs))

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 17/33

Leaf Ancestor Theorem

• Used when there is a branching structure in the dependency
graph.

• Can obtain subexponential bounds on plan lengths.

Theorem

∀ Π Gvs. DAG(Gvs) ⇒ `(Π) ≤ Σvs ∈leaves(Gvs)`(Π�vs ∪ancestors(vs))

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 17/33

Leaf Ancestor Theorem

• Used when there is a branching structure in the dependency
graph.

• Can obtain subexponential bounds on plan lengths.

Theorem

∀ Π Gvs. DAG(Gvs) ⇒ `(Π) ≤ Σvs ∈leaves(Gvs)`(Π�vs ∪ancestors(vs))

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 17/33

Leaf Ancestor Theorem

• Used when there is a branching structure in the dependency
graph.

• Can obtain subexponential bounds on plan lengths.

Theorem

∀ Π Gvs. DAG(Gvs) ⇒ `(Π) ≤ Σvs ∈leaves(Gvs)`(Π�vs ∪ancestors(vs))

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 17/33

Leaf Ancestor Theorem

• Used when there is a branching structure in the dependency
graph.

• Can obtain subexponential bounds on plan lengths.

Theorem

∀ Π Gvs. DAG(Gvs) ⇒ `(Π) ≤ Σvs ∈leaves(Gvs)`(Π�vs ∪ancestors(vs))

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 17/33

Leaf Ancestor Theorem

• Used when there is a branching structure in the dependency
graph.

• Can obtain subexponential bounds on plan lengths.

Theorem

∀ Π Gvs. DAG(Gvs) ⇒ `(Π) ≤ Σvs ∈leaves(Gvs)`(Π�vs ∪ancestors(vs))

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 17/33

Leaf Ancestor Theorem: Example

• Using cardinality arguments in Logistics, the bound (27+1 − 2)
is obtained, which is much tighter than (211 − 1).

• Appealing further to problem constraints—e.g., a parcel
cannot be in two locations at once—yields even tighter
bounds.

{P1@C1, P1@C2, P1@C3, P1@T} {P2@C1, P2@C2, P2@C3, P2@T}

{T@C1, T@C2, T@C3}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 18/33

Leaf Ancestor Theorem: Example

• Using cardinality arguments in Logistics, the bound (27+1 − 2)
is obtained, which is much tighter than (211 − 1).

• Appealing further to problem constraints—e.g., a parcel
cannot be in two locations at once—yields even tighter
bounds.

{P1@C1, P1@C2, P1@C3, P1@T} {P2@C1, P2@C2, P2@C3, P2@T}

{T@C1, T@C2, T@C3}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 18/33

Leaf Ancestor Theorem: Example

• Using cardinality arguments in Logistics, the bound (27+1 − 2)
is obtained, which is much tighter than (211 − 1).

• Appealing further to problem constraints—e.g., a parcel
cannot be in two locations at once—yields even tighter
bounds.

{P1@C1, P1@C2, P1@C3, P1@T} {P2@C1, P2@C2, P2@C3, P2@T}

{T@C1, T@C2, T@C3}

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 18/33

Some problems are not decomposable by the leaf ancestor theorem

s1

s2 s3

• The leaf ancestor theorem only leads to:

`(Π) < 2|s1|+|s2|+|s3|

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 19/33

Child Parent Theorem

[Note: s = D\s]

s

s

Theorem

∀ Π s. s 6→ s ⇒ `(Π) < (`(Π�s) + 1)(`(Π�s) + 1)

• This theorem is for when there is a “child parent relation” in
the lifted graph

• There are two actions sets:
1 child actions with dom e ⊆ s; and
2 parent actions with dom p ⊆ s ∧ dom e ⊆ vs

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 20/33

Child Parent Theorem

Some cases are not decomposable by the leaf ancestor theorem

vs1

vs2 vs3

• The leaf ancestor and child parent theorems lead to:

`(Π) ≤ (2|vs1| − 1)(2|vs2| + 2|vs3| − 2) + 2|vs1| + 2|vs2| + 2|vs4| − 3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 21/33

Experiments

• R&G’s approach can give tight bounds in domains like
LOGISTICS, SATELLITE, and ZENO

• Solves previously open instances
• Closed open instance of ROVERS with Qualitative

Preferences from IPC 2006

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

U
p

p
e

r
B

o
u

n
d

 /
 |
X

|

Number of Problem Variables (i.e. |X|)

Upper Bounds at |X|

logistics
PSR

rovers
Satellite

TPP
zeno

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 22/33

Verification: Basic Theorem

Theorem

`(Π) < 2|D|

• Verifying the first theorem is relatively straight-forward:
• Prove that number of states traversed by any cycle—a

repetition of the same state—free plan is at most 2|D|

• Then employ the pigeonhole principle
• Prove that for any plan, if there is a cycle, its removal

gives an admissible plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 23/33

Verification: Child Parent Theorem

• BUG!

