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Why?

Ordinals are cool: where else can we say
something as mind-blowing as “the set of countable
ordinals is uncountable” ?

Previous approaches in typed higher order logics
have not allowed

▶ suitably arbitrary uses of supremum; or
▶ modelling of ω1
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Also, Ordinals in ACL2

ACL2 uses ordinals to justify recursive definitions:
1. find a suitable ordinal when making definition

(automatically or interactively);
2. system admits definition

But, ACL2’s ordinals are actually an ordinal
notation, with no verified connection to “real”
ordinals.
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ACL2’s Ordinals

ACL2’s notation is Cantor Normal Form up to ε0
▶ e.g., ω2 + ω · 2 + 1 or ωωω+1

+ ω3 · 4 + ω · 10 + 4

Kaufmann and Slind show that < on this type is
well-founded; this is all that’s really necessary.

However, we have shown the ACL2 type and
operations are valid ordinal arithmetic.
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Notational Approaches

Generally, a notational approach is easy to
mechanise.
Do the equivalent of

Hol_datatype`ord = End of num
| Plus of ord × num × ord`

But, this only captures countably many ordinals.
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Another Algebraic Approach

Based on understanding of ordinals as ‘just like the
naturals with a sup (or limit ) function’.

Hol_datatype`ord = Z
| S of ord
| Lim of (num → ord)`

Using num above still only gets countable ordinals
( and sup over countable sets).

More importantly, tricky quotienting still required
( see paper for how to make this work).
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von Neumann’s Approach

An ordinal number is a set α such that
▶ α is transitive (that is, every member of α is

also a subset of α); and
▶ ∀x, y ∈ α one of the following holds: x ∈ y,

x = y or y ∈ x.

And so, every ordinal is equal to the set of its own
predecessors.
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Simple Types and von Neumann

If the type of an ordinal α has to equal the type of
a set of ordinals (α’s predecessors), we must solve
“τ set = τ”, which is clearly impossible in HOL.

The best we can hope for is to show that ordinals
are in bijection with predecessor sets…
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von Neumann is a Distraction

“Really,” ordinals are just canonical wellorders of a
given order type.

In set theory (ZFC, NBG, ...) we can’t say “ordinals
are equivalence classes of wellorders” because this
phrase does not denote a set.

But we can do just this in HOL.
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Ordinals are Wellorder Equivalence
Classes

This works in HOL because the wellorders, and
thus the ordinals, are with respect to some
underlying set.

Start with α wellorder, the type of sets of pairs of
αs where the relation is a wellorder.

And so, the α wellorders are in bijection with a
(strict) subset of all possible values of type
(α× α) set.
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Necessary Properties of Wellorders
Need to define notions of

▶ wellorder isomorphism;
▶ initial segments on wellorders; and
▶ wellorder <: u < v iff there is an e in v such

that u is order isomorphic to the initial
segment of v up to e

Need to prove:
▶ isomorphism an equivalence;
▶ ordering is a partial order, well-founded,

trichotomous.
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Next Step: Quotient

All the important properties lift through
quotienting.

Thanks to well-foundedness, can define oleast
operator, returning minimal ordinal of a
non-empty set.

▶ oleast{x | T} is the zero ordinal.
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Cardinalities

If the type α is finite, α wellorder only has finitely
many elements too.

So, let the α ordinal type be a quotient of
wellorders over the (sure to be infinite) type
α + num.

▶ oleast{x | y < x} is the successor of y
▶ some work (still to come) to show this always

exists
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The Critical Cardinality Result

There are strictly more values in α ordinal than
there are in α + num

▶ follows from the observation that α ordinal
itself forms a wellorder, and

▶ that every wellorder over α + num is
isomorphic to an initial segment of the
α ordinal wellorder
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Defining Supremum

Let
sup S = oleast{α | α ̸∈

∪
β∈S

preds β}

I.e., the least ordinal not in the combined
predecessors of all the elements in S.
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Supremum Works

“The least ordinal not in the combined predecessors of all
the elements in S” is OK because:

▶ any given ordinal in α ordinal has no more
predecessors than α + num; and

▶ cardinal κ× κ ≈ κ, so there must be a
minimal element not in the collective
predecessors
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The Supremum Rule

It is legitimate to write

sup S

when S is a set of α ordinals if

S ⪯ α + num
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And so…

Can define ω = sup{&n | T}
▶ where & is the injection from natural numbers

into ordinals

Can distinguish limit and successor ordinals.

Can prove a recursion theorem by cases…
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A Recursion Theorem
With < on ordinals well-founded, one could
always define functions by well-founded recursion.

However, this pseudo-algebraic principle is nicer
to use:

∀z sf lf. ∃!f.
f(0) = z

f(α+) = sf(α, f(α))
f(β) = lf(β, { f(η) | η < β})

(where β has to be a non-zero limit ordinal).
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Arithmetic Comes Next

The recursion principle makes it easy to define
▶ addition,
▶ multiplication,
▶ exponentiation

Some more work results in definitions and
properties of division, remainder, and discrete
logarithm.
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See Paper For:

Cantor Normal Forms:
▶ Every ordinal can be expressed as a unique

“polynomial” over bases ≥ 2

Existence of Fixed Points:
▶ Every increasing, continuous function has

infinitely many fixed points
▶ E.g., can define ε0, first fixed point for x 7→ ωx
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Countable Ordinals and ω1

A countable ordinal is one with countably many
predecessors.

In α ordinal, which is over α + num, all ordinals
may be countable.

▶ Critical cardinality result tells us there are
uncountably many of them!

To get more, instantiate α in α + num to
α+ (num → bool)
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The First Uncountable Ordinal

First, prove that cardinality of {β | β is countable}
is ⪯ cardinality of (α+ (num → bool)) + num

Then, it’s legitimate to write

ω1
def
= sup{β | β is countable}

when β has type (α+ (num → bool)) ordinal
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ω1 and so on

ω1 is the first uncountable ordinal:

β < ω1 ⇐⇒ β is countable

To capture ω2 we might instantiate type variable

α 7→ α+ ((num → bool) → bool)
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Conclusions

The “obvious” way to mechanise ordinals, as
equivalence classes of wellorders, works well.

Supremum can be defined naturally, taking sets of
ordinals as an argument.

▶ Usual arithmetic falls out

Just as naturally, large ordinals such as ω1 can be
defined.
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