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Abstract. This paper proposes a timed process algebra for wireless net-
works, an extension of the Algebra for Wireless Networks. It combines
treatments of local broadcast, conditional unicast and data structures,
which are essential features for the modelling of network protocols. In
this framework we model and analyse the Ad hoc On-Demand Distance
Vector routing protocol, and show that, contrary to claims in the litera-
ture, it fails to be loop free. We also present boundary conditions for a
fix ensuring that the resulting protocol is indeed loop free.

1 Introduction

In 2011 we developed the Algebra for Wireless Networks (AWN) [10], a process
algebra particularly tailored for Wireless Mesh Networks (WMNs) and Mobile
Ad Hoc Networks (MANETs). Such networks are currently being used in a
wide range of application areas, such as public safety and mining. They are
self-organising wireless multi-hop networks that provide network communication
without relying on a wired backhaul infrastructure. A significant characteristic
of such networks is that they allow highly dynamic network topologies, meaning
that network nodes can join, leave, or move within the network at any moment.
As a consequence routing protocols have constantly to check for broken links,
and to replace invalid routes by better ones.

To capture the typical characteristics of WMNs and MANETs, AWN offers
a unique set of features: conditional unicast (a message transmission attempt
with different follow-up behaviour depending on its success), groupcast (com-
munication to a specific set of nodes), local broadcast (messages are received
only by nodes within transmission range of the sender), and data structure. We
are not aware of any other process algebra that provides all these features, and
hence could not use any other algebra to model certain protocols for WMNs
or MANETs in a straightforward fashion.1 Case studies [10,11,15,9] have shown
that AWN provides the right level of abstraction to model full IETF protocols,
such as the Ad hoc On-Demand Distance Vector (AODV) routing protocol [29].
AWN has been employed to formally model this protocol—thereby eliminating
ambiguities and contradictions from the official specification, written in English

1 A comparison between AWN and other process algebras can be found in [11, Sect. 11].
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Prose—and to reason about protocol behaviour and provide rigorous proofs of
key protocol properties such as loop freedom and route correctness.

However, AWN abstracts from time. Analysing routing protocols without
considering timing issues is useful in its own right; for AODV it has revealed
many shortcomings in drafts as well as in the standard (e.g., [3,19,16]). Including
time in a formal analysis, however, will pave the way to analyse protocols that
repeat some procedures every couple of time units; examples are OLSR [7] and
B.A.T.M.A.N. [26]. Even for a reactive protocol such as AODV, which does not
schedule tasks regularly, it has been shown that timing aspects are important: if
timing parameters are chosen poorly, some routes are not established since data
that is stored locally at network nodes expires too soon and is erased [6]. Besides
such shortcomings in “performance”, also fundamental correctness properties
like loop freedom can be affected by the treatment of time—as we will illustrate.

To enable time analyses of WMNs and MANETs, this paper proposes a
Timed (process) Algebra for Wireless Networks (T-AWN), an extension of AWN.
It combines AWN’s unique set of features, such as local broadcast, with time.

In this framework we model and analyse the AODV routing protocol, and
show that, contrary to claims in the literature, e.g., [30], it fails to be loop free,
as data required for routing can expire. We also present boundary conditions for
a fix ensuring that the resulting protocol is loop free.

Design Decisions

Prior to the development of T-AWN we had to make a couple of decisions.

Intranode computations. In wireless networks sending a packet from one node
to another takes multiple microseconds. Compared to these “slow” actions, time
spent for internal (intranode) computations, such as variable assignments or
evaluations of expressions, is negligible. We therefore postulate that only trans-
missions from one node to another take time.

This decision is debatable for processes that can perform infinite sequences
of intranode computations without ever performing a durational action. In this
paper (and in all applications), we restrict ourselves to well-timed processes in
the spirit of [27], i.e., to processes where any infinite sequence of actions contains
infinitely many time steps or infinitely many input actions, such as receiving an
incoming packet.

But, in the same spirit as T-AWN assigns time to internode communications,
it is more or less straightforward to assign times to other operations as well.

Guaranteed Message Receipt and Input Enabledness. A fundamental assumption
underlying the semantics of (T-)AWN is that any broadcast message is received
by all nodes within transmission range [11, §1].2 This abstraction enables us to

2 In reality, communication is only half-duplex: a single-interface network node cannot
receive messages while sending and hence messages can be lost. However, the CSMA
protocol used at the link layer—not modelled by (T-)AWN—keeps the probability
of packet loss due to two nodes (within range) sending at the same time rather low.
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interpret a failure of route discovery (as documented for AODV in [11, §9]) as
an imperfection in the protocol, rather than as a result of a chosen formalism
not ensuring guaranteed receipt.

A consequence of this design decision is that in the operational semantics of
(T-)AWN a broadcast of one node in a network needs to synchronise with some
(in)activity of all other nodes in the network [11, §11]. If another node is within
transmission range of the broadcast, the broadcast synchronises with a receive
action of that node, and otherwise with a non-arrive transition, which signals
that the node is out of range for this broadcast [11, §4.3].

A further consequence is that we need to specify our nodes in such a way
that they are input-enabled, meaning that in any state they are able to receive
messages from any other node within transmission range.

Since a transmission (broadcast, groupcast, or unicast) takes multiple units
of time, we postulate that another node can only receive a message if it remains
within transmission range during the whole period of sending.3 A possible way
to model the receive action that synchronises with a transmission such as a
broadcast is to let it take the same amount of time as the broadcast action.
However, a process that is busy executing a durational receive action would fail
to be input-enabled, for it would not be able to start receiving another message
before the ongoing message receipt is finished. For this reason, we model the
receipt of a message as an instantaneous action that synchronises with the very
end of a broadcast action.4

T-AWN Syntax. When designing or formalising a protocol in T-AWN, an en-
gineer should not be bothered with timing aspects; except for functions and
procedures that schedule tasks depending on the current time. Because of this,
we use the syntax of AWN also for T-AWN; “extended” by a local timer now.
Hence we can perform a timed analysis of any specification written in AWN,
since they are also T-AWN specifications.

2 A Timed Process Algebra for Wireless Networks

In this section we propose T-AWN (Timed Algebra for Wireless Networks), an
extension of the process algebra AWN [10,11] with time. AWN itself is a variant
of standard process algebras [23,18,2,4], tailored to protocols in wireless mesh
networks, such as the Ad-hoc on Demand Distance Vector (AODV) routing pro-
tocol. In (T-)AWN, a WMN is modelled as an encapsulated parallel composition

3 To be precise, we forgive very short interruptions in the connection between two
nodes—those that begin and end within the same unit of time.

4 Another solution would be to assume that a broadcast-receiving process can receive
multiple messages in parallel. In case the process is meant to add incoming messages
to a message queue (as happens in our application to AODV), one can assume that
a message that is being received in parallel is added to that queue as soon as its
receipt is complete. However, such a model is equivalent to one in which only the
very last stage of the receipt action is modelled.



4 E. Bres, R.J. van Glabbeek and P. Höfner

of network nodes. On each node several sequential processes may be running in
parallel. Network nodes communicate with their direct neighbours—those nodes
that are in transmission range—using either broadcast, groupcast or unicast.
Our formalism maintains for each node the set of nodes that are currently in
transmission range. Due to mobility of nodes and variability of wireless links,
nodes can move in or out of transmission range. The encapsulation of the entire
network inhibits communications between network nodes and the outside world,
with the exception of the receipt and delivery of data packets from or to clients5

of the modelled protocol that may be hooked up to various nodes.
In T-AWN we apply a discrete model of time, where each sequential process

maintains a local variable now holding its local clock value—an integer. We
employ only one clock for each sequential process. All sequential processes in a
network synchronise in taking time steps, and at each time step all local clocks
advance by one unit. For the rest, the variable now behaves as any other variable
maintained by a process: its value can be read when evaluating guards, thereby
making progress time-dependant, and any value can be assigned to it, thereby
resetting the local clock.

In our model of a sequential process p running on a node, time can elapse
only when p is transmitting a message to another node, or when p currently
has no way to proceed—for instance, when waiting on input, or for its local
clock to reach a specified value. All other actions of p, such as assigning values
to variables, evaluating guards, communicating with other processes running on
the same node, or communicating with clients of the modelled protocol hooked
up at that node, are assumed to be an order of magnitude faster, and in our
model take no time at all. Thus they are executed in preference to time steps.

2.1 The Syntax of T-AWN

The syntax of T-AWN is the same as the syntax of AWN [10,11], except for the
presence of the variable now of the new type TIME. This brings the advantage
that any specification written in AWN can be interpreted and analysed in a
timed setting. The rest of this Section 2.1 is almost copied verbatim from the
original articles about AWN [10,11].