((((
((((

((((hhhhhhhhhhhh
`(Π) = max

s∈S
min
π∈Π(s)

|π|

`(Π) = max
s∈S,π∈Ȧ

min
π′∈Π�(π,s)

|π|

• Problems:
• Unreachable states
• Unrefinable action sequences

Problem

Π =


I = {w , x , y , z}

A =

{
a = (∅, {x}), b = ({x}, {x , y}),
c = ({x , y}, {x , y , z}), d = ({w}, {x , y , z})

}
G = {w , x , y , z}


Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 24/33

Verification: Child Parent Theorem

• BUG!

((((
((((

((((hhhhhhhhhhhh
`(Π) = max

s∈S
min
π∈Π(s)

|π| `(Π) = max
s∈S,π∈Ȧ

min
π′∈Π�(π,s)

|π|

• Problems:
• Unreachable states
• Unrefinable action sequences

Problem

Π =


I = {w , x , y , z}

A =

{
a = (∅, {x}), b = ({x}, {x , y}),
c = ({x , y}, {x , y , z}), d = ({w}, {x , y , z})

}
G = {w , x , y , z}


Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 24/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)

�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part

�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)

�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part

�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part

�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part

�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part

�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)
�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)
�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)
�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan
�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Child Parent Theorem: PROOF

Our proof is constructive

• Given an existing plan
�;�...;�; �; �;�...;�; �; �;�...;�; �;;�;�...;�; �; �;�...;�

• Derive a new child plan conforming to `(Π�s)
�;�...;�;�@� ; �;�...;�;�@� ; �;�...;�; �;;�;�...;�; �; �;�...;�

• Replace the child part
�;�...;�; �;�...;�; �;�...;�; �;;�;�...;�; �; �;�...;�

• For each parent plan fragment derive a fragment conforming
to `(Π�s)
�@� ;�@� ...;�; �;�@� ...;�;�@� ;�...;�@� ; �;;�;�...;�; �; �;�@� ...;�

• Put the new parent fragments in the plan
...;�; �; ...;�; �...; �;;�;�...;�; �; �; ...;�

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 25/33

Verification: Disconnected Variable Sets Theorem

ss

Theorem

∀ Π s. s 6→ s ∧ s 6→ s ⇒ `(Π) < `(Π�s) + `(Π�s) + 1

• Our proof technique can be applied to this theorem.
• Repeat the first step in theorem 3 proof twice, for s actions,

and for s actions
• It implies that actions are either

1 s actions with dom p ⊆ s ∧ dom e ⊆ s; or
2 s actions with dom p ⊆ s ∧ dom e ⊆ s

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 26/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions

�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions

�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions

�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions

�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions

�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan
�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Verification: Disconnected Set Theorem: PROOF

Our proof was constructive as well

• Given an existing plan
�;�...;�; �;�;�...;�; �;�;�...;�; �;;�;�...;�; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�;�...;�;�@� ;�@� ;�...;�; �;�;�...;�; �;;�;�@� ...;�@� ; �;�;�...;�

• Replace the vs actions
�;�...;�; �...;�; �;�;�...;�; �;;�; ...; �;�;�...;�

• Take all vs actions and shorten them to conform to `(Π�vs)
�@� ;�...;�@� ; �...;�; �;�@� ;�@� ...;�; �;;�; ...; �;�;�@� ...;�

• Replace vs actions in the plan
�...; �...;�; �; ...;�; �;;�; ...; �;�...;�

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 27/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Current Verification: Parent Children Theorem

Theorem

∀ Π Gs.DAG(Gs)⇒ `(Π) ≤ Σs ∈Gs N(s)

where,
N(s) = `(Π�s)(Σs′∈children(s)N(s′) + 1)

• Verification of this tighter bound is underway

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 28/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan
�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan
� �;�; �;�; �; �;�; �;�; �; �; �;�; �;�;�; �;�; �;

