
Acta Informatica manuscript No.
(will be inserted by the editor)

CCS: It’s not Fair!

Fair Schedulers cannot be implemented in CCS-like languages
even under progress and certain fairness assumptions

Rob van Glabbeek · Peter Höfner

Received: date / Accepted: date

It is our great pleasure to dedicate this paper to Walter Vogler on the occa-
sion of his 60th birthday. We have combined two of Walter’s main interests:
Petri nets and process algebra. In fact, we proved a result about Petri nets
that had been proven before by Walter, but in a restricted form, as we dis-
covered only after finishing our proof. We also transfer this result to the
process algebra CCS. Beyond foundational research in the theory of concur-
rent systems, Walter achieved excellent results in related subjects such as
temporal logic and efficiency. In addition to being a dedicated researcher,
he is also meticulous in all of his endeavours, including his writing. As a
consequence his scientific papers tend to contain no flaws, which is just one
of the reasons that makes reading them so enjoyable.
It’s fair to say: “CCS Walter!”—Congratulations and Continuous Success!

Abstract In the process algebra community it is sometimes suggested that, on
some level of abstraction, any distributed system can be modelled in standard
process-algebraic specification formalisms like CCS. This sentiment is strengthened
by results testifying that CCS, like many similar formalisms, is Turing powerful
and provides a mechanism for interaction. This paper counters that sentiment by
presenting a simple fair scheduler—one that in suitable variations occurs in many
distributed systems—of which no implementation can be expressed in CCS, unless
CCS is enriched with a fairness assumption.

Since Dekker’s and Peterson’s mutual exclusion protocols implement fair sched-
ulers, it follows that these protocols cannot be rendered correctly in CCS without
imposing a fairness assumption. Peterson expressed this algorithm correctly in
pseudocode without resorting to a fairness assumption, so it furthermore follows
that CCS lacks the expressive power to accurately capture such pseudocode.

NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

R. J. van Glabbeek
NICTA and UNSW. E-mail: rvg@cs.stanford.edu

P. Höfner
NICTA and UNSW. E-mail: Peter.Hoefner@nicta.com.au

2 Rob van Glabbeek, Peter Höfner

Part I Motivation & Discussion

1 Background

In the process algebra community it is generally taken for granted that, on some
level of abstraction, any distributed system can be modelled in standard process-
algebraic specification formalisms like CCS [45].

Of course, if a distributed system has features related to time, probability,
broadcast communication or anything else that is not innately modelled in CCS,
yet essential to adequately describe the distributed system under consideration,
appropriate extensions are needed, such as timed process algebras (e.g., [56,35,3,
43,16]), probabilistic process algebras (e.g., [34]) or calculi for broadcast commu-
nication (e.g., [54]). This paper is not concerned with such features.

The relative expressiveness of process algebras is a well-studied subject [58,50,
32], and in this area CCS-like process algebras are considered far from universally
expressive. In [27] for instance it is pointed out that the parallel composition
operator of CSP [11,36] cannot be expressed in CCS. The priority operator of [5]
is a good example of an operator that cannot be expressed in any of the standard
process algebras such as CCS, CSP, ACP [7] or LOTOS [9]. These results focus,
however, on the possibility of expressing operators—composing a process out of
one or more components—as CCS-contexts; they cast no doubt on the possibility
of expressing actual processes in CCS.

Beside operators, it has also be shown that there exist examples of process
specifications that cannot be faithfully rendered in CCS-like formalisms (cf. [26]).
We will illustrate this in Section 3. In this paper we distinguish process specifica-
tions from actual processes that could in principle be implemented and executed.
Again, the evidence presented casts no doubt on the possibility of expressing actual
processes in CCS.

Incorporating these clarifications of our meaning, we expect that many con-
currency experts feel that, up to an adequate level of abstraction, any reactive
system can be rendered in CCS. This sentiment is strengthened by results testi-
fying that CCS, like many similar formalisms, is Turing powerful [45]. As a man-
ifestation of this, any computable partial function f : Σ∗ → Σ∗ over some finite
alphabet Σ can be modelled by a CCS context P [], such that, for any input
word w = a1a2 . . . an ∈ Σ∗, encoded as a CCS expression W := a1.a2.an.z.0
featuring an end-of-input marker z, the process P [W] computes forever without
performing any visible actions if f(w) is undefined, and otherwise performs the
sequence of visible actions f(w), followed by an end-of-output marker z.

It is sometimes argued that Turing machines are an inadequate formalism
to capture interactive behaviour as displayed by today’s computers [62,41]. The
main argument is that Turing machines are function-based and calculate, for a
given finite input, one output; this paradigm does not do justice to the ongoing
interactions between a reactive system and its environment. To add ongoing in-
teractivity to Turing machines, interaction machines are proposed in [62], and
formalised in [31] as persistent Turing machines. Likewise, [6] proposes reactive
Turing machines. Since standard process algebras like CCS are already equipped
with interaction primitives, they can surely also model computations on persistent
or reactive Turing machines. All this strengthens the feeling that standard process
algebras, such as CCS, are powerful enough to specify any distributed system.

CCS: It’s not Fair! 3

2 Fairness Assumptions

Before presenting evidence that CCS and related formalisms cannot correctly spec-
ify every distributed system, some explanation is in order on our understanding
of ‘correctly’. This is best illustrated by an example.

Consider the CCS agent identifier E with defining equation E
def
= a.E + b.0.

The question is whether this is a good rendering of a process that is guaranteed to
eventually perform the action b. The answer depends on whether we incorporate a
fairness assumption in the semantics of CCS. A strong fairness assumption requires
that if a task (here b) is enabled infinitely often, but allowing interruptions during
which it is not enabled, it will eventually be scheduled [25,42]. Making such an
assumption allows us to infer that indeed the process E will eventually do a b.1

It depends on the context of the application of CCS whether it is appropriate to
make such fairness assumptions. For the verification of the alternating bit protocol,
for instance, fairness assumptions are indispensable [8]. But in some situations
they allow us to reach conclusions that are patently false. In the example above
for instance, let a be an unsuccessful attempt to dial a number or an unreliable
mobile phone, and b a successful one. The system E simply retries after each
unsuccessful attempt. Whether it ever succeeds in performing b depends very much
on how unreliable the phone is. If there is a fixed positive probability on success,
the strong fairness assumption appears warranted. Yet, if the phone is completely
dead, it is not, and the conclusion that we eventually succeed in dialling is false.
In fact, when assuming strong fairness we loose the expressiveness to describe by
a finite recursive specification like E a system such as the above interaction with
the unreliable telephone that does allow an infinite run with only as.

As evidence that not every distributed system can be rendered correctly in
CCS, we will describe a fair scheduler as a counterexample. Yet, our fair scheduler
can be rendered in CCS very easily, if only we are willing to postulate a fairness
property to support its correctness. However, considering the above example and
the fact that we may reach wrong conclusions, this is a price we are not willing to
pay.

Our fair scheduler is not merely an ‘artificial’ CCS specification; it is imple-
mented in many working distributed systems, and (unlike the alternating bit pro-
tocol) its correctness should not be contingent on any fairness assumption what-
soever. This is another reason why we do not want to invoke fairness to achieve a
correct rendering in CCS.

Yet, we do find it reasonable to equip CCS with two assumptions that are
weaker than strong fairness, namely progress and justness. A progress assumption
is what is needed to infer that the CCS process b.0 will eventually do a b, and
a justness assumption allows us to infer that the parallel composition A|b.0 with
A

def
= a.A will eventually do a b. If our task is to specify in CCS a process B that will

eventually do a b, then, when assuming strong fairness, the processes E, A|b.0 and
b.0 are acceptable implementations of B. If we assume justness, but not fairness,
this selection shrinks to A|b.0 and b.0, and if we only assume progress, we have to
give up on A|b.0 as well. When not even assuming progress, B cannot be rendered
in CCS at all. Assuming progress and justness only, A|b.0 models a process that

1 In [4] a form of reasoning using a particularly strong global fairness assumption was in-
tegrated in the axiomatic framework of ACP, and shown to be compatible with the notion of
weak bisimulation commonly taken as the semantic basis for CCS.

4 Rob van Glabbeek, Peter Höfner

will eventually do a b, whereas E can be used to characterise the above mentioned
interaction with the unreliable telephone, which allows an infinite sequence of as
only.

So, when we claim that a fair scheduler cannot be implemented in CCS, we
mean that it cannot be implemented in CCS+justness, CCS+progress or CCS
without any progress assumption. It can be implemented in CCS+strong fairness,
however.