A Language for Sequential Processes. The internal state of a process is
determined, in part, by the values of certain data variables that are maintained
by that process. To this end, we assume a data structure with several types, vari-
ables ranging over these types, operators and predicates. First order predicate
logic yields terms (or data expressions) and formulas to denote data values and
statements about them.6 Our data structure always contains the types TIME,
DATA, MSG, IP and P(IP) of time values, which we take to be integers (together
with the special value ∞), application layer data, messages, IP addresses—or

5 The application layer that initiates packet sending and/or awaits receipt of a packet.
6 As operators we also allow partial functions with the convention that any atomic

formula containing an undefined subterm evaluates to false.
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any other node identifiers—and sets of IP addresses. We further assume that
there is a variable now of type TIME and a function newpkt : DATA × IP → MSG

that generates a message with new application layer data for a particular des-
tination. The purpose of this function is to inject data to the protocol; details
will be given later.

In addition, we assume a type SPROC of sequential processes, and a collection
of process names, each being an operator of type TYPE1×· · ·×TYPEn → SPROC for
certain data types TYPEi. Each process name X comes with a defining equation

X(var1, . . . , varn)
def
= p ,

in which, for each i = 1, . . . , n, vari is a variable of type TYPEi and p a guarded7

sequential process expression defined by the grammar below. The expression p
may contain the variables vari as well as X; however, all occurrences of data
variables in p have to be bound. The choice of the underlying data structure
and the process names with their defining equations can be tailored to any
particular application of our language; our decisions made for modelling AODV
are presented in Section 3. The process names are used to denote the processes
that feature in this application, with their arguments vari binding the current
values of the data variables maintained by these processes.

The sequential process expressions are given by the following grammar:

SP ::= X(exp1, . . . , expn) | [ϕ]SP | [[var := exp]]SP | SP + SP |
α.SP | unicast(dest,ms).SP I SP

α ::= broadcast(ms) | groupcast(dests,ms) | send(ms) |
deliver(data) | receive(msg)

Here X is a process name, expi a data expression of the same type as vari, ϕ
a data formula, var := exp an assignment of a data expression exp to a variable
var of the same type, dest, dests, data and ms data expressions of types IP,
P(IP), DATA and MSG, respectively, and msg a data variable of type MSG.

The internal state of a sequential process described by an expression p in
this language is determined by p, together with a valuation ξ associating data
values ξ(var) to the data variables var maintained by this process. Valuations
naturally extend to ξ-closed data expressions—those in which all variables are
either bound or in the domain of ξ.

Given a valuation of the data variables by concrete data values, the sequen-
tial process [ϕ]p acts as p if ϕ evaluates to true, and deadlocks if ϕ evaluates
to false. In case ϕ contains free variables that are not yet interpreted as data
values, values are assigned to these variables in any way that satisfies ϕ, if pos-
sible. The sequential process [[var := exp]]p acts as p, but under an updated
valuation of the data variable var. The sequential process p + q may act ei-
ther as p or as q, depending on which of the two processes is able to act at all.
In a context where both are able to act, it is not specified how the choice is
made. The sequential process α.p first performs the action α and subsequently

7 An expression p is guarded if each call of a process name X(exp1, . . . , expn) occurs
with a subexpression [ϕ]q, [[var := exp]]q, α.q or unicast(dest,ms).q I r of p.
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acts as p. The action broadcast(ms) broadcasts (the data value bound to the
expression) ms to the other network nodes within transmission range, whereas
unicast(dest,ms).p I q is a sequential process that tries to unicast the message
ms to the destination dest; if successful it continues to act as p and otherwise
as q. In other words, unicast(dest,ms).p is prioritised over q; only if the action
unicast(dest,ms) is not possible, the alternative q will happen. It models an ab-
straction of an acknowledgment-of-receipt mechanism that is typical for unicast
communication but absent in broadcast communication, as implemented by the
link layer of relevant wireless standards such as IEEE 802.11 [20]. The process
groupcast(dests,ms).p tries to transmit ms to all destinations dests, and pro-
ceeds as p regardless of whether any of the transmissions is successful. Unlike
unicast and broadcast, the expression groupcast does not have a unique coun-
terpart in networking. Depending on the protocol and the implementation it can
be an iterative unicast, a broadcast, or a multicast; thus groupcast abstracts
from implementation details. The action send(ms) synchronously transmits a
message to another process running on the same network node; this action can
occur only when this other sequential process is able to receive the message. The
sequential process receive(msg).p receives any message m (a data value of type
MSG) either from another node, from another sequential process running on the
same node or from the client hooked up to the local node. It then proceeds as
p, but with the data variable msg bound to the value m. The submission of data
from a client is modelled by the receipt of a message newpkt(d, dip), where the
function newpkt generates a message containing the data d and the intended
destination dip. Data is delivered to the client by deliver(data).

A Language for Parallel Processes. Parallel process expressions are given
by the grammar

PP ::= ξ,SP | PP 〈〈 PP ,

where SP is a sequential process expression and ξ a valuation. An expression ξ, p
denotes a sequential process expression equipped with a valuation of the variables
it maintains. The process P 〈〈Q is a parallel composition of P and Q, running on
the same network node. An action receive(m) of P synchronises with an action
send(m) of Q into an internal action τ , as formalised in Table 2. These receive
actions of P and send actions of Q cannot happen separately. All other actions
of P and Q, except time steps, including receive actions of Q and send actions of
P , occur interleaved in P 〈〈Q. Therefore, a parallel process expression denotes a
parallel composition of sequential processes ξ, P with information flowing from
right to left. The variables of different sequential processes running on the same
node are maintained separately, and thus cannot be shared.

Though 〈〈 only allows information flow in one direction, it reflects reality
of WMNs. Usually two sequential processes run on the same node: P 〈〈Q. The
main process P deals with all protocol details of the node, e.g., message handling
and maintaining the data such as routing tables. The process Q manages the
queueing of messages as they arrive; it is always able to receive a message even
if P is busy. The use of message queueing in combination with 〈〈 is crucial in
order to create input-enabled nodes (cf. Section 1).
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A Language for Networks. We model network nodes in the context of a
wireless mesh network by node expressions of the form ip : PP : R. Here ip ∈ IP

is the address of the node, PP is a parallel process expression, and R ⊆ IP is
the range of the node—the set of nodes that are currently within transmission
range of ip.

A partial network is then modelled by a parallel composition ‖ of node ex-
pressions, one for every node in the network, and a complete network is a partial
network within an encapsulation operator [ ] that limits the communication of
network nodes and the outside world to the receipt and the delivery of data
packets to and from the application layer attached to the modelled protocol in
the network nodes. This yields the following grammar for network expressions:

N ::= [M ] M ::= ip : PP : R | M‖M .

2.2 The Semantics of T-AWN

As mentioned in the introduction, the transmission of a message takes time. Since
our main application assumes a wireless link and node mobility, the packet de-
livery time varies. Hence we assume a minimum time that is required to send
a message, as well as an optional extra transmission time. In T-AWN the val-
ues of these parameters are given for each type of sending separately: LB, LG,
and LU, satisfying LB, LG, LU > 0, specify the minimum bound, in units of time,
on the duration of a broadcast, groupcast and unicast transmission; the op-
tional additional transmission times are denoted by ∆B, ∆G and ∆U, satisfying
∆B, ∆G, ∆U ≥ 0. Adding up these parameters (e.g. LB and ∆B) yields maximum
transmission times. We allow any execution consistent with these parameters.
For all other actions our processes can take we postulate execution times of 0.

Sequential Processes. The structural operational semantics of T-AWN, given
in Tables 1–4, is in the style of Plotkin [31] and describes how one internal state
can evolve into another by performing an action.

A difference with AWN is that some of the transitions are time steps. On the
level of node and network expressions they are labelled “tick” and the parallel
composition of multiple nodes can perform such a transition iff each of those
nodes can—see the third rule in Table 4. On the level of sequential and par-
allel process expressions, time-consuming transitions are labelled with wait ac-
tions from W = {w,ws,wr,wrs} ⊆ Act and transmission actions from R :W =
{R :w1 | w1∈W∧R ⊆ IP} ⊆ Act. Wait actions w1∈W indicate that the system is
waiting, possibly only as long as it fails to synchronise on a receive action (wr), a

∧ w wr ws wrs

w w wr ws wrs
wr wr wr wrs wrs
ws ws wrs ws wrs
wrs wrs wrs wrs wrs

send action (ws) or both of those (wrs); actions R :w1

indicate that the system is transmitting a message while
the current transmission range of the node is R ⊆ IP. In
the operational rule for choice (+) we combine any two
wait actions w1, w2 ∈ W with the operator ∧, which joins
the conditions under which these wait actions can occur.
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Table 1. Structural operational semantics for sequential process expressions

(bc) ξ,broadcast(ms).p τ−→ ξ, IP :*cast(ξ(ms))[LB, ∆B].p I p (if ξ(ms)↓)

(gc) ξ,groupcast(dests,ms).p τ−→ ξ, ξ(dests) :*cast(ξ(ms))[LG, ∆G].p I p
(if ξ(dests)↓ and ξ(ms)↓)