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Verification: Parent Children Theorem: PROOF

For a variable set vsi in the graph

• Given an existing plan
�;� �;�; �;�; �;�; �;�; �;�; �;�;�; �; �;�; �;�;�; �;�; �;

• For each vsi action fragment, derive a fragment conforming to
`(Π�vsi

)

�@� ;� �;�; �;�; �;�@� ; �;�; �;�; �;�@� ;�@� ; �; �;�; �;�;�; �;�; �;

• Put the new vsi actions fragments in the plan
� �;�; �;�; �; �;�; �;�; �; �; �;�; �;�;�; �;�; �;

This is repeated recursively on the DAG in reverse topological order

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 29/33

Decompositions: Case 1

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k2 + k2 + k1k3 + 2k1 + k3

• With child parent theorem and the disconnected sets
theorem `(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

• With parent children theorem
`(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

k1

k2k3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 30/33

Decompositions: Case 1

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k2 + k2 + k1k3 + 2k1 + k3

• With child parent theorem and the disconnected sets
theorem `(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

• With parent children theorem
`(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

k1

k2k3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 30/33

Decompositions: Case 1

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k2 + k2 + k1k3 + 2k1 + k3

• With child parent theorem and the disconnected sets
theorem `(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

• With parent children theorem
`(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

k1

k2k3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 30/33

Decompositions: Case 1

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k2 + k2 + k1k3 + 2k1 + k3

• With child parent theorem and the disconnected sets
theorem `(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

• With parent children theorem
`(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

k1

k2k3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 30/33

Decompositions: Case 1

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k2 + k2 + k1k3 + 2k1 + k3

• With child parent theorem and the disconnected sets
theorem `(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

• With parent children theorem
`(Π) ≤ k1k2 + k2 + k1k3 + k1 + k3

k1

k2k3

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 30/33

Decompositions: Case 2

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k3 + k1k4 + k2k4 + 2k1 + k2 + k3 + k4

• With child parent theorem and the disconnected sets theorem
`(Π) ≤ k1k3 + k2k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

• With parent children theorem
`(Π) ≤ k1k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

k1 k2

k3 k4

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 31/33

Decompositions: Case 2

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k3 + k1k4 + k2k4 + 2k1 + k2 + k3 + k4

• With child parent theorem and the disconnected sets theorem
`(Π) ≤ k1k3 + k2k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

• With parent children theorem
`(Π) ≤ k1k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

k1 k2

k3 k4

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 31/33

Decompositions: Case 2

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k3 + k1k4 + k2k4 + 2k1 + k2 + k3 + k4

• With child parent theorem and the disconnected sets theorem
`(Π) ≤ k1k3 + k2k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

• With parent children theorem
`(Π) ≤ k1k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

k1 k2

k3 k4

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 31/33

Decompositions: Case 2

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k3 + k1k4 + k2k4 + 2k1 + k2 + k3 + k4

• With child parent theorem and the disconnected sets theorem
`(Π) ≤ k1k3 + k2k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

• With parent children theorem
`(Π) ≤ k1k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

k1 k2

k3 k4

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 31/33

Decompositions: Case 2

• There are multiple ways to decompose a planning problem to
get bounds

• With leaf ancestor theorem (the algorithm in R&G)
`(Π) ≤ k1k3 + k1k4 + k2k4 + 2k1 + k2 + k3 + k4

• With child parent theorem and the disconnected sets theorem
`(Π) ≤ k1k3 + k2k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

• With parent children theorem
`(Π) ≤ k1k3 + k1k4 + k2k4 + k1 + k2 + k3 + k4

k1 k2

k3 k4

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 31/33

Future Work

• Tighter verified bounds
• Correctness of a planning system

• Planning algorithms
• e.g., prove correctness of a SAT encoding
• e.g., prove correctness of a state space exploration

scheme
• Planning implementations

• of SAT solvers,
• of algorithms above

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 32/33

Conclusion

• We verified bounds from Rintanen and Gretton 2013 (R&G)
• Found and fixed a mistake in their formalisation
• Proved a new theorem that leading to novel tighter bounds

• The world’s first verified planner awaits!

Mechanising upper bounds in planning Copyright NICTA 2014 Mohammad Abdulaziz NICTA and ANU 33/33

	Verified Planner
	Preliminaries
	The Planning Problem
	The Bound on Plan Length

	Theorems
	Verification
	Bounds and Decompositions