To pinpoint the borderline, consider a weak fairness or justice assumption [25,
42]. This assumption requires that if a task, from some point onwards, is perpet-
ually enabled, it will eventually be scheduled. What this means depends on our
interpretation of ‘perpetual’. If ‘perpetual’ simply means ‘in each state’, then a
weak fairness assumption is all that is needed to assure that the process E will
eventually do a b.2 A weak fairness assumption in this sense is enough to cor-
rectly render a fair scheduler in CCS. If, on the other hand, the execution of the
a-transition of E counts as a (short) interruption of the enabledness of b, then
justice can be shown to coincide with justness [29]; as we will show, this is not
enough to render a fair scheduler in CCS.

3 Specifications versus Actual Processes

Consider the system specification G expressed in CCS as A|B with A
def
= a.A and

B
def
= b.B, but with the added requirement that all infinite executions should have

infinitely many occurrences of a as well as b. Here a and b could be seen as two
tasks that need to be scheduled again and again. The left-hand component A of
the parallel composition tries to perform task a infinitely often, and the right-
hand component tries to perform task b infinitely often. The process A|B by itself,
as specified in CCS, is normally deemed equivalent to the process C, defined by

C
def
= a.C + b.C, and—in the absence of a justness or fairness assumption—offers

no guarantee that a single b will ever happen. It could be that, due to unfortunate
scheduling, at each time a choice is made, task a is chosen. The challenge in speci-
fying the fair version G of this process in CCS is how to ensure that sooner or later
a b will happen, without simply invoking a fairness or justness assumption, and
without setting any fixed limit on the number of as that can happen beforehand.

Accordingly, solutions have appeared in the literature that change the oper-
ational semantics of CCS in such a way that A|B will surely do a b eventually.
In [52] for instance, parallel operators ‖m are used that, each time a b occurs, non-
deterministically select a number m and guarantee that from that point onwards
at most m occurrences of a happen before the next b. Another solution along these
lines is proposed in [17], whereas [13] solves the problem by harvesting the power
added by the treatment of time in the timed process algebra PAFAS [16].

In relation to the above challenge it would be trivial to specify some process
that makes sure that tasks a and b are each scheduled infinitely often; a partic-
ularly simple way to achieve this is through the CCS specification D, given by

D
def
= a.b.D; that is, to alternate each of the two tasks. This is a round-robin solu-

tion. It could be seen as a particular implementation of G. The reason that such a

2 The process E′ with E′ def
= a.a.E′ + b.0 on the other hand really needs strong fairness.

CCS: It’s not Fair! 5

solution is not chosen is that it fails to capture the full generality of the original
specification, in which arbitrary many as may come between any two bs.

Any real-life implementation of G on a physical computer is unlikely to capture
the full generality of its specification, but rather goes a few steps towards the
round-robin solution. For this reason, one could argue that G does not constitute
an example of a distributed system that cannot be rendered in CCS, but rather
one of a specification that cannot be rendered in CCS. As such, it falls out of the
scope of this paper.

4 Our Contributions

This paper counters the sentiment that CCS-like process algebras are powerful
enough to represent arbitrary distributed systems by presenting a particularly
simple system of which no implementation can be expressed in CCS. The reason
we use CCS is that it is among the most well-known standard process algebras,
while having a fairly easy to explain syntax and semantics. However, we believe
the same result, with essentially the same proof, could be obtained for COSY [40],
CSP [11,36], ACP [7], LOTOS [9], µCRL [33], the π-calculus [46], etc.

Our system is a fair scheduler. It can receive two kinds of requests r1 and r2
from its environment on separate channels, and is guaranteed to perform a task—
granting the request—in response. Our fairness requirement rules out a scheduler
that may fail to ever grant a request of type r1 because it is consistently busy
granting requests r2.

Such schedulers occur (in suitable variations) in many distributed systems.
Examples are First in First out3, Round Robin, and Fair Queueing scheduling
algorithms4 as used in network routers [47,48] and operating systems [38], or the
Completely Fair Scheduler,5 which is the default scheduler of the Linux kernel
since version 2.6.23.

If F stands for the most general specification of our scheduler, our claim entails
that F cannot be rendered in CCS. However, accurately expressing F in CCS can
be seen as a luxury problem. Here we would accept any implementation of F , under
the broadest definition of implementation that makes sense for this problem—a
round-robin solution for instance would be totally acceptable—and what we show
is that even that is impossible.

As is common, we employ a version of CCS that allows the use of arbitrary
sets of recursive equations to define processes. As is trivial to show, any labelled
transition system, computable or not, can be modelled up to strong bisimulation
equivalence as an expression in this language. Hence, our result implies that no
implementation of the fair scheduler F can be modelled as a labelled transition
system modulo strong bisimulation equivalence.

In this paper we will use a semantics of CCS incorporating a justness assump-
tion. It distinguishes the strongly bisimilar systems A|B and C mentioned above,
on grounds that A|B can be understood to always perform infinitely many as as
well as bs, whereas C might perform an infinite sequence of bs while discarding the

3 Also known as First Come First Served (FCFS)
4 http://en.wikipedia.org/wiki/Scheduling_(computing)
5 http://en.wikipedia.org/wiki/Completely_Fair_Scheduler

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler

6 Rob van Glabbeek, Peter Höfner

a-option all the time. This semantics increases the power of CCS in specifying fair
schedulers, and thereby strengthens our result that no implementation of the fair
scheduler F can be expressed. It thereby becomes stronger than the result that
no implementation of F can be rendered as a labelled transition system modulo
strong bisimulation equivalence.

To prove our result, we show that our fair scheduler cannot be expressed in
terms of safe Petri nets. The result for CCS then follows by reduction: an adequate
Petri net semantics of CCS shows that if the scheduler could be expressed in CCS,
it could also be expressed as a Petri net.

The reason we resort to Petri nets to prove our main theorem is that Petri
nets offer a structural characterisation of what it means for a transition to be
continuously enabled in a run of the represented system from some state onwards.
This is exploited in the proofs of Lemmas 1–4. It would be much harder to prove
their counterparts directly in terms of the labelled transition system of CCS.

In different formulations, our impossibility result for Petri nets was established
earlier by Vogler in [60] and by Kindler & Walter in [37], but in both cases side
conditions were imposed that inhibit lifting these results to CCS. The proof of
[60, Lemma 6.1] considers only finite Petri nets. The argument would extend to
finitely branching nets, but not to all Petri nets that arise as the semantics of CCS
expressions. The proof of [37] is restricted to Petri nets that interact with their
environment through an interface of a particular shape, and it is not a priori clear
that this does not cause a loss of generality. However, in Section 13 we study a
similar interface in the context of CCS and show that it does not limit generality.

Although our fair scheduler cannot be expressed in a standard process algebra
like CCS, we believe there are many extensions in the literature in which this can
be done quite easily. In Section 11 for instance, we specify it in a formalism that
could be called CCS+LTL. The use of a priority operator appears to be sufficient
as well.

5 Peterson’s and Dekker’s Mutual Exclusion Protocols

Since Peterson’s and Dekker’s mutual exclusion protocols yield instances of our
fair scheduler, it follows that these protocol cannot be rendered correctly in CCS
without imposing a fairness assumption. Nevertheless, implementations of these
algorithms in CCS or similar formalisms occur frequently in the literature, and
almost never a fairness assumption is invoked. Moreover, for each of these two pro-
tocols, its various renderings differ only in insignificant details. Our result implies
that these common renderings cannot be correct. Usually, only safety properties
of these protocols are shown: never are two processes simultaneously in the critical
section. The problem is with the liveness property: any process that is ready to
enter the critical section will eventually do so. We found four papers that claim to
establish essentially this property, of which only one invokes a fairness assumption.
We will indicate in which way the other three do not establish the right liveness
property.

Peterson expressed his protocol correctly in pseudocode without resorting to
a fairness assumption, although progress and justness are assumed implicitly. It
follows that Peterson’s pseudocode does not admit an accurate translation into
CCS. We pinpoint the problem in this paper.

CCS: It’s not Fair! 7

6 Overview

In Part I we discussed (informally) the goal we set out to achieve, and why we
believe it is important and surprising at the same time.