(uc) ξ,unicast(dest,ms).p I q τ−→ ξ, {ξ(dest)} :*cast(ξ(ms))[LU, ∆U].p I q
(if ξ(dest)↓ and ξ(ms)↓)

(tr) ξ,dsts :*cast(m)[n+1, o].p I q R:w−−→ ξ[now++], (dsts∩R) :*cast(m)[n, o].p I q
(∀R ⊆ IP)

(tr-o)

ξ, dsts :*cast(m)[n+1, o+1].p I q R:w−−→ ξ[now++], (dsts∩R) :*cast(m)[n+1, o].p I q
(∀R ⊆ IP)

(sc) ξ, dsts :*cast(m)[0, o].p I q dsts : *cast(m)−−−−−−−−−→ ξ, p (if dsts 6= ∅)

(¬sc) ξ, dsts :*cast(m)[0, o].p I q dsts : *cast(m)−−−−−−−−−→ ξ, q (if dsts = ∅)

(snd) ξ, send(ms).p send(ξ(ms))−−−−−−−→ ξ, p (if ξ(ms)↓)

(ws) ξ, send(ms).p ws−−→ ξ[now++], send(ms).p (if ξ(ms)↓)

(del) ξ,deliver(data).p deliver(ξ(data))−−−−−−−−−−→ ξ, p (if ξ(data)↓)

(rcv) ξ, receive(msg).p receive(m)−−−−−−−→ ξ[msg := m], p (∀m ∈ MSG)

(wr) ξ, receive(msg).p wr−−→ ξ[now++], receive(msg).p

(ass) ξ, [[var := exp]]p τ−→ ξ[var := ξ(exp)], p (if ξ(exp)↓)

(w) ξ, p w−→ ξ[now++], p (if ξ(p)↑)

(rec)
∅[vari := ξ(expi)]

n
i=1, p

a−→ ζ, p′

ξ,X(exp1, . . . , expn) a−→ ζ, p′
(X(var1, . . . , varn)

def
= p)

(∀a ∈Act−W, if ξ(expi)↓)

(rec-w)
∅[vari := ξ(expi)]

n
i=1, p

w1−→ ζ, p′

ξ,X(exp1, ..., expn) w1−→ ξ[now++], X(exp1, ..., expn)
(X(var1, ..., varn)

def
= p)

(∀w1∈W, if ξ(expi)↓)

(grd)
ξ
ϕ→ ζ

ξ, [ϕ]p τ−→ ζ, p
(¬grd)

ξ ϕ−6→
ξ, [ϕ]p w−→ ξ[now++], [ϕ]p

(alt-l)
ξ, p a−→ ζ, p′

ξ, p+ q a−→ ζ, p′
(alt-r)

ξ, q a−→ ζ, q′

ξ, p+ q a−→ ζ, q′
(∀a ∈ Act−W)

(alt-w)
ξ, p w1−→ ζ, p′ ξ, q w2−→ ζ, q′

ξ, p+ q w1∧w2−−−−→ ζ, p′ + q′
(∀w1, w2 ∈ W)
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In Table 1, which gives the semantics of sequential process expressions, a state
is given as a pair ξ, p of a sequential process expression p and a valuation ξ of the
data variables maintained by p. The set Act of actions that can be executed by
sequential and parallel process expressions, and thus occurs as transition labels,
consists of R :*cast(m), send(m), deliver(d), receive(m), durational actions
w1 andR :w1, and internal actions τ , for each choice ofR ⊆ IP,m∈ MSG, d∈ DATA
and w1 ∈ W. Here R :*cast(m) is the action of transmitting the message m, to
be received by the set of nodes R, which is the intersection of the set of intended
destinations with the nodes that are within transmission range throughout the
transmission. We do not distinguish whether this message has been broadcast,
groupcast or unicast—the differences show up merely in the value of R.

In Table 1 ξ[var := v] denotes the valuation that assigns the value v to the
variable var, and agrees with ξ on all other variables. We use ξ[now++] as an
abbreviation for ξ[now := ξ(now)+1], the valuation ξ in which the variable now is
incremented by 1. This describes the state of data variables after 1 unit of time
elapses, while no other changes in data occurred. The empty valuation ∅ assigns
values to no variables. Hence ∅[vari := vi]

n
i=1 is the valuation that only assigns

the values vi to the variables vari for i = 1, . . . , n. Moreover, ξ(exp)↓, with exp
a data expression, is the statement that ξ(exp) is defined; this might fail because
exp contains a variable that is not in the domain of ξ or because exp contains a
partial function that is given an argument for which it is not defined.

A state ξ, r is unvalued, denoted by ξ(r)↑, if r has the form broadcast(ms).p,
groupcast(dests,ms).p, unicast(dest,ms).p, send(ms).p, deliver(data).p,
[[var := exp]]p or X(exp1, . . . , expn) with either ξ(ms) or ξ(dests) or ξ(dest) or
ξ(data) or ξ(exp) or some ξ(expi) undefined. From such a state no progress is
possible. However, the sixth last line in Table 1 does allow time to progress. We
use ξ(r)↓ to denote that a state is not unvalued.

Rule (rec) for process names in Table 1 is motivated and explained in [11,
§4.1]. The variant (rec-w) of this rule for wait actions w1 ∈ W has been modified
such that the recursion is not yet unfolded while waiting. This simulates the
behaviour of AWN where a process is only unwound if the first action of the
process can be performed.

In the subsequent rules (grd) and (¬grd) for variable-binding guards [ϕ], the
notation ξ

ϕ→ ζ says that ζ is an extension of ξ that satisfies ϕ: a valuation
that agrees with ξ on all variables on which ξ is defined, and valuates the other
variables occurring free in ϕ, such that the formula ϕ holds under ζ. All variables
not free in ϕ and not evaluated by ξ are also not evaluated by ζ. Its negation
ξ ϕ−6→ says that no such extension exists, and thus that ϕ is false in the current
state, no matter how we interpret the variables whose values are still undefined. If
that is the case, the process [ϕ]p will idle by performing the action w (of waiting)
without changing its state, except that the variable now will be incremented.

Example 1. The process [[timeout := now + 2]][now = timeout]p first sets the
variable timeout to 2 units after the current time. Then it encounters a guard
that evaluates to false, and therefore takes a w-transition, twice. After two
time units, the guard evaluates to true and the process proceeds as p.
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The process receive(msg).p can receive any message m from the environment
in which this process is running. As long as the environment does not provide
a message, this process will wait. This is indicated by the transition labelled wr
in Table 1. The difference between a wr-and a w-transition is that the former
can be taken only when the environment does not synchronise with the receive-
transition. In our semantics any state with an outgoing wr-transition also has
an outgoing receive-transition (see Theorem 1), which conceptually has priority
over the wr-transition. Likewise the transition labelled ws is only enabled in
states that also admit a send-transition, and is taken only in a context where
the send-transition cannot be taken.

Rules (alt-l) and (alt-r), defining the behaviour of the choice operator for
non-wait actions are standard. Rule (alt-w) for wait actions says that a process
p + q can wait only if both p and q can wait; if one of the two arguments can
make real progress, the choice process p + q always chooses this progress over
waiting. This is a direct generalisation of the law p + 0 = p of CCS [23]. As
a consequence, a condition on the possibility of p or q to wait is inherited by
p+ q. This gives rise to the transition label wrs, that makes waiting conditional
on the environment failing to synchronising with a receive as well as a send-
transition. In understanding the target ζ, p′+q′ of this rule, it is helpful to realise
that whenever ξ, p w1−→ ζ, q, then q = p and ζ = ξ[now++]; see Proposition 1.

In order to give semantics to the transmission constructs (broadcast, group-
cast, unicast), the language of sequential processes is extended with the auxiliary
construct

dsts :*cast(m)[n, o].SP I SP ,

with m ∈ MSG, n, o ∈ IN and dsts ⊆ IP. This is a variant of the broadcast-,
groupcast- and unicast-constructs, describing intermediate states of the trans-
mission of message m. The argument dsts of *cast denotes those intended des-
tinations that were not out of transmission range during the part of the trans-
mission that already took place.

In a state dsts :*cast(m)[n, o].p I q with n > 0 the transmission still needs
between n and n+o time units to complete. If n = 0 the actual *cast-transition
will take place; resulting in state p if the message is delivered to at least one
node in the network (dsts is non-empty), and q otherwise.

