An Analysis of Power Consumption in a Smartphone

Aaron Carroll and Gernot Heiser
Problem

• Where and how is power consumed in a smartphone?

• Approach: fine-grained instrumentation of a real device
Methodology

- OpenMoko Freerunner
 - 2.5G smartphone, c. 2008
 - 400 MHz ARM9
 - Lacking camera, 3G modem
 - Open design
 - Amenable to power instrumentation
Methodology

\[I = \frac{V_d}{R} \]

\[P = IV \]
Methodology
Methodology

• Instrumented components
 - CPU
 - RAM
 - GSM
 - GPS
 - Bluetooth
 - LCD panel
 - WiFi
 - Backlight
 - Audio codec
 - Amplifier
 - NAND flash
 - SD card
Benchmarks

- Micro-benchmarks
 - Suspend
 - Idle
 - Backlight
 - CPU/RAM
 - Flash storage
 - Network
 - GPS

- Usage scenarios
 - Audio
 - Video
 - SMS
 - Email
 - Web
 - Call
Idle Power

- **GSM**: 50 mW
- **CPU**: 30 mW
- **GPU**: 80 mW
- **LCD**: 40 mW
- **Rest**: 20 mW

Idle: 269 mW

Suspend: 69 mW
Display Power

- **GSM**, **CPU**, and **Rest** have minimal power consumption compared to the **Display** which shows a significant portion dedicated to the **Backlight**.
CPU and RAM

100 MHz

400 MHz

Power (mW)

<table>
<thead>
<tr>
<th></th>
<th>equake</th>
<th>vpr</th>
<th>gzip</th>
<th>crafty</th>
<th>mcf</th>
<th>idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAM

CPU

© NICTA 2010
Email

Total: 610 mW

- GSM
- CPU
- Display
- Rest

Power (mW)
Video

Total: 454 mW

Power (mW)

GSM

CPU

RAM

Display

Rest

© NICTA 2010

From imagination to impact
Audio

Total: 320 mW
Validation

- Benchmarks repeated on two devices:
 - HTC Dream (G1)
 - Google Nexus One (N1)
- Total system power only
- 3-4 years of mobile technology
Validation

% power difference

-80 -60 -40 -20 0 20 40

Suspend Idle Phone call Web (cell) Web (WiFi) Network (cell) Network (WiFi) Video Audio

G1 N1
DVFS

- Dynamic Voltage and Frequency Scaling
- DVFS reduces power
 … but does it reduce energy?
DVFS

% energy saving

equake vpr gzip crafty mcf

Freerunner G1 N1

© NICTA 2010 From imagination to impact
Conclusions

- **Major consumers: display & cell radio**
 - WiFi power low in most situations
- **CPU can be significant**
 - Future power driver
- **Where power is not going:**
 - RAM
 - Audio
 - Bluetooth
 - Storage
Conclusions

- Both dynamic and static power important
- DVFS hanging on (for now)
- Networking power not increasing