Part II formalises our results, while providing explanations of the choices made
in this formalisation. In particular, Section 7 presents an informal description of
our fair scheduler F . Section 8 presents CCS. Section 9 makes a progress as-
sumption on the semantics of CCS and argues that it is useful to set apart a set
of non-blocking actions. Section 10 formalises the justness assumption discussed
above and presents a semantics of CCS in which a process P is modelled as a state
in a labelled transition system together with a set of (possibly infinite) paths in
that transition system starting from P that model its valid runs. Section 11 gives
a formal specification of F . Since we aim to show that no implementation of F can
be specified in CCS, the specification of F cannot be given in CCS either. Instead
we specify F as a CCS expression augmented with a fairness specification. This
follows the traditional approach of TLA [39] and other formalisms [24], “in which
first the legal computations are specified, and then a fairness notion is used to
exclude some computations which otherwise would be legal” [2]. In Section 12 we
state our main result, saying that no fair scheduler—that is: no implementation
of F—can be expressed in CCS. Section 13 reformulates this result, so that it is
independent of the concept of an action being perpetually enabled in a run of the
represented system. In Section 14 we conclude that mutual exclusion protocols,
like the algorithms from Dekker or Peterson, cannot be rendered correctly in CCS
without imposing a fairness condition. We also investigate the apparent contradic-
tion with the fact that several research papers claim to achieve exactly this. We
end this section with a result by Corradini, Di Berardini & Vogler, showing where
a fairness assumption is needed for a rendering of Dekker’s protocol in a process
algebra to be correct.

Part III deals with proving our main result. In Section 15 we formulate our
claim that no fair scheduler can be modelled as a safe Petri net. This claim is
proven in Section 16. In Section 17 an operational Petri net semantics of CCS is
presented, following the work of Degano, De Nicola & Montanari. From this, the
proof of our main result is obtained in Section 18. A few concluding remarks are
made in Section 19.

Part II Formalisation

7 A Fair Scheduler

Our fair scheduler is a reactive system with two input channels: one on which it can
receive requests r1 from its environment and one on which it can receive requests
r2. We allow the scheduler to be too busy shortly after receiving a request ri to
accept another request ri on the same channel. However, the system will always
return to a state where it remains ready to accept the next request ri until ri
arrives. In case no request arrives it remains ready forever. The environment is
under no obligation to issue requests, or to ever stop issuing requests. Hence for
any numbers n1 and n2 ∈ IN∪{∞} there is at least one run of the system in which
exactly that many requests of type r1 and r2 are received.

8 Rob van Glabbeek, Peter Höfner

α.P α−→ P
Pj

α−→ P ′

∑
i∈I Pi

α−→ P ′
(j ∈ I)

P α−→ P ′

P |Q α−→ P ′|Q

P a−→ P ′, Q ā−→ Q′

P |Q τ−→ P ′|Q′

Q α−→ Q′

P |Q α−→ P |Q′

P α−→ P ′

P\a α−→ P ′\a
(a 6= α 6= ā)

P α−→ P ′

P [f] f(α)−−−→ P ′[f]

P α−→ P ′

A α−→ P ′
(A

def
= P)

Table 1 Structural operational semantics of CCS

Every request ri asks for a task ti to be executed. The crucial property of the
fair scheduler is that it will eventually grant any such request. Thus, we require that
in any run of the system each occurrence of ri will be followed by an occurrence
of ti. In Linear-time Temporal Logic (LTL) [53] this can be stated as

G(ri ⇒ F(ti)) , i ∈ {1, 2} .

Note that it may happen that the environment issues request r1 three times in a
row before the scheduler got a change to schedule task t1. In that case the scheduler
may fulfil its obligation by scheduling task t1 just once. Hence it need not keep a
counter of outstanding requests.6

We are not interested in implementations of the scheduler that just schedule
both tasks infinitely often without even listening to the requests. Hence we require
that in any partial run of the scheduler there may not be more occurrences of ti
than of ri, for i = 1, 2.

The last requirement is that between each two occurrences of ti and tj for
i, j ∈ {1, 2} an intermittent activity e is scheduled.7 This requirement will rule
out fully concurrent implementations, in which there are parallel components for
task t1 and task t2 that do not interact in any way.

8 The Calculus of Communicating Systems

The Calculus of communicating systems (CCS) [45] is parametrised with sets A

of names and K of agent identifiers; each A ∈ K comes with a defining equation

A
def
= P with P being a CCS expression as defined below. The set Ā of co-names

is Ā := {ā | a ∈ A }, and the set H of handshake actions is H := A ∪· Ā , the
disjoint union of the names and co-names. The function .̄ is extended to H by
declaring ¯̄a := a. Finally, Act := H ∪· {τ} is the set of actions. Below, a, b, c range
over H , α, β over Act and A over K . A relabelling is a function f : H → H

satisfying f(ā) = f(a); it extends to Act by f(τ) := τ . The set TCCS of CCS
expressions is the smallest set including:

6 This relaxed requirement only serves to increase the range of acceptable schedulers, thereby
strengthening our impossibility result. It by no means rules out a scheduler that schedules task
t1 exactly once for each request r1 received.

7 Our specification places no restrictions on the presence or absence of any additional oc-
currences of e. This again increases the range of acceptable implementations.

CCS: It’s not Fair! 9

A agent identifier α.P prefixing
∑

i∈I Pi choice
P |Q parallel composition P\a restriction P [f] relabelling

for P, Pi, Q ∈ TCCS, index sets I, and relabellings f . We write P1+P2 for
∑

i∈I Pi if
I = {1, 2}, and 0 if I = ∅. The semantics of CCS is given by the labelled transition
relation → ⊆ TCCS×Act×TCCS, where the transitions P α−→ Q are derived from
the rules of Table 1. The pair 〈TCCS,→〉 is called the labelled transition system
(LTS) of CCS.

9 The Necessity of Output Actions

Before attempting to specify our scheduler in CCS, let us have a look at a simpler
problem: the same scheduler, but with only one type of request r, and one type of
task t to be scheduled. A candidate CCS specification of such a scheduler is the
process F0, defined by

F0
def
= r.e.t.F0 .

As stated in Section 7, the scheduler is called fair if every request r is eventually
followed by the requested task t; so we want to ensure the property G(r ⇒ F(t)).8

However, we cannot guarantee that this property actually holds for process F0.
The reason is that the process might remain in the state s reached by taking
transition e without ever performing the action t. In any formalism that allows to
remain in a state even when there are enabled actions, no useful liveness property
about processes can ever be guaranteed. One therefore often makes a progress
assumption, saying that the system will not idle as long as it can make progress.
Armed with this assumption, it appears fair to say that the process F0 satisfies
the required property G(r ⇒ F(t)).

However, by symmetry, the same line of reasoning would allow us to derive that
F0 satisfies G(t ⇒ F(r)), i.e. each execution of t will be followed by a new request.
Yet, this is something we specifically do not want to assume: the action r is meant
to be fully under the control of the environment, and it may very well happen
that at some point the environment stops making further requests. A particular
instance of this is when the environment is modelled by a CCS context such as
(r̄.0|)\r; in this context the process F0 will receive the request r only once.

Hence, we reject the validity of G(t ⇒ F(r)) based on environments such as
(r̄.0|)\r. However, the same reasoning allows environments such as (r̄.t̄.r̄.0|)\r\t
that do not allow the task t to be executed more than once. The existence of such
environments totally defeats our scheduler, or any other one.

Thus, for a fair scheduler to make sense, we need to consider environments that
have full control over the action r but cannot sabotage the mission of our scheduler
by disallowing tasks t and e. We formalise this by calling t and e output actions. An
output action [23, Section 9.1] is an activity of our system that cannot be stopped
by its environment; or, equivalently, considering an action t to be output means
that we choose not to consider environments that can block t. In our schedulers,
t and e are output actions, whereas r is not.

8 When assuming that this formula holds, F0 trivially satisfies the other properties required
in Section 7: the system will always return to a state where it remains ready to accept the
next request r until it arrives; in any partial run there are no more occurrences of t than of r,
and between each two occurrences of t the action e is scheduled.

10 Rob van Glabbeek, Peter Höfner

Let CCS! be the variant of CCS that is parametrised not only by sets A of
names and K of agent identifiers, but also by a set O of output actions. The
only further difference with CCS of Section 8 is that Act := H ∪· O ∪· {τ}, and a
relabelling f extends to Act by f(α) := α for all α ∈ O ∪· {τ}. CCS! can be seen
as an extension of CCS with output actions, but it can just as well be seen as a
restriction of CCS in which for some of the names there are no co-names and no
restriction operators.

It should be noted that CCS already features the concept of an internal action,
namely τ , of which it is normally assumed that it cannot be blocked by the envi-
ronment. Yet, for the purpose of specifying our scheduler, the rôle of the output
action t cannot be played by τ , for the internal action is supposed to be unobserv-
able and is easily abstracted away. Output actions share the feature of internal
actions that whether they occur or not is determined by the internal work of the
specified system only; yet at the same time they are observable by the environment
in which the system is running.9 An action in O ∪· {τ}—so an output or internal
action—is also called a non-blocking action.

Now we formulate our progress assumption[23,29]:

Any process in a state that admits an non-blocking action will eventually
perform an action.