Rule (gc) says that once a process commits to a groupcast-transmission, it
is going to behave as dsts :*cast(m)[n, o] with time parameters n := LG and o :=
∆G. The transmitted message m is calculated by evaluating the argument ms, and
the transmission range dsts of this *cast is initialised by evaluating the argument
dests, indicating the intended destinations of the groupcast. Rules (bc) and (uc)
for broadcast and unicast are the same, except that in the case of broadcast
the intended destinations are given by the set IP of all possible destinations,
whereas a unicast has only one intended destination. Moreover, only unicast
exploits the difference in the continuation process depending on whether an
intended destination is within transmission range. Subsequently, Rules (tr) and
(tr-o) come into force; they allow time-consuming transmission steps to take
place, each decrementing one of the time parameters n or o. Each time step of
a transmission corresponds to a transition labelled R : w, where R records the
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Table 2. Structural operational semantics for parallel process expressions

(p-al)
P a−→ P ′

P 〈〈Q a−→ P ′〈〈Q

(
∀a 6= receive(m),
a 6∈W, a 6∈R :W

)
(p-ar)

Q a−→ Q′

P 〈〈Q a−→ P 〈〈Q′

(
∀a 6= send(m),
a 6∈W, a 6∈R :W

)

(p-a)
P receive(m)−−−−−−−→ P ′ Q send(m)−−−−−→ Q′

P 〈〈Q τ−→ P ′〈〈Q′
(∀m ∈ MSG) (p-w)

P w1−→ P ′ Q w2−→ Q′

P 〈〈Q w3−→ P ′〈〈Q′

(p-tl)
P R:w1−−−→ P ′ Q w2−→ Q′

P 〈〈Q R:w3−−−→ P ′〈〈Q′
(p-tr)

P w1−→ P ′ Q R:w2−−−→ Q′

P 〈〈Q R:w3−−−→ P ′〈〈Q′
(p-t)

P R:w1−−−→ P ′ Q R:w2−−−→ Q′

P 〈〈Q R:w3−−−→ P ′〈〈Q′

(∀w1, w2, w3 ∈ W, w3 = w1〈〈w2)

current transmission range. Since sequential processes store no information on
transmission ranges—this information is added only when moving from process
expressions to node expressions—at this stage of the description all possibilities
for the transmission range need to be left open, and hence there is a transition
labelled R : w for each choice of R.8 When transitions for process expressions
are inherited by node expressions, only one of the transitions labelled R : w is
going to survive, namely the one where R equals the transmission range given
by the node expression (cf. Rule (n-t) in Table 3). Upon doing a transition R : w,
the range dsts of the *cast is restricted to R. As soon as n = 0, regardless of
the value of o, the transmission is completed by the execution of the action
dsts :*cast(m) (Rules (sc) and (¬sc)). Here the actual message m is passed on
for synchronisation with receive-transitions of all nodes ip ∈ dsts.

This treatment of message transmission is somewhat different from the one
in AWN. There, the rule ξ,groupcast(dests,ms).p groupcast(ξ(dests),ξ(ms))−−−−−−−−−−−−−−−−→ ξ, p
describes the behaviour of the groupcast construct for sequential processes, and
the rule

P groupcast(D,m)−−−−−−−−−−−→ P ′

ip : P :R R∩D : *cast(m)−−−−−−−−−−→ ip : P ′ :R

lifts this behaviour from processes to nodes. In this last stage the groupcast-
action is unified with the broadcast- and unicast-action into a *cast, at which
occasion the range of the *cast is calculated as the intersection of the intended
destinations D of the groupcast and the ones in transmission range R. In T-
AWN, on the other hand, the conversion of groupcast to *cast happens already
at the level of sequential processes.

Parallel Processes. Rules (p-al), (p-ar) and (p-a) of Table 2 are taken from
AWN, and formalise the description of the operator 〈〈 given in Section 2.1. Rule
(p-w) stipulates under which conditions a process P 〈〈Q can do a wait action, and

〈〈 w wr ws wrs

w w wr w wr
wr w wr − −
ws ws wrs ws wrs
wrs ws wrs − −

of which kind. Here 〈〈 is also a partial binary function on
the setW, specified by the table on the right. The process
P 〈〈Q can do a wait action only if both P and Q can do
so. In case P can do a wr or a wrs-action, P can also do
a receive and in case Q can do a ws or a wrs, Q can also

8 Similar to receive(msg).p having a transition for each possible incoming message m.
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do a send. When both these possibilities apply, the receive of P synchronises
with the send of Q into a τ -step, which has priority over waiting. In the other 12
cases no synchronisation between P and Q is possible, and we do obtain a wait
action. Since a receive-action of P that does not synchronise with Q is dropped,
so is the corresponding side condition of a wait action of P . Hence (within the
remaining 12 cases) a wr of P is treated as a w, and a wrs as a ws. Likewise a
ws of Q is treated as a w, and a wrs as a wr. This leaves 4 cases to be decided.
In all four, we have w1 〈〈 w2 = w1 ∧ w2.

Time steps R :w1 are treated exactly like wait actions from W (cf. Rules
(p-tl), (p-tr) and (p-t)). If for instance P can do a R : w, meaning that it spends
a unit of time on a transmission, while Q can do a wr, meaning that it waits
a unit of time only when it does not receive anything from another source, the
result is that P 〈〈Q can spend a unit of time transmitting something, but only
as long as P 〈〈 Q does not receive any message; if it does, the receive action of
Q happens with priority over the wait action of Q, and thus occurs before P
spends a unit of time transmitting.

Node and Network Expressions. The operational semantics of node and
network expressions of Tables 3 and 4 uses transition labels tick, R :*cast(m),
H¬K :arrive(m), ip :deliver(d), connect(ip, ip′), disconnect(ip, ip′), τ and
ip :newpkt(d, dip). As before, m ∈ MSG, d ∈ DATA, R ⊆ IP, and ip, ip′ ∈ IP.
Moreover, H,K ⊆ IP are sets of IP addresses.

The actions R :*cast(m) are inherited by nodes from the processes that run
on these nodes (cf. Rule (n-sc)). The action H¬K :arrive(m) states that the
message m simultaneously arrives at all addresses ip ∈ H, and fails to arrive
at all addresses ip ∈ K. The rules of Table 4 let a R :*cast(m)-action of one
node synchronise with an arrive(m) of all other nodes, where this arrive(m)
amalgamates the arrival of message m at the nodes in the transmission range R
of the *cast(m), and the non-arrival at the other nodes. Rules (n-rcv) and (n-dis)
state that arrival of a message at a node happens if and only if the node receives
it, whereas non-arrival can happen at any time. This embodies our assumption
that, at any time, any message that is transmitted to a node within range of the
sender is actually received by that node. (Rule (n-dis) may appear to say that
any node ip has the option to disregard any message at any time. However, the
encapsulation operator (below) prunes away all such disregard transitions that
do not synchronise with a cast action for which ip is out of range.)

The action send(m) of a process does not give rise to any action of the
corresponding node—this action of a sequential process cannot occur without
communicating with a receive action of another sequential process running on
the same node. Time-consuming actions w1 and R :w1, with w1 ∈ W, of a process
are renamed into tick on the level of node expressions.9 All we need to remember
of these actions is that they take one unit of time. Since on node expressions the
actions send(m) have been dropped, the side condition making the wait actions

9 Rule (n-t) ensures that only those R:w1-transitions survive for which R is the current
transmission range of the node.
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Table 3. Structural operational semantics for node expressions

(n-sc)
P dsts : *cast(m)−−−−−−−−−→ P ′

ip : P :R dsts : *cast(m)−−−−−−−−−→ ip : P ′:R

(n-rcv)
P receive(m)−−−−−−−→ P ′

ip : P :R {ip}¬∅ : arrive(m)−−−−−−−−−−−→ ip : P ′:R

(n-del)
P deliver(d)−−−−−−→ P ′

ip : P :R ip :deliver(d)−−−−−−−−→ ip : P ′:R

(n-dis) ip : P :R ∅¬{ip} : arrive(m)−−−−−−−−−−−→ ip : P :R

(n-τ)
P τ−→ P ′

ip : P :R τ−→ ip : P ′:R
(n-w)

P w1−→ P ′

ip : P :R tick−−→ ip : P ′:R

(n-t)
P R:w1−−−→ P ′

ip : P :R tick−−→ ip : P ′:R

(∀w1 ∈W)

(con) ip:P :R connect(ip,ip′)−−−−−−−−−→ ip:P :R∪{ip′} (dis) ip:P :R disconnect(ip,ip′)−−−−−−−−−−−→ ip:P :R−{ip′}

Table 4. Structural operational semantics for network expressions

(nw-tl/nw-tr)
M R : *cast(m)−−−−−−−−→M ′ N H¬K : arrive(m)−−−−−−−−−−−→ N ′

M‖N R : *cast(m)−−−−−−−−→M ′‖N ′ N‖M R : *cast(m)−−−−−−−−→ N ′‖M ′

(
H ⊆ R,
K∩R = ∅

)

(arr)
M H¬K : arrive(m)−−−−−−−−−−−→M ′ N H′¬K′ : arrive(m)−−−−−−−−−−−−→ N ′

M‖N (H∪H′)¬(K∪K′) : arrive(m)−−−−−−−−−−−−−−−−−−→M ′‖N ′
(tck)

M tick−−→M ′ N tick−−→ N ′

M‖N tick−−→M ′‖N ′

(nw-al)
M a−→M ′

M‖N a−→M ′‖N
(nw-ar)

N a−→ N ′

M‖N a−→M‖N ′
(e-a)

M a−→M ′

[M ] a−→ [M ′]

(∀a ∈ {ip :deliver(d), τ, connect(ip, ip′),disconnect(ip, ip′)})

(e-tck)
M tick−−→M ′

[M ] tick−−→ [M ′]
(e-sc)

M R : *cast(m)−−−−−−−−→M ′

[M ] τ−→ [M ′]
(e-np)

M {ip}¬K : arrive(newpkt(d,dip))−−−−−−−−−−−−−−−−−−→M ′

[M ] ip :newpkt(d,dip)−−−−−−−−−−−→ [M ′]

ws and wrs conditional on the absence of a send-action can be dropped as well.
The priority of receive-actions over the wait action wr can now also be dropped,
for in the absence of send-actions, receive-actions are entirely reactive. A node
can do a receive-action only when another node, or the application layer, casts
a message, and in this case that other node is not available to synchronise with
a tick-transition.

Internal actions τ and the action ip :deliver(d) are simply inherited by node
expressions from the processes that run on these nodes (Rules (n-τ) and (n-del)),
and are interleaved in the parallel composition of nodes that makes up a network.
Finally, we allow actions connect(ip, ip′) and disconnect(ip, ip′) for ip, ip′ ∈ IP
modelling a change in network topology. In this formalisation node ip′ may be in
the range of node ip, meaning that ip can send to ip′, even when the reverse does
not hold. For some applications, in particular the one to AODV in Section 3, it
is useful to assume that ip′ is in the range of ip if and only if ip is in the range
of ip′. This symmetry can be enforced by adding the following rules to Table 3:
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ip :P :R connect(ip′,ip)−−−−−−−−−→ ip :P :R ∪ {ip′} ip :P :R disconnect(ip′,ip)−−−−−−−−−−−→ ip :P :R− {ip′}

ip 6∈ {ip′, ip′′}

ip :P :R connect(ip′,ip′′)−−−−−−−−−−→ ip :P :R

ip 6∈ {ip′, ip′′}

ip :P :R disconnect(ip′,ip′′)−−−−−−−−−−−−→ ip :P :R

and replacing the rules in the third line of Table 4 for (dis)connect actions by

M a−→M ′ N a−→ N ′

M‖N a−→M ′‖N ′

M a−→M ′

[M ] a−→ [M ′]

(
∀a ∈

{
connect(ip, ip′),

disconnect(ip, ip′)

})
.

The main purpose of the encapsulation operator is to ensure that no messages
will be received that have never been sent. In a parallel composition of network
nodes, any action receive(m) of one of the nodes ip manifests itself as an action
H¬K :arrive(m) of the parallel composition, with ip ∈ H. Such actions can
happen (even) if within the parallel composition they do not communicate with
an action *cast(m) of another component, because they might communicate
with a *cast(m) of a node that is yet to be added to the parallel composition.
However, once all nodes of the network are accounted for, we need to inhibit
unmatched arrive actions, as otherwise our formalism would allow any node at
any time to receive any message. One exception however are those arrive actions
that stem from an action receive(newpkt(d, dip)) of a sequential process running
on a node, as those actions represent communication with the environment. Here,
we use the function newpkt, which we assumed to exist.10 It models the injection
of new data d for destination dip.

The encapsulation operator passes through internal actions, as well as de-
livery of data to destination nodes, this being an interaction with the outside
world (Rule (e-a)). *cast(m)-actions are declared internal actions at this level
(Rule (e-sc)); they cannot be steered by the outside world. The connect and
disconnect actions are passed through in Table 4 (Rule (e-a)), thereby placing
them under control of the environment; to make them nondeterministic, their
rules should have a τ -label in the conclusion, or alternatively connect(ip, ip′)
and disconnect(ip, ip′) should be thought of as internal actions. Finally, actions
arrive(m) are simply blocked by the encapsulation—they cannot occur with-
out synchronising with a *cast(m)—except for {ip}¬K :arrive(newpkt(d, dip))
with d ∈ DATA and dip ∈ IP (Rule (e-np)). This action represents new data d
that is submitted by a client of the modelled protocol to node ip, for delivery at
destination dip.

Optional Augmentations to Ensure Non-Blocking Broadcast. Our pro-
cess algebra, as presented above, is intended for networks in which each node is
input enabled [21], meaning that it is always ready to receive any message, i.e.,
able to engage in the transition receive(m) for any m ∈ MSG—in the default
version of T-AWN, network expressions are required to have this property. In
our model of AODV (Section 3) we will ensure this by equipping each node with

10 To avoid the function newpkt we could have introduced a new primitive newpkt,
which is dual to deliver.
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a message queue that is always able to accept messages for later handling—even
when the main sequential process is currently busy. This makes our model input
enabled and hence non-blocking, meaning that no sender can be delayed in trans-
mitting a message simply because one of the potential recipients is not ready to
receive it.

In [10,11] we additionally presented two versions of AWN without the re-
quirement that all nodes need to be input enabled: one in which we kept the
same operational semantics and simply accept blocking, and one were we added
operational rules to avoid blocking, thereby giving up on the requirement that
any broadcast message is received by all nodes within transmission range.

The first solution does not work for T-AWN, as it would give rise to time
deadlocks, reachable states where time is unable to progress further.

The second solution is therefore our only alternative to requiring input en-
abledness for T-AWN. As in [10,11], it is implemented by the addition of the
rule

P receive(m)−−−−−−−6→

ip : P : R {ip}¬∅ : arrive(m)−−−−−−−−−−−→ ip : P : R

.

It states that a message may arrive at a node ip regardless whether the node is
ready to receive it or not; if it is not ready, the message is simply ignored, and
the process running on the node remains in the same state.

In [11, §4.5] also a variant of this idea is presented that avoids negative
premises, yet leads to the same transition system. The same can be done to
T-AWN in the same way, we skip the details and refer to [11, §4.5].

2.3 Results on the Process Algebra

In this section we list a couple of useful properties of our timed process algebra.
In particular, we show that wait actions do not change the data state, except for
the value of now. Moreover, we show the absence of time deadlocks: a complete
networkN described by T-AWN always admits a transition, independently of the

outside environment. More precisely, either N tick−−→, or N ip :deliver(d)−−−−−−−−→ or N τ−→.
We also show that our process algebra admits a translation into one without
data structure. The operational rules of the translated process algebra are in
the de Simone format [33], which immediately implies that strong bisimilarity
is a congruence, and yields the associativity of our parallel operators. Last, we
show that T-AWN and AWN are related by a simulation relation. Due to lack of
space, most of the proofs are omitted, they can be found in the Appendix of [5].

Proposition 1. On the level of sequential processes, wait actions change only
the value of the variable now, i.e., ξ, p w1−→ ζ, q ⇒ (p = q ∧ ζ = ξ[now++]).

Proof Sketch. One inspects all rules of Table 1 that can generate w-steps, and
then reasons inductively on the derivation of these steps.

Similarly, it can be observed that for transmission actions (actions from the
set R :W) the data state does not change either; the process, however, changes.
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That means ξ, p rw−→ ζ, q ⇒ ζ = ξ[now++] for all rw ∈ R :W. Furthermore, this
result can easily be lifted to all other layers of our process algebra (with minor
adaptations: for example on node expressions one has to consider tick actions).

To shorten the forthcoming definitions and properties we use the following
abbreviations:

1. P rcv.−−−−→ iff P receive(m)−−−−−−−→ for some m ∈ MSG,
2. P send−−−−→ iff P send(m)−−−−−→ for some m ∈ MSG,
3. P wait−−−−→ iff P w1−→ for some w1 ∈ W,
4. P other−−−−→ iff P a−→ for some a ∈ Act not of the forms above,

where P is a parallel process expression—possibly incorporating the construct
dsts :*cast(m)[n, o].p, but never in a +-context. Note that the last line covers
also transmission actions rw ∈ R :W. The following result shows that the wait
actions of a sequential process (with data evaluation) P are completely deter-
mined by the other actions P offers.

Theorem 1. Let P be a state of a sequential process.

1. P
w−→ iff P rcv.−−−−6→ ∧ P send−−−−6→ ∧ P other−−−−6→ .

2. P
wr−→ iff P rcv.−−−−→∧ P send−−−−6→ ∧ P other−−−−6→ .

3. P
ws−→ iff P rcv.−−−−6→ ∧ P send−−−−→∧ P other−−−−6→ .

4. P
wrs−→ iff P rcv.−−−−→∧ P send−−−−→∧ P other−−−−6→ .

Proof Sketch. The proof is by structural induction. It requires, however, a dis-
tinction between guarded terms (as defined in Footnote 7) and unguarded ones.