LTL formulas are deemed to hold for a process P if they hold for all complete
paths of P in the labelled transition system of CCS!. Here a path of P is an
alternating sequence of states and transitions, starting from the state P and either
being infinite or ending in a state, such that each transition in the sequence goes
from the state before to the state after it, and a finite path is complete iff it does
not end in a state that enables a non-blocking action; completeness of infinite
paths is discussed in the next sections. For further details, see [23, Section 9.1]
or [29].

Assuming progress, the scheduler F0
def
= r.e.t.F0 satisfies G(r ⇒ F(t)) because

on each complete path every r is followed by a t. Hence F0 is fair w.r.t. the simpler
problem.

10 A Just Semantics of Parallelism

In the previous section we considered a scheduler that was significantly simpler

than the one of Section 7, and were able to specify it in CCS! by F0
def
= r.e.t.F0,

with output actions t and e. However, in order to ensure that our specification
was formally correct, we needed to introduce the concept of an output action, and
made a progress assumption on the semantics of the language.

In this section, we consider again a simplification of the scheduler of Section 7,
and once more succeed in specifying it in CCS!. Again we need to make an as-
sumption about the semantics of CCS! in order to ensure that our specification is
formally correct.

9 The output and internal actions of CCS! are similar to the output and internal action of
I/O automata [44]. However, the remaining actions of I/O automata are input actions that
are totally under the control of the environment of the modelled system. In CCS, on the other
hand, the default type of action is a synchronisation that can happen only in cooperation
between a system and its environment.

CCS: It’s not Fair! 11

Both assumptions increase the range of correct CCS specifications and thereby
make the promised result on the absence of any CCS specification of a scheduler
as described in Section 7 more challenging.

Consider a scheduler as described in Section 7, but without the last requirement
about the intermittent activity e. A candidate CCS! specification is the process
F1|F2, defined by

Fi
def
= ri.ti.Fi , i ∈ {1, 2}.

Here, and throughout this paper, ti (like e) is an output action and ri is not.
For this scheduler to be fair, it has to satisfy G(ri ⇒ F(ti)) for i = 1, 2.10 By
the reasoning of the previous section the process Fi satisfies the temporal for-
mula G(ri ⇒ F(ti)) for i = 1, 2. It is tempting to conclude that obviously their
parallel composition F1|F2 satisfies both of these requirements. Yet, the system
run r1(r2t2)

ω—that after performing one action from F1 performs infinitely many
actions from F2 without interleaving any further actions from F1—could be con-
sidered a counterexample.

Here we take the point of view that no amount of activity of F2 can prevent
F1 from making progress. The system F1|F2 simply does not have a run r1(r2t2)

ω.
The corresponding path from the state F1|F2 in the LTS of CCS! is no more than
an artifact of the use of interleaving semantics. In general, we make the following
justness assumption [29]:

If a combination of components in a parallel composition is in a state
that admits a non-blocking action, then one (or more) of them will even-
tually partake in an action.

Thus justness guarantees progress of all components in a parallel composition, and
of all combinations of such components. In the CCS! expression ((P |Q)\a)|R with

P
def
= a.P + c.P , Q

def
= ā.Q and R

def
= b.R+ c̄.R for instance there is a state where

P admits an action c ∈ H with c 6= a and R admits an action c̄. Thereby, the
combination of these components admits an action τ . Our justness assumption
now requires that either P or R will eventually partake in an action. This could be
the τ -action obtained from synchronising c and c̄, but it also could be any other
action involving P or R. In each case the system will (at least for an instant) cease
to be in a state where that synchronisation between P and R is enabled. Note that
progress is a special case of justness, obtained by considering any process as the
combination of all its parallel components.

In [29] we formalised the justness assumption as follows.
Any transition P |Q α−→ R derives, through the rules of Table 1, from

– a transition P α−→ P ′ and a state Q, where R = P ′|Q ,
– two transitions P α1−→ P ′ and Q α2−→ Q′, where R = P ′|Q′ ,
– or from a state P and a transition Q α−→ Q′, where R = P |Q′.

This transition/state, transition/transition or state/transition pair is called a de-
composition of P |Q α−→ R; it need not be unique, as we will show in Example 1
below. Now a decomposition of a path η of P |Q into paths η1 and η2 of P and Q,

10 When assuming that these formulas hold, F1|F2 trivially satisfies the other properties
required of it: the system will always return to a state where it remains ready to accept the
next request ri until it arrives—hence for any numbers n1 and n2 ∈ IN∪{∞} there is at least
one run of the system in which exactly that many requests of type r1 and r2 are received—and
in any partial run there are no more occurrences of ti than of ri.

12 Rob van Glabbeek, Peter Höfner

respectively, is obtained by decomposing each transition in the path, and concate-
nating all left-projections into a path of P and all right-projections into a path of
Q. Here it could be that η is infinite, yet either η1 or η2 (but not both) are finite.
Again, decomposition of paths need not be unique.

Similarly, any transition P [f]
α−→ R stems from a transition P

β−→ P ′, where
R = P ′[f] and α = f(β). This transition is called a decomposition of P [f]

α−→ R.
A decomposition of a path η of P [f] is obtained by decomposing each transition
in the path, and concatenating all transitions so obtained into a path of P . A
decomposition of a path of P\c is defined likewise.

Definition 1 Y-justness, for Y ⊆ H ,11 is the largest family of predicates on the
paths in the LTS of CCS! such that

– a finite Y-just path ends in a state that admits actions from Y only;
– a Y-just path of a process P |Q can be decomposed into an X-just path of P

and a Z-just path of Q such that Y ⊇X∪Z and X∩Z̄=∅—here Z̄ :={c̄ | c∈Z};
– a Y-just path of P\c can be decomposed into a Y ∪{c, c̄}-just path of P ;
– a Y-just path of P [f] can be decomposed into an f−1(Y)-just path of P ;
– and each suffix of a Y-just path is Y-just.

A path η is just if it is Y-just for some Y ⊆ H . It is a-enabled for an action a ∈ H

if a ∈ Y for all Y such that η is Y-just.

Intuitively, a Y-just path models a run in which Y is an upper bound of the set
of labels of abstract transitions12 that from some point onwards are continuously
enabled but never taken. Here an abstract transition with a label from H is
deemed to be continuously enabled but never taken iff it is enabled in a parallel
component that performs no further actions. Such a run can actually occur if the
environment from some point onwards blocks the actions in Y .

The last clause in the second requirement prevents an X-just path of P and a
Z-just path of Q to compose into an X∪Z-just path of P |Q when X contains an
action a and Z the complementary action ā. The reason is that no environment can
block both actions for their respective components, as nothing can prevent them
from synchronising with each other. The fifth requirement helps characterising
processes of the form b.0 + (A|b.0) and a.(A|b.0), with A

def
= a.A. Here, the first

transition ‘gets rid of’ the choice and of the leading action a, respectively, and
reduces the justness of paths of such processes to their suffixes.

A complication in understanding Definition 1 is that a single path could be
seen as modelling different system runs of which one could be considered just,
respectively a-enabled, and the other not.

Example 1 Consider the process B|B defined by B
def
= b.B. The only transition of

this process is B|B b−→ B|B, so B|B has exactly one infinite path η, obtained by
repeating this transition infinitely often. Assuming that b is an output action, one
may wonder if η should count as being just. In case all transitions in η originate
from the left component, the b-transition of the right component is continuously
enabled but never taken. This does not correspond to a (just) run of the represented

11 By definition Y does not contain non-blocking action.
12 The CCS process a.0|b.0 has two transitions labelled a, namely a.0|b.0 a−→ 0|b.0 and
a.0|0

a
−→ 0|0. The only difference between these two transitions is that one occurs before the

action b is performed by the parallel component and the other afterwards. In [29] we formalise
a notion of an abstract transition that identifies these two concrete transitions.

CCS: It’s not Fair! 13

system. However, in case η alternates transitions from each component, it does
model a (just) run. The mere fact that a b-transition is enabled on every state of
η has no bearing on the matter. Now Definition 1 considers η just, on grounds of
the fact that it models some (just) run.

If in this example b is a handshake action, the path η models a (just) run
in which a b-labelled abstract transition is continuously enabled but never taken;
but it also models a (just) run in which no transition is continuously enabled but
never taken. According to Definition 1, η counts as ∅-just, and thus is not deemed
b-enabled. Intuitively, a path is b-enabled iff on all runs modelled by that path a
transition labelled b is continuously enabled but never taken. ⊓⊔

Now a just path, as defined above, is our default definition of a complete path,
as contemplated at the end of Section 9. Indeed, a finite path is just iff it does not
end in a state from which a non-blocking action is possible [29].