We could equivalently have omitted all transition rules involving wait actions
from Table 1, and defined the wait transitions for sequential processes as de-
scribed by Theorem 1 and Proposition 1. That our transition rules give the
same result constitutes a sanity check of our operational semantics.

Theorem 1 does not hold in the presence of unguarded recursion. A coun-

terexample is given by the expression X() with X()
def
= X(), for which we would

have X() rcv.−−−−6→ ∧X() send−−−−6→ ∧X() other−−−−6→ ∧X() wait−−−−6→.

Lemma 1. Let P be a state of a sequential or parallel process. If P R :w1−−−→ for
some R ⊆ IP and w1 ∈W then P R′:w1−−−−→ for any R′ ⊆ IP.

Observation 1. Let P be a state of a sequential process. If P R :w1−−−→ for some
w1 ∈W then w1 must be w and all outgoing transitions of P are labelled R′ : w.

For N a (partial) network expression, or a parallel process expression, write

N inb−−−→ iff N a−→ with a of the form R :*cast(m), ip :deliver(d) (or deliver(d))

or τ—an instantaneous non-blocking action. Hence, for a parallel process expres-

sion P , P other−−−−→ iff P inb−−−→ or P R :w1−−−→ for w1∈W. Furthermore, write P time−−−→ iff
P w1−→ or P R :w1−−−→ for some w1∈W. We now lift Theorem 1 to the level of parallel
processes.
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Theorem 2. Let P be a state of a parallel process.

1. P
w−→∨ P R : w−−−−→ iff P rcv.−−−−6→ ∧ P send−−−−6→ ∧ P inb−−−−6→ .

2. P
wr−→∨ P R : wr−−−→ iff P rcv.−−−−→∧ P send−−−−6→ ∧ P inb−−−−6→ .

3. P
ws−→∨ P R : ws−−−→ iff P rcv.−−−−6→ ∧ P send−−−−→∧ P inb−−−−6→ .

4. P
wrs−→∨ P R : wrs−−−−→ iff P rcv.−−−−→∧ P send−−−−→∧ P inb−−−−6→ .

Corollary 1. Let P be a state of a parallel process. Then P time−−−→ iff P inb−−6→. ut

Lemma 2. Let N be a partial network expression with L the set of addresses of

the nodes of N . Then N H¬K : arrive(m)−−−−−−−−−−→ , for any partition L = H ∪· K of L into
sets H and K, and any m ∈ MSG.

Using this lemma, we can finally show one of our main results: an (encapsulated)
network expression can perform a time-consuming action iff an instantaneous
non-blocking action is not possible.

Theorem 3. Let N be a partial or complete network expression.
Then N tick−−→ iff N inb−−6→.

Proof. We apply structural induction on N . First suppose N is a node expression
ip :P :R. Then N tick−−→ iff P w1−→ ∨ P R :w1−−−→ for some w1 ∈ W. By Lemma 1 this
is the case iff P w1−→ ∨ P R′ :w1−−−−→ for some R′ ⊆ IP and w1 ∈ W, i.e., iff P time−−−→.
Moreover N inb−−−→ iff P inb−−−→. Hence the claim follows from Corollary 1.

Now suppose N is a partial network expression M1‖M2. In case Mi
inb−−6→ for

i = 1, 2 then N inb−−6→. By induction Mi
tick−−→ for i = 1, 2, and hence N tick−−→. Oth-

erwise, Mi
inb−−−→ for i = 1 or 2. Now N inb−−−→. In case Mi

τ−→ or Mi
ip :deliver(d)−−−−−−−−→

this follows from the third line of Table 4; if Mi
R : *cast(m)−−−−−−−−→ it follows from the

first line, in combination with Lemma 2. By induction Mi
tick−−6→, and thus N tick−−6→.

Finally suppose that N is a complete network expression [M ]. By the rules

of Table 4 N tick−−→ iff M tick−−→, and N inb−−−→ iff M inb−−→, so the claim follows from the
case for partial network expressions. ut

Corollary 2. A complete network N described by T-AWN always admits a tran-
sition, independently of the outside environment, i.e., ∀N, ∃a such that N a−→
and a 6∈ {connect(ip, ip′),disconnect(ip, ip′), newpkt(d, dip)}.
More precisely, either N tick−−→ or N ip : deliver(d)−−−−−−−−→ or N τ−→. ut

Our process algebra admits a translation into one without data structures
(although we cannot describe the target algebra without using data structures).
The idea is to replace any variable by all possible values it can take. The target
algebra differs from the original only on the level of sequential processes; the sub-
sequent layers are unchanged. A formal definition can be found in the Appendix
of [5]. The resulting process algebra has a structural operational semantics in
the (infinitary) de Simone format, generating the same transition system—up
to strong bisimilarity,↔—as the original, which provides some results ‘for free’.
For example, it follows that↔, and many other semantic equivalences, are con-
gruences on our language.
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Theorem 4. Strong bisimilarity is a congruence for all operators of T-AWN.

This is a deep result that usually takes many pages to establish (e.g., [34]). Here
we get it directly from the existing theory on structural operational semantics,
as a result of carefully designing our language within the disciplined framework
described by de Simone [33].

Theorem 5. 〈〈 is associative, and ‖ is associative and commutative, up to↔.

Proof. The operational rules for these operators fit a format presented in [8],
guaranteeing associativity up to↔. The details are similar to the case for AWN,
as elaborated in [10,11]; the only extra complication is the associativity of the
operator 〈〈 on W, as defined on Page 11, which we checked automatically by
means of the theorem prover Prover9 [22]. Commutativity of ‖ follows by sym-
metry of the rules. ut

Theorem 6. Each AWN process P , seen as a T-AWN process, can be simulated
by the AWN process P . Likewise, each AWN network N , seen as a T-AWN
network, can be simulated by the AWN network N .

Here a simulation refers to a weak simulation as defined in [14], but treating
(dis)connect-actions as τ , and with the extra requirement that the data states
maintained by related expressions are identical—except of course for the vari-
ables now, that are missing in AWN. Details can be found in the Appendix of [5].

Thanks to Theorem 6, we can prove that all invariants on the data structure
of a process expressed in AWN are still preserved when the process is interpreted
as a T-AWN expression. As an application of this, an untimed version of AODV,
formalised as an AWN process, has been proven loop free in [11,15]; the same
system, seen as a T-AWN expression—and thus with specific execution times
associated to uni-, group-, and broadcast actions—is still loop free when given
the operational semantics of T-AWN.

3 Case Study: The AODV Routing Protocol

Routing protocols are crucial to the dissemination of data packets between nodes
in WMNs and MANETs. Highly dynamic topologies are a key feature of WMNs
and MANETs, due to mobility of nodes and/or the variability of wireless links.
This makes the design and implementation of robust and efficient routing pro-
tocols for these networks a challenging task. In this section we present a formal
specification of the Ad hoc On-Demand Distance Vector (AODV) routing pro-
tocol. AODV [29] is a widely-used routing protocol designed for MANETs, and
is one of the four protocols currently standardised by the IETF MANET work-
ing group11. It also forms the basis of new WMN routing protocols, including
HWMP in the IEEE 802.11s wireless mesh network standard [20].

11 http://datatracker.ietf.org/wg/manet/charter/

http://datatracker.ietf.org/wg/manet/charter/
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Our formalisation is based on an untimed formalisation of AODV [11,15],
written in AWN, and models the exact details of the core functionality of AODV
as standardised in IETF RFC 3561 [29]; e.g., route discovery, route maintenance
and error handling. We demonstrate how T-AWN can be used to reason about
critical protocol properties. As major outcome we demonstrate that AODV is
not loop free, which is in contrast to common belief. Loop freedom is a critical
property for any routing protocol, but it is particularly relevant and challenging
for WMNs and MANETs. We close the section by discussing a fix to the protocol
and prove that the resulting protocol is indeed loop free.

3.1 Brief Overview

AODV is a reactive protocol, which means that routes are established only on
demand. If a node S wants to send a data packet to a node D, but currently does
not know a route, it temporarily buffers the packet and initiates a route discovery
process by broadcasting a route request (RREQ) message in the network. An
intermediate node A that receives the RREQ message creates a routing table
entry for a route towards node S referred to as a reverse route, and re-broadcasts
the RREQ. This is repeated until the RREQ reaches the destination node D, or
alternatively a node that knows a route to D. In both cases, the node replies by
unicasting a corresponding route reply (RREP) message back to the source S,
via a previously established reverse route. When forwarding RREP messages,
nodes create a routing table entry for node D, called the forward route. When
the RREP reaches the originating node S, a route from S to D is established and
data packets can start to flow. Both forward and reverse routes are maintained
in a routing table at every node—details are given below. In the event of link and
route breaks, AODV uses route error (RERR) messages to notify the affected
nodes: if a link break is detected by a node, it first invalidates all routes stored in
the node’s own routing table that actually use the broken link. Then it sends a
RERR message containing the unreachable destinations to all (direct) neighbours
using this route.