Thus, our semantics of a CCS! process P consists of the state P in the LTS
of CCS! together with the set of complete paths in that LTS starting from P [23,
29]. LTL formulas hold for P iff they are valid on all complete paths of P .

Here we employ a just semantics of CCS! by taking the just paths to be the
complete ones. This way F0 is a correct specification of the scheduler required in
Section 9 and F1|F2 is a correct specification of the scheduler required above.

11 Formal Specification of the Fair Scheduler

We now provide a formal specification of the scheduler described in Section 7.
Since the aim of this paper is to show that this cannot be done in CCS! (and thus
certainly not in CCS) we need a different formalism for this task. Here we follow
the traditional approach of TLA [39] and several other frameworks [24], “in which
first the legal computations are specified, and then a fairness notion is used to
exclude some computations which otherwise would be legal” [2]. Following [29],
we use CCS! for the first step and LTL for the second.

Thus, in this section we specify a process as a pair of a CCS! expression P
and a set F of LTL formulas, called a fairness specification. The semantics of P
consists of the state P in the LTS of CCS! together with the set of just paths in
that LTS starting from P . The formulas of F are evaluated on the paths of P and
any path that satisfies all formulas of F is called fair. Now the semantics of the
entire specification (P,F) is the state P in the LTS of CCS! together with the set
of complete paths of P , defined as those paths that are both just and fair. In [23,
29] a consistency requirement is formulated that should hold between P and F .

Now a fair scheduler as described in Section 7 can be specified by the CCS!

process (I1 |G | I2)\c1\c2, where

Ii
def
= ri.c̄i.Ii (i ∈ {1, 2}) and G

def
= c1.t1.e.G + c2.t2.e.G ,

augmented with the fairness specification
∧

i=1,2 G(ri ⇒ F(ti)).

Here the first requirement of Section 7 is satisfied by locating the two channels
receiving the requests r1 and r2 on different parallel components I1 and I2. This
way, after performing, say, r1, the system—component I1 to be precise—will al-
ways return to a state where it remains ready to accept the next request r1 until it
arrives, independent of occurrences of r2. The (non-output) actions ci are used to

14 Rob van Glabbeek, Peter Höfner

communicate the request from the processes Ii to a central component G, which
then performs the requested action ti.

The second requirement of Section 7 is enforced by the fairness specification,
and the last two requirements of Section 7 are met by construction: in any par-
tial run there are no more occurrences of ti than of ri, and between each two
occurrences of ti and tj for i, j ∈ {1, 2} the intermittent action e is scheduled.

12 Fair Schedulers Cannot be Rendered in CCS!—Formalisation

In this section we formulate the main result of the paper, namely that no scheduler
as described in Sections 7 and 11 can be specified in CCS!. Since we already
showed that it can be specified in CCS! augmented with a fairness specification,
here, and in the rest of the paper, we confine ourselves to CCS! without fairness
specifications. Thus, our notion of a complete path is (re)set to that of a just path,
as specified in Definition 1.

Theorem 1 There does not exist a CCS! expression F such that:

1. any complete path of F that has finitely many occurrences of ri is ri-enabled;
2. on each complete (= just) path of F , each ri is followed by a ti;
3. on each finite path of F there are no more occurrences of ti than of ri; and
4. between each two occurrences of ti and tj (i, j ∈ {1, 2}) an action e occurs.

Requirements 1–4 exactly formalise the four requirements described in Section 7.
We proceed to show that none of them can be skipped.

The CCS! process F1|F2 of Section 10 satisfies Requirements 1, 2 and 3. It
does not satisfy Requirement 4, due to the partial run r1r2t1t2.

The CCS! process E1|G1|E2 with Ei
def
= ri.Ei for i=1, 2 and G1

def
= t1.e.t2.e.G1

satisfies Requirements 1, 2 and 4. It does not satisfy Requirement 3, due to the
partial run consisting of the single action t1.

The CCS! process E1|E2 satisfies Requirements 1, 3 and 4, but not 2.

Finally, the process G2 given by G2
def
= r1.t1.e.G2 + r2.t2.e.G2 satisfies Re-

quirements 2, 3 and 4. However, it does not satisfy Requirement 1, because it
allows the ∅-just path (r2t2e)

ω with no occurrences of r1. This path models a run
in which the system never reaches a state where it remains ready to accept the
next request r1.

The proof of Theorem 1 will be the subject of Part III.

13 A Characterisation of Fair Schedulers without a-enabling

Below we will show that without loss of generality we may assume any fair sched-
uler to have a specific form. If it has that form, Requirement 1 is redundant. Hence
Requirement 1 can be replaced by requiring that the scheduler is of that form. This
variant of our result appeared as a conjecture in [29].

For any CCS! expression F , let F̂ := (I1 |F [f] | I2)\c1\c2 with Ii
def
= ri.c̄i.Ii

for i ∈ {1, 2}, where f is an injective relabelling with f(ri) = ci for i = 1, 2, and
r1, r2, r̄1, r̄2 /∈ f(H). By the definition of relabelling (cf. Section 9), f(ti) = ti and
f(e) = e.

CCS: It’s not Fair! 15

Theorem 2 A process F meets Requirements 1–4 of Theorem 1 iff F̂ meets these
requirements, which is the case iff F̂ meets Requirements 2–4.

Proof Suppose F satisfies Requirements 1–4.

1. To show that F̂ satisfies Requirement 1 (with i := 1; the other case follows by
symmetry), it suffices to show that each occurrence of r1 in a just path of F̂ ,
which corresponds to an occurrence of r1 in the subprocess I1, is followed by
an occurrence of c̄1 in I1.
So assume, towards a contradiction, that on a just path η of F̂ an occurrence of
r1 is not followed by an occurrence of c̄1 in the subprocess I1. By Definition 1
η must be Y-just for some Y ⊆ H . So η can be decomposed into an X-just
path η1 of I1, a Z-just path η0 of F [f] and a W -just path η2 of I2 for certain
X,Z,W ⊆ H . By assumption, c̄1 ∈ X. Moreover, η0 can be decomposed into
an f−1(Z)-just path ηF of F . Since in F̂ the c1 of F [f] requires synchronisation
with the c̄1 of I1, and η1 has only finitely many occurrences of c̄1, it follows
that η0 has only finitely many occurrences of c1, and thus that ηF has only
finitely many occurrences of r1. Since F satisfies Requirement 1, saying that
the system will always return to a state where it remains ready to accept the
next request r1 until it arrives, r1 ∈ f−1(Z). Hence c1 ∈ Z. By Definition 1,
this contradicts the justness of η.

2. Above we have shown that each occurrence of r1 in a just path of F̂ , which
corresponds to an occurrence of r1 in the subprocess I1, is followed by an
occurrence of c̄1 in I1. This occurrence of c̄1 in I1 must be a synchronisation
with an occurrence of c1 in F [f], and by Requirement 2 for F each occurrence

of c1 in F [f] is followed by an occurrence of t1 in F [f], and hence in F̂ .
3. By Requirement 3 for F , on each finite path from F [f] there are no more

occurrences of t1 than of c1. Moreover, on each finite path from I1 there are
no more occurrences of c̄1 than of r1. Since in F̂ each occurrence of c1 in F [f]
needs to synchronise with an occurrence of c̄1 in I1, it follows that on each
finite path from F̂ there are no more occurrences of c̄1 than of r1.

4. Requirement 4 holds for F̂ because it holds for F .

Now assume that F̂ satisfies Requirements 2–4.

1. Suppose that F would fail Requirement 1, say for i = 1. Then it has a Z-just
path with r1 /∈ Z. Therefore F [f] has an f(Z)-just path with c1 /∈ f(Z). This

path can be synchronised with a c̄1-just path of I1 into a just path of F̂ in
which an occurrence of r1 follows the last occurrence of t1, thereby violating
Requirement 2 for F̂ .

2. Suppose that F would fail Requirement 2, say for i = 1. Then it has a just
path with an occurrence of r1 past the last occurrence of t1. Therefore F [f]
has a Z-just path with r̄1 /∈ Z and an occurrence of c1 past the last occurrence
of t1. This path can be synchronised with a r1-just path of I1 into a just path
of F̂ in which an occurrence of r1 follows the last occurrence of t1, thereby
violating Requirement 2 for F̂ .

3. Suppose F had a finite path with more occurrences of t1 than of r1, then
through synchronisation a finite path of F̂ could be constructed with more
occurrences of t1 than of r1.