In AODV, a routing table consists of a list of entries—at most one for each
destination—each containing the following information: (i) the destination IP
address; (ii) the destination sequence number ; (iii) the sequence-number-status
flag—tagging whether the recorded sequence number can be trusted; (iv) a flag
tagging the route as being valid or invalid—this flag is set to invalid when a link
break is detected or the route’s lifetime is reached; (v) the hop count, a metric
to indicate the distance to the destination; (vi) the next hop, an IP address
that identifies the next (intermediate) node on the route to the destination; (vii)
a list of precursors, a set of IP addresses of those 1-hop neighbours that use
this particular route; and (viii) the lifetime (expiration or deletion time) of the
route. The destination sequence number constitutes a measure approximating
the relative freshness of the information held—a higher number denotes newer
information. The routing table is updated whenever a node receives an AODV
control message (RREQ, RREP or RERR) or detects a link break.
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During the lifetime of the network, each node not only maintains its routing
table, it also stores its own sequence number. This number is used as a local
“timer” and is incremented whenever a new route request is initiated. It is the
source of the destination sequence numbers in routing tables of other nodes.

Full details of the protocol are outlined in the request for comments (RFC) [29].

3.2 Route Request Handling Handled Formally

Our formal model consists of seven processes: AODV reads a message from the
message queue (modelled in process QMSG, see below) and, depending on the type
of the message, calls other processes. Each time a message has been handled
the process has the choice between handling another message, initiating the
transmission of queued data packets or generating a new route request. NEWPKT
and PKT describe all actions performed by a node when a data packet is received.
The former process handles a newly injected packet. The latter describes all
actions performed when a node receives data from another node via the protocol.
RREQ models all events that might occur after a route request message has been
received. Similarly, RREP describes the reaction of the protocol to an incoming
route reply. RERR models the part of AODV that handles error messages. The
last process QMSG queues incoming messages. Whenever a message is received,
it is first stored in a message queue. When the corresponding node is able to
handle a message, it pops the oldest message from the queue and handles it.
An AODV network is an encapsulated parallel composition of node expressions,
each with a different node address (identifier), and all initialised with the parallel
composition AODV(. . . ) 〈〈 QMSG(. . . ).

In this paper, we have room to present parts of the RREQ process only, de-
picted in Process 412; the full formal specification of the entire protocol can be
found in the Appendix of [5]. There, we also discuss all differences between the
untimed version of AODV, as formalised in [11,15], and the newly developed
timed version. These differences mostly consist of setting expiration times for
routing table entries and other data maintained by AODV, and handling the
expiration of this data.

A route discovery in AODV is initiated by a source node broadcasting a
RREQ message; this message is subsequently re-broadcast by other nodes. Pro-
cess 4 shows major parts of our process algebra specification for handling a
RREQ message received by a node ip. The incoming message carries eight pa-
rameters, including hops, indicating how far the RREQ had travelled so far,
rreqid , an identifier for this request, dip, the destination IP address, and sip,
the sender of the incoming message; the parameters ip, sn and rt , storing the
node’s address, sequence number and routing table, as well as rreqs and store,
are maintained by the process RREQ itself.

Before handling the incoming message, the process first updates rreqs (Line 1),
a list of (unique) pairs containing the originator IP address oip and a route re-
quest identifier rreqid received within the last PATH DISCOVERY TIME: the update

12 The numbering scheme is consistent with the one in [5].
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Process 4 Parts of the RREQ handling

RREQ(hops, rreqid, dip, dsn, dsk, oip, osn, sip , ip, sn, rt, rreqs, store)
def
=

1. [[exp rreqs(rreqs, now)]]
2. (
3. [ (oip, rreqid, ∗) ∈ rreqs ] /* the RREQ has been received previously */
4. AODV(ip, sn, rt, rreqs, store) /* silently ignore RREQ, i.e., do nothing */
5. + [ (oip, rreqid, ∗) 6∈ rreqs ] /* the RREQ is new to this node */
6. [[rt := update(rt, (oip, osn, kno, val, hops + 1, sip, ∅, now + ACTIVE ROUTE TIMEOUT))]]
7. [[rt := setTime rt(rt, oip, now+2 ·NET TRAVERSAL TIME−2 · (hops+1) ·NODE TRAVERSAL TIME)]]
8. [[rreqs := rreqs ∪ {(oip, rreqid, now + PATH DISCOVERY TIME)}]] /* update rreqs */
9. (

10. [ dip = ip ] /* this node is the destination node */
11. [. . . ]
12.
23. + [ dip 6= ip ] /* this node is not the destination node */
24. (
25. /* valid route to dip that is fresh enough */
26. [ dip ∈ vD(rt) ∧ dsn≤ sqn(rt,dip) ∧ sqnf(rt,dip) = kno ]
27. /* update rt by adding precursors */
28. [[rt := addpreRT(rt, dip, {sip})]]
29. [[rt := addpreRT(rt, oip, {nhop(rt, dip)})]]
30. /* unicast a RREP towards the oip of the RREQ */
31. unicast(nhop(rt, oip),

rrep(dhops(rt, dip), dip, sqn(rt, dip), oip, σtime(rt, dip)− now, ip) .
32. AODV(ip, sn, rt, rreqs, store)
33. I /* If the transmission is unsuccessful, a RERR message is generated */
34. [. . . ] /* update local data structure */
40. groupcast(pre, rerr(dests, ip)) . AODV(ip, sn, rt, rreqs, store)
41. + [ dip 6∈ vD(rt)∨ sqn(rt,dip) < dsn∨ sqnf(rt,dip)= unk ] /*no fresh route*/
42. /* no further update of rt */
43. broadcast(rreq(hops+1, rreqid, dip,max(sqn(rt, dip), dsn), dsk, oip, osn, ip)) .
44. AODV(ip, sn, rt, rreqs, store)
45. )
46. )
47. )

removes identifiers that are too old. Based on this list, the node then checks
whether it has recently received a RREQ with the same oip and rreqid .

If this is the case, the RREQ message is ignored, and the protocol continues
to execute the main AODV process (Lines 3–4). If the RREQ is new (Line 5),
the process updates the routing table by adding a “reverse route” entry to oip,
the originator of the RREQ, via node sip, with distance hops+1 (Line 6). If
there already is a route to oip in the node’s routing table rt , it is only updated
with the new route if the new route is “better”, i.e., fresher and/or shorter
and/or replacing an invalid route. The lifetime of this reverse route is updated
as well (Line 7): it is set to the maximum of the currently stored lifetime and
the minimal lifetime, which is determined by now + 2 · NET TRAVERSAL TIME −
2 · (hops + 1) · NODE TRAVERSAL TIME [29, Page 17]. The process also adds the
message to the list of known RREQs (Line 8).

Lines 10–22 (only shown in the Appendix of [5]) deal with the case where
the node receiving the RREQ is the intended destination, i.e., dip=ip (Line 10).

Lines 23–45 deal with the case where the node receiving the RREQ is not the
destination, i.e., dip 6= ip (Line 23). The node can respond to the RREQ with a
corresponding RREP on behalf of the destination node dip, if its route to dip is
“fresh enough” (Line 26). This means that (a) the node has a valid route to dip,
(b) the destination sequence number in the node’s current routing table entry
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(sqn(rt, dip)) is greater than or equal to the requested sequence number to dip
in the RREQ message, and (c) the node’s destination sequence number is trust-
worthy (sqnf(rt,dip)=kno). If these three conditions are met (Line 26), the node
generates a RREP message, and unicasts it back to the originator node oip via
the reverse route. Before unicasting the RREP message, the intermediate node
updates the forward routing table entry to dip by placing the last hop node (sip)
into the precursor list for that entry (Line 28). Likewise, it updates the reverse
routing table entry to oip by placing the first hop nhop(rt, dip) towards dip in the
precursor list for that entry (Line 29). To generate the RREP message, the pro-
cess copies the sequence number for the destination dip from the routing table rt
into the destination sequence number field of the RREP message and it places its
distance in hops from the destination (dhops(rt, dip)) in the corresponding field
of the new reply (Line 31). The RREP message is unicast to the next hop along
the reverse route back to the originator of the corresponding RREQ message. If
this unicast is successful, the process goes back to the AODV routine (Line 32).
If the unicast of the RREP fails, we proceed with Lines 33–40, in which a route
error (RERR) message is generated and sent. This conditional unicast is imple-
mented in our model with the (T-)AWN construct unicast(dest,ms).P I Q. In
the latter case, the node sends a RERR message to all nodes that rely on the
broken link for one of their routes. For this, the process first determines which
destination nodes are affected by the broken link, i.e., the nodes that have this
unreachable node listed as a next hop in the routing table (not shown in the
shortened specification). Then, it invalidates any affected routing table entries,
and determines the list of precursors, which are the neighbouring nodes that have
a route to one of the affected destination nodes via the broken link. Finally, a
RERR message is sent via groupcast to all these precursors (Line 40).