4. Requirement 4 holds for F because it holds for F̂ . ⊓⊔

16 Rob van Glabbeek, Peter Höfner

Process A

repeat forever


























ℓ1 noncritical section

ℓ2 readyA := true
ℓ3 turn := B
ℓ4 await (readyB = false ∨ turn = A)
ℓ5 critical section

ℓ6 readyA := false

Process B

repeat forever


























m1 noncritical section

m2 readyB := true
m3 turn := A
m4 await (readyA = false ∨ turn = B)
m5 critical section

m6 readyB := false

Fig. 1 Peterson’s algorithm (pseudocode)

Recall that G2, given by G2
def
= r1.t1.e.G2 + r2.t2.e.G2, satisfies Requirements 2–4.

Converting this G2 to the process Ĝ2 of the form (I1 |G | I2)\c1\c2, as defined
above, results in the specification of Section 11 without the additional fairness
specification, and hence in the loss of Requirement 2.

14 (In)Correct Correctness Proofs of Peterson’s and Dekker’s Protocols

It is widely accepted that Peterson’s mutual exclusion protocol [51] implements
a fair scheduler, and that implementing Peterson’s algorithm in a CCS-like lan-
guage should be easy. In fact Peterson’s algorithm has been specified in CCS-like
languages several times, e.g. [61,10,59,1]. All these papers present essentially the
same rendering of Peterson’s algorithm in CCS or some other progress algebra,
differing only in insignificant implementation details. This seems to contradict our
main result (Theorem 1).

Peterson’s Mutual Exclusion Protocol deals with two concurrent processes A
and B that want to alternate critical and noncritical sections. Each of these pro-
cesses will stay only a finite amount of time in its critical section, although it is
allowed to stay forever in its noncritical section. The purpose of the algorithm is to
ensure that they are never simultaneously in the critical section, and to guarantee
that both processes keep making progress. Pseudocode is depicted in Figure 1.

The processes use three variables. The Boolean variable readyA can be written
by process A and read by process B, whereas readyB can be written by B and read
by A. By setting readyA to true, process A signals to process B that it wants to
enter the critical section. The variable turn is a shared variable: it can be written
and read by both processes. Its use is the brilliant part of the algorithm. Initially
readyA and readyB are both false and turn = A.

Peterson’s algorithm implements a mutual exclusion protocol and hence should
satisfy the safety property that at any time only one process accesses the critical
system, i.e.

G(¬((ℓ4 ∨ ℓ5) ∧ (m4 ∨m5))) .

Here, ℓi and mj refer to line numbers of the pseudocode (Figure 1). As convention
we assume that line numbers refer to a state in the execution of the code where
the command of the line has already been executed. Most papers, including [10,
1], concentrate on the issue of mutual exclusion only, and that is done correctly
in the CCS rendering. When safety properties are considered only, no fairness or

CCS: It’s not Fair! 17

progress assumption is needed: in the worst case some (or all) processes do not
progress and hence never enter the critical section—the safety property still holds.

As usual, a safety property should therefore be accompanied with a liveness
property. In case of Peterson’s protocol such a property is that any process that
wants to enter the critical section will at some point reach the critical section. We
consider two possibilities to characterise this property:

G(ℓ1 ⇒ F(ℓ4)) , and G(ℓ2 ⇒ F(ℓ4)) .
13

Both properties have the form G(r1 ⇒ F(t1))—the property discussed in this
paper—ℓ4 indicates that the process enters the critical section. Both ℓ1 and ℓ2
could play the rôle of the grant request r1. Although it seems surprising, we will
show that there is a fundamental difference between these two formulas.

To show how Peterson’s algorithm yields an instance of our fair scheduler, we
consider the action t1 to be taken when an execution passes through state ℓ4,
thereby interpreting t1 as granting access to the critical section. The action e is
taken when the execution passes through state ℓ5, marking the exit of the criti-
cal section. Peterson’s code, in combination with the mutual exclusion property,
ensures that Requirement 4 of our fair scheduler is satisfied. We consider r1 to
be taken when an execution passes through state ℓ1, so that the liveness property
G(ℓ1 ⇒ F(ℓ4)) ensures Requirement 2. Requirement 1 is satisfied, because as soon
as the environment of the protocol leaves the noncritical section, thereby getting
ready to enter the critical one, the protocol is considered to take the action r1.
Finally, Requirement 3 is obviously ensured by Peterson’s code.

In combination with this insight, our main result (Theorem 1) entails that
the rendering of Peterson’s algorithm in CCS found in the literature cannot be
correct, as long as the semantics of CCS is fortified with at most justness. To prove
liveness of Peterson’s protocol, at least weak fairness is required.14 In the literature
we found only two papers that investigate liveness properties of this protocol: [61]
and [59]. Neither of these papers employs fairness or justness properties.

Walker [61] tries to prove the correctness of Peterson’s algorithm by automatic
methods. He succeeds for the safety property, but could not establish the liveness
property in full generality; however Walker succeeded in proving it when restricting
attention to runs in which infinitely many visible actions occur. This appears to
be Walker’s method of imposing a progress assumption. Although this is strictly
speaking not in contradiction with our results, our proofs trivially extend to the
case of considering only runs in which infinitely many visible actions occur. Hence
Walker’s result seems to be in contradiction to Theorem 1. A detailed analysis
reveals that Walker uses line ℓ2 as request action to indicate interest to enter the
critical section. So he shows that G(ℓ2 ⇒ F(ℓ4)). That means that the shared
variable readyA must be set—only then ℓ2 evaluates to true. His request action is
set right after setting this variable. However, following our proof, the reason that
the CCS rendering of Peterson does not work, is that it is possible that process A
never gets a change to set the shared variable readyA to true, because the other
process is too busy reading it all the time (even when it enters the critical section
between any two reads). So, it is a possible scenario that process A will never
execute line ℓ2, although it wants to enter the critical section.

13 We only give the liveness property for process A; the one for process B is similar.
14 Whether weak fairness suffices depends on the interpretation of enabledness (cf. Section 2)

18 Rob van Glabbeek, Peter Höfner

In Peterson’s original thinking, process B could not prevent process A from
writing by reading a shared variable; but in the CCS model this is quite possible:
the read action can only be represented as a transition that is in conflict with
the write action; only after this transition is taken does the process return to a
state where the write is enabled. So when Walker [61] establishes G(ℓ2 ⇒ F(ℓ4))
he merely shows that when the first hurdle is taken successfully the process will
surely enter the critical section. What he cannot establish is that a process that
is ready to enter the critical section will succeed in setting readyA. The correct
modelling of Peterson’s liveness property thus places action r1 before setting the
variable readyA to true, i.e.

G(ℓ1 ⇒ F(ℓ4)) .

In terms of our description of a fair scheduler, the action r1 of Walker (at position
ℓ2) does not meet Requirement 1.

The analysis of the work of Walker shows that there is a fine line between
correct and incorrect modelling. In fact it looks reasonable to prove G(ℓ2 ⇒ F(ℓ4))
instead of G(ℓ1 ⇒ F(ℓ4)). There is no formal way to avoid such mistakes; only
careful (informal) reasoning.

Roughly the same modelling, but in which the request r1 is identified with
setting the shared variable readyA to true, occurs in Valmari & Setälä [59]. The
consequences are the same.

Dekker’s mutual exclusion protocol [20,21] is another well-known algorithm
that implements a fair scheduler. We found two papers in the literature that anal-
yse liveness of this protocol.

Esparza & Burns [22] follow in the footsteps of Walker and prove the correctness
of Dekker’s mutual exclusion algorithm in the Box Calculus without postulating a
fairness assumption. According to our results, this is impossible as well. Indeed, as
in [59], Esparza & Burns model the request r1 to be the action of setting a shared
variable, which again violates the property that a process that wants to enter the
critical section can always succeed at least in making a request to that effect.

Corradini, Di Berardini & Vogler [14] specify Dekker’s algorithm in the CCS-
like process algebra PAFAS. They also prove the correctness of the algorithm. This
paper models the relevant liveness properties correctly, as far as we can see, but
explicitly makes different assumptions on the driving force that keeps the system
running. First they consider a notion of ‘fairness of actions’ that appears to be
similar to our justness assumption,15 and they show that their model of Dekker’s
protocol fails to have the required liveness property. This result is entirely consis-
tent with ours. In fact we generalise their negative result about the correctness of
a particular rendering in PAFAS of a particular protocol for mutual exclusion to
a general statement quantifying of all renderings of all such protocols.

Next they consider a stronger notion of fairness called ‘fairness of components’,
stemming from [18], and, under this assumption, establish the correctness of the

15 It differs in a crucial way, however, namely by treating each action as output. As a con-
sequence, under fairness of actions the process F1|F2 of Section 10 is guaranteed to perform
each of the actions r1 and r2 infinitely often. To model a protocol where the action ri is not
forced to occur, a τ -loop is inserted at each location where ri is enabled.