If the node is not the destination and there is either no route to the desti-
nation dip inside the routing table or the route is not fresh enough, the route
request received has to be forwarded. This happens in Line 43. The information
inside the forwarded request is mostly copied from the request received. Only
the hop count is increased by 1 and the destination sequence number is set to
the maximum of the destination sequence number in the RREQ packet and the
current sequence number for dip in the routing table. In case dip is an unknown
destination, sqn(rt, dip) returns the unknown sequence number 0.

To ensure that our time-free model from [11,15] accurately captures the in-
tended behaviour of AODV [29], we spent a long time reading and interpreting
the RFC, inspecting open-source implementations, and consulting network en-
gineers. We now prove that our timed version of AODV behaves similar to our
original formal specification, and hence (still) captures the intended behaviour.

Theorem 7. The timed version of AODV (as sketched in this paper, and pre-
sented in [5]) is a proper extension of the untimed version (as presented in [11]).
By this we mean that if all timing constants, such as ACTIVE ROUTE TIMEOUT, are
set to∞, and the maximal number of pending route request retries RREQ RETRIES

is set to 1, then the (T-AWN) transition systems of both versions of AODV are
weakly bisimilar.
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Proof Sketch. First, one shows that the newly introduced functions, such as
exp rreqs and setTime rt do not change the data state in case the time pa-
rameters equal ∞; and hence lead to transitions of the form ξ, p τ−→ ξ, p′. This
kind of transitions are the ones that make the bisimulation weak, since they do
not occur in the formal specification of [11]. Subsequently, one proves that all
other transitions are basically identical.

3.3 Loop Freedom

Loop freedom is a critical property for any routing protocol, but it is particularly
relevant and challenging for WMNs and MANETs. “A routing-table loop is a
path specified in the nodes’ routing tables at a particular point in time that visits
the same node more than once before reaching the intended destination” [12].
Packets caught in a routing loop can quickly saturate the links and have a
detrimental impact on network performance.

For AODV and many other protocols sequence numbers are used to guaran-
tee loop freedom. Such protocols usually claim to be loop free due to the use of
monotonically increasing sequence numbers. For example, AODV “uses destina-
tion sequence numbers to ensure loop freedom at all times (even in the face of
anomalous delivery of routing control messages), ...” [29]. It has been shown that
sequence numbers do not a priori guarantee loop freedom [16]; for some plausi-
ble interpretations13 of different versions of AODV, however, loop freedom has
been proven [30,3,35,34,19,11,15,25]14. With the exception of [3], all these papers
consider only untimed versions of AODV. As mentioned in Section 1 untimed
analyses revealed many shortcomings of AODV; hence they are necessary. At
the same time, a timed analysis is required as well. [3] shows that the premature
deletion of invalid routes, and a too quick restart of a node after a reboot, can
yield routing loops. Since then, AODV has changed to such a degree that the
examples of [3] do not apply any longer.

In [13], “it is shown that the use of a DELETE PERIOD in the current AODV
specification can result in loops”. However, the loop constructed therein at any
time passes through at least one invalid routing table entry. As such, it is not a
routing loop in the sense of [11,15]—we only consider loops consisting of valid
routing table entries, since invalid ones do not forward data packets. In a loop
as in [13] data packets cannot be sent in circles forever.

It turns out that AODV as standardised in the RFC (and carefully formalised
in Section 3.2 and the Appendix of [5]) is not loop free. A potential cause of
routing loops, sketched in Figure 1, is a situation where a node B has a valid

13 By a plausible interpretation of a protocol standard written in English prose we
mean an interpretation that fills the missing bits, and resolves ambiguities and con-
tradictions occurring in the standard in a sensible and meaningful way.

14 The proofs in [30] and [3] are incorrect; the model of [34] does not capture the full
behaviour of the routing protocol; and [35] is based on a subset of AODV that does
not cover the “intermediate route reply” feature, a source of loops. In [25] a draft of
a new version of AODV is modelled, without intermediate route reply. For a more
detailed discussion see [15].
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Fig. 1. Premature Route Expiration

routing table entry for a desti-
nation D (in Figure 1 denoted
D:val→C), but the next hop C
no longer has a routing table en-
try for D (D:−), valid or invalid.
In such a case, C might search for
a new route to D and create a new

routing table entry pointing to B as next hop, or to a node A upstream from B.
We refer to this scenario as a case of premature route expiration.

A related scenario, which we also call premature route expiration, is when a
node C sends a RREP message with destination D or a RREQ messages with
originator D to a node B, but looses its route to D before that message arrives.
This scenario can easily give rise to the scenario above.

Premature route expiration can be avoided by setting DELETE PERIOD to ∞,
which is essentially the case in the untimed version of AODV (cf. Theorem 7).
In that case, no routing table entry expires or is erased. Hence, the situation
where C no longer has a routing table entry for D is prevented.

In [11] we studied 5184 possible interpretations of the AODV RFC [29], a
proliferation due to ambiguities, contradictions and cases of underspecification
that could be resolved in multiple ways. In 5006 of these readings of the standard,
including some rather plausible ones, we found routing loops, even when exclud-
ing all loops that are due to timing issues [16,11]. In [19,11,15] we have chosen a
default reading of the RFC that avoids these loops, formalised it in AWN, and
formally proved loop freedom, still assuming (implicitly) DELETE PERIOD =∞.

After taking this hurdle, the present paper continues the investigation by al-
lowing arbitrary values for time parameters and for RREQ RETRIES; hence drop-
ping the simplifying assumption that DELETE PERIOD =∞.

One of our key results is that for the formalisation of AODV presented here,
premature route expiration is the only potential source of routing loops. Under
the assumption that premature route expiration does not occur, it turns out
that, with minor modifications, the loop freedom proof of [11,15] applies to our
timed model of AODV as well. A proof of this result is presented in the Appendix
of [5]. There, we revisit all the invariants from [11] that contribute to the loop-
freedom proof, and determine which of them are still valid in the timed setting,
and how others need to be modified.

It is trivial to find an example where premature route expiration does occur
in AODV, and a routing loop ensues. This can happen when a message spends
an inordinate amount of time in the queue of incoming messages of a node.
However, this situation tends not to occur in realistic scenarios. To capture this,
we now make the assumption that the period a message spends in the queue of
incoming messages of the receiving node, is bounded by NODE TRAVERSAL TIME.
We also assume that the period a route request travels through the network is
bounded by NET TRAVERSAL TIME.

These assumptions eliminate the “trivial” counterexample mentioned above.
As we show in the Appendix of [5], we now almost can prove an invariant that
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essentially says that premature route expiration does not occur. Following the
methodology from [19,11,15], we establish our invariants by showing that they
hold in all possible initial states of AODV, and are preserved under the transi-
tions of our operation semantics, which correspond to the line numbers in our
process algebraic specification.

We said “almost”, because, as indicated in the Appendix of [5], our main
invariant is not preserved by five lines of our AODV specification. Additionally,
we need to make the assumption that when a RREQ message is forwarded, the
forwarding node has a valid routing table entry to the originator of the route
request. This does not hold for our formalisation of AODV: in Process 4 no check
is performed on oip, only the routing table to the destination node dip has to
satisfy certain conditions (Lines 23 and 41).

It turns out that for each of these failures we can construct an example of
premature route expiration, and, by that, a counterexample to loop freedom.

However, if we skip all five offending lines (or adapt them in appropriate ways)
and make a small change to process RREQ that makes the above assumption
valid,15 we obtain a proof of loop freedom for the resulting version of AODV.
This follows immediately from the invariants established in the Appendix of [5].

4 Conclusion

In this paper we have proposed T-AWN, a timed process algebra for wireless
networks. We are aware that there are many other timed process algebras, such
as timed CCS [24], timed CSP [32,28], timed ACP [1], ATP [27] and TPL [17],
However, none of these algebras provides the unique set of features needed for
modelling and analysing protocols for wireless networks (e.g. a conditional uni-
cast).16 These features are provided by (T-)AWN, though. Our treatment of
time is based on design decisions that appear rather different from the ones
in [24,32,28,1,27]. Our approach appears to be closest to [17], but avoiding the
negative premises that play a crucial role in the operational semantics of [17].

We have illustrated the usefulness of T-AWN by analysing the Ad hoc On-
Demand Distance Vector routing protocol, and have shown that, contrary to
claims in the literature and to common belief, it fails to be loop free. We have
also discussed boundary conditions for a fix ensuring that the resulting protocol
is loop free.

Acknowledgement. NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through
the ICT Centre of Excellence Program.

15 The change basically introduces the test “oip ∈ vD(rt)” in Line 41 or 9 of Process 4.
16 This is similar to the untimed situation. A detailed comparison between AWN and

other process calculi for wireless networks is given in [11, Section 11.1]; this discussion
can directly be transferred to the timed case.
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