CCS: It’s not Fair! 19

algorithm.16 The present paper augments this result by saying that a fairness
notion as strong as ‘fairness of components’ is actually needed.

In Part I we pointed out that our result holds for CCS+justness, CCS+progress
and CCS without any progress assumption. However a fair scheduler can be im-
plemented when a fairness assumption is assumed; fairness of components appears
to be sufficient.

Part III Proofs

15 Fair Schedulers Cannot be Rendered in Petri Nets—Formalisation

This section introduces Petri nets and rephrases Theorem 1 in terms of Petri nets.
We inherit the sets Act of actions and H ⊆ Act of handshaking communications
from Section 8, and the set O of output actions from Section 9.

A multiset over a set X is a function A : X → IN, i.e. A ∈ INX. The function
∅ : X → IN, given by ∅(x) := 0 for all x ∈ X, is the empty multiset over X.
x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.
For multisets A and B over X we write A ≤ B iff A(x) ≤ B(x) for all x ∈ X;
A ∩B denotes the multiset over X with (A ∩B)(x) := min(A(x), B(x)),
A+B denotes the multiset over X with (A+B)(x) := A(x) + B(x), and
A − B is only defined if B ≤ A and then denotes the multiset over X with
(A− B)(x) := A(x)−B(x).
A multiset A with A(x) ≤ 1 for all x is identified with the (plain) set {x | A(x)=1}.

Definition 2 A (labelled) Petri net (over Act) is a tuple N = (S, T, F,M0, ℓ) with
– S and T disjoint sets (of places and transitions),
– F : ((S × T) ∪ (T × S)) → IN (the flow relation including arc weights),
– M0 : S → IN (the initial marking), and
– ℓ : T → Act (the labelling function).

When a Petri net represents a concurrent system, a global state of this system is
given as a marking, a multiset M of places. The initial state is M0.

The behaviour of a Petri net is defined by the possible moves between markings
M and M ′, which take place when a transition u fires. In that case, u consumes
F (s, u) tokens from each place s. Naturally, this can happen only if M makes all
these tokens available in the first place. Moreover, u produces F (u, s) tokens in
each s. Definition 3 formalises this notion of behaviour.

Definition 3 Let N = (S, T, F,M0, ℓ) be a Petri net and u ∈ T . The multisets
•u, u• : S → IN are given by •u(s) = F (s, u) and u•(s) = F (u, s) for all s∈S;17 the

16 Fairness of components is a form of weak fairness, requiring that if a component from
some point onwards is enabled in each state, an action from that component will eventually be
scheduled. Here a component is enabled if an action from that component is enabled, possibly
in synchronisation with an action from outside that component. Under this notion of fairness,

the system E from Section 2, defined by E
def
= a.E + b.0, is not ensured to do a b eventually.

However, the composition (E|b̄.c.0)\b is ensured to do a c eventually, because the component
b̄.c.0 is enabled in every state.
17 Here, we slightly deviate from standard notation [57], where •u and u• are usually plain
sets, obtained from our multisets by abstracting from the multiplicities of their elements. We
prefer to retain this information, so as to shorten various formulas.

20 Rob van Glabbeek, Peter Höfner

elements of •u and u• are called pre- and postplaces of u, respectively. Transition
u ∈ T is enabled from the marking M ∈ INS—notation M [u〉—if •u ≤ M . In that
case firing u yields the marking M ′ := M − •u+ u•—notation M [u〉M ′.

A path π of a Petri net N is an alternating sequence M0u1M1u2M2u3 . . . of
markings and transitions, starting from the initial marking M0 and either being
infinite or ending in a marking Mn, such that Mk[uk〉Mk+1 for all k (<n). An
action α ∈ Act occurs on a path π if there is a transition ui with ℓ(ui) = α. A
marking is reachable if it occurs in such a path. The Petri net N is safe if all
reachable markings M are plain sets, meaning that M(s) ≤ 1 for all places s. It
is a structural conflict net [28] if •u + •v ≤ M ⇒ •u ∩ •v = ∅ for all reachable
markings M and all transitions u and v. Note that any safe Petri net is a structural
conflict net. In this paper we restrict attention to structural conflict nets with the
additional assumptions that •u = ∅ for no transition u, and that all reachable
markings are finite. In the remainder we refer to these structures as nets. For the
purpose of establishing Theorem 1 we could just as well have further restricted
attention to safe Petri nets whose reachable markings are finite.

On a path π = M0u1M1u2M2u3 . . . a transition v is continuously enabled from
position k onwards ifMk[v〉 and

•v∩•ui = ∅ for all i>k. This implies that •v ≤ Mi

for all i ≥ k. If such a transition v exists we say that π is ℓ(v)-enabled. A path is
just or complete if it is o-enabled for no non-blocking action o ∈ O ∪ {τ}.

Now we have all the necessary definitions to state that our fair scheduler cannot
be realised as a net.

Theorem 3 There does not exist a net N such that:

1. any complete path of N that has finitely many occurrences of ri is ri-enabled;
2. on each complete (= just) path of N , each ri is followed by a ti;
3. on each finite path of N there are no more occurrences of ti than of ri; and
4. between each two occurrences of ti and tj (i, j ∈ {1, 2}) an action e occurs.

In the proof of this theorem we do not use the restriction that N is a structural
conflict net. However, for general Petri nets our definition of a transition that from
some points onwards is continuously enabled is not convincing. A better definition
would replace the requirement •v ∩ •ui = ∅ for all i > k by •v + •ui+1 ≤ Mi for
all i ≥ k. On structural conflict nets the two definitions are equivalent. On general
Petri nets with finite reachable markings and ∀u.•u 6= ∅ Theorem 3 still holds when
employing our earlier definition of being continuously enabled, but that definition
arguably leads to Requirement 1 being an overly restrictive formalisation of the
first requirement of Section 7.

In [60] and in [37] mutex problems are presented that cannot be solved in terms
of Petri nets. These results are almost equivalent to Theorem 3, but, as discussed
in the Section 4, lack the generality needed to infer Theorem 1 from Theorem 3.

16 Fair Schedulers Cannot be Rendered in Petri Nets—Proof

In this section we suppose that there exists a net N meeting the requirements of
Theorem 3. We establish various results about this hypothetical net N , ultimately
leading to a contradiction. This will constitute the proof of Theorem 3.

CCS: It’s not Fair! 21

16.1 Embellishing Paths into Complete Paths

A firing sequence of N is a sequence σ = u1u2u3 . . . of transitions such that there
exists a path π = M0u1M1u2M2u3 . . . of N . Note that π is uniquely determined
by σ (and M0); we call it ph(σ). Likewise, σ is determined by π, and we call it
fs(π).

A firing sequence σ′ = v1v2v3 . . . embellishes a firing sequence σ = u1u2u3 . . .
iff σ′ can be obtained out of σ through insertion of non-blocking transitions; that
is, if there exists a monotone increasing function f : IN → IN—thus satisfying
i < j ⇒ f(i)<f(j)—with vf(i) = ui for all i > 0 and ℓ(vj)∈O ∪ {τ} for any index
j not of the form f(i). A path π′ embellishes a path π iff fs(π′) embellishes fs(π).

Given a firing sequence σ=u1u2 . . . of length ≥k and a transition w, let σ⊕kw
denote the sequence u1u2 . . . ukwuk+1uk+2 . . . obtained by inserting w in σ at
position k.

Lemma 1 Let σ be a firing sequence of length ≥k and w a transition that on
ph(σ) is continuously enabled from position k onwards. Then σ ⊕k w is a firing
sequence.

Proof Let ph(σ) = M0u1M1u2M2u3 Define M ′
i := Mi −

•w + w• for i ≥ k.
ThenM0u1M1u2 . . . ukMkwM ′

kuk+1M
′
k+1uk+2 . . . is again a path ofN , using that

•w ≤ Mi and
•ui+1 ≤ Mi −

•w for all i ≥ k. ⊓⊔

If π is a path and w a transition that on π is continuously enabled from position
k onwards, then π ⊕k w abbreviates ph(fs(π)⊕k w).

A path π = M0u1M1u2M2u3 . . . of N is (k, n)-incomplete if k is the smallest
number such that there is a transition w with ℓ(w) ∈ O ∪ {τ}—called a witness
of the (k, n)-incompleteness of π—that is continuously enabled from position k
onwards, and n is the number of places s of N such that s ∈ •w for a witness w
of the (k, n)-incompleteness of π. Since the reachable marking Mk is always finite,
so are the numbers n. Note that a path is (k, n)-incomplete for some finite k and
n iff it is not complete; henceforth we call a complete path (∞, 0)-incomplete. If a
path π is (k, n)-incomplete, and a path ρ is (h,m)-incomplete, then we call ρ less
incomplete than π if ρ has the same prefix up to position k as π and either h > k
or h = k ∧m < n.

Lemma 2 Let i≥ 0, π be a (k, n)-incomplete path of the net N with at least k+i
transitions, and w a witness of the (k, n)-incompleteness of π. Then π ⊕k+i w is
less incomplete than π.

Proof Suppose π ⊕k+i w is (h,m)-incomplete with h ≤ k, and let v be a witness
of the (h,m)-incompleteness of π ⊕k+i w. Then on π ⊕k+i w the transition v is
continuously enabled from position h onwards. Let Mh be the marking occurring at
position h in π, or equivalently in π⊕k+iw. Then •v ≤ Mh and •v ∩ •u= ∅ for all
transitions u occurring in π⊕k+i w past position h. This includes all transitions u
occurring in π past position h, so v is continuously enabled from position h onwards
also on π. It follows that h = k and any witness of the (k,m)-incompleteness of
π⊕k+iw is also a witness of the witness of the (k, n)-incompleteness of π. Moreover,
•v ∩ •w = ∅, and since •w 6= ∅ this implies m < n. ⊓⊔

Lemma 3 Any infinite path in N is embellished by a complete path.

22 Rob van Glabbeek, Peter Höfner

Proof Let π be the given path. We build a sequence πi of paths in N that all
embellish π, such that, for all i, πi+1 is less incomplete than πi and the first 2i
transitions of πi and πi+1 are the same.

We start by taking π0 to be π. If at any point we hit a path πi that is complete,
our work is done. Otherwise, given the (k, n)-incomplete path πi, for some k and n,
pick a witness w of the (k, n)-incompleteness of πi and take πi+1 :=πi⊕k+2iw. This
path exists by Lemma 1, since w is continuously enabled from position k onwards,
and hence also from position k+2i onwards. By construction πi+1 embellishes πi

and hence π. By Lemma 2 πi+1 is less incomplete than πi. Moreover, the first 2i
transitions of πi and πi+1 are the same.

If at no point we hit a path πi that is complete, let ρ := limi→∞ πi. This limit
clearly exists: for any i∈IN the first 2i transitions of ρ are the first 2i transitions of
πi (and thus also of πj for any j>i). We show that ρ is complete and embellishes π.

For the latter property, the ith transition ui of π must also occur in πi, and no
further than at position 2i, for πi is an embellishment of π obtained by adding only
i transitions. As in the sequence (πj)

∞
j=0 past index i no further changes occur in

the first 2i transitions, the transition ui also occurs in ρ. Given the construction,
this implies that ρ embellishes π. The same argument shows that ρ embellishes πi

for each i ∈ IN.
Now suppose that ρ is incomplete. Then there is a non-blocking transition w

that on ρ, from some position k onwards, is continuously enabled. Let i ∈ IN be
an index such that πi is (k, n)-incomplete for some k > h. Such an i must exist, as
the members of (πi)

∞
i=0 become less incomplete with increasing i. Let Mh be the

marking occurring at position h in ρ. Then Mh also occurs at position h in πi, as
the first k + 2i transitions of πi are the same for all πj with j ≥ i, and thus for ρ.
Now •w ≤ Mh and •w ∩ •u= ∅ for all transitions u occurring in ρ past position h.
Since ρ embellishes πi, this includes all transitions u occurring in πi past position
h, so w is continuously enabled from position h onwards also on πi, contradicting
the (k, n)-incompleteness of πi. ⊓⊔

Lemma 4 Any finite path in N can be extended to a complete path in N, such
that all transitions in the extension have labels in O ∪ {τ}.

Proof This is a simpler variant of the previous proof. Let π be the given path. We
build a sequence πi of paths in N that all extend π, such that, for all i, πi+1 is
less incomplete than πi and extends πi by one transition.

We start by taking π0 to be π. If at any point we hit a path πi that is complete,
our work is done. Otherwise, given the (k, n)-incomplete path πi, for some k and n,
pick a witness w of the (k, n)-incompleteness of πi and obtain πi+1 := ph(fs(πi)w)
by appending transition w to πi. By construction πi+1 extends πi by one non-
blocking transition and hence extends π. By Lemma 2 πi+1 is less incomplete
than πi.

If at no point we hit a path πi that is complete, let ρ := limi→∞ πi. Clearly, ρ
extends π. That ρ is complete follows exactly as in the previous proof. ⊓⊔

16.2 Paths of the Hypothetical Fair Scheduler

Lemma 5 Our hypothetical net N has a path with no occurrences of (transitions
labelled) r1, but infinitely many occurrences of r2.

CCS: It’s not Fair! 23

Proof We construct an infinite sequence (πk)
∞
k=0 of finite paths of N , such that

πk has no occurrences of r1 and exactly k occurrences of r2, and such that πk is a
prefix of πk+1 for all k ∈ IN. The limit of this sequence will be the required path.

π0 is the trivial path, consisting of the initial marking M0 only.

Now assume we have constructed a path πk as required. By Lemma 4 πk can
be extended into a complete path π′

k that has no occurrences of r1 and exactly k
occurrences of r2. Since π′

k is complete, it must be r2-enabled by Requirement 1.
Hence there is a finite prefix π′′

k of π′
k, still extending πk, such that a transition v

with ℓ(v) = r2 is enabled in the last state of π′′
k . Obtain pk+1 by extending π′′

k

with v. ⊓⊔

Lemma 6 N has a path with exactly one occurrence of r1, none of t1, and in-
finitely many occurrences of t2.

Proof Let π be the path found by Lemma 5. By Lemma 3 this path is embellished
by a complete path π′, that thus has no occurrences of r1 and infinitely many of r2.
By Requirement 2 π′ has infinitely many occurrences of t2, and by Requirement 3 it
has no occurrences of t1. By Requirement 1 π′ is r1-enabled. Let w be a transition
labelled r1 that is on π is continuously enabled from position k onwards. By
Lemma 1 N has a path π ⊕k w, obtained from π′ by inserting transition w in
position k. That path has exactly one occurrence of r1, none of t1, and infinitely
many of t2. ⊓⊔

Lemma 7 N has a t1-enabled path with infinitely many occurrences of t2.

Proof Let π be the path found by Lemma 6. We build a sequence πi of paths
in N that all embellish π and do not contain t1, such that, for all i, πi+1 is less
incomplete than πi and the first 2i transitions of πi and πi+1 are the same. Since
the πi embellish π, they have exactly one occurrence of r1, and infinitely many of
t2. Moreover, by Requirement 2, none of the πi can be complete.

We start by taking π0 to be π. If at any point we hit a path πi that is t1-enabled,
our work is done. Otherwise, given the (k, n)-incomplete path πi, for some k and n,
pick a witness w of the (k, n)-incompleteness of πi and take πi+1 :=πi⊕k+2iw. This
path exists by Lemma 1, since t is continuously enabled from position k onwards,
and hence also from position k + 2i onwards. Note that ℓ(w) 6= t1, since πi is not
t1-enabled. Hence πi+1 does not contain t1. By construction πi+1 embellishes πi

and hence π. By Lemma 2 πi+1 is less incomplete than πi. Moreover, the first 2i
transitions of πi and πi+1 are the same.

If at no point we hit a path πi that is t1-enabled, let ρ := limi→∞ πi. Exactly
as in the proof of Lemma 3 it follows that ρ is complete and embellishes π. Since
t1 does not occur on any of the πi, it does not occur on ρ. However, r1 does
occur on ρ, since it occurred on π. This is in contradiction with Requirement 2.
Therefore, the assumption that at no point we hit a path πi that is t1-enabled
must be wrong. ⊓⊔

Proof of Theorem 3 Let π be the path found in Lemma 7. It must have a finite
prefix π′ ending with an occurrence of t2, such that a transition w labelled t1
is enabled it the last state of π′. Extending π′ with w yields a finite path of N
violating Requirement 4. ⊓⊔

24 Rob van Glabbeek, Peter Höfner

17 An Operational Petri Net Semantics of CCS

This section presents an operational Petri net semantics of CCS!, following Degano,
De Nicola & Montanari [19]. It associates a Petri net [[P]] with each CCS! expres-
sion P . We establish that this Petri net is safe, all its reachable marking are finite,
and there are no transitions u with •u = ∅; hence it is one of the nets considered in
Section 15. In Section 18 we will show that if a CCS! expression F satisfies the four
requirements of Theorem 1 then the Petri net [[F]] satisfies the four requirements
of Theorem 3. As a result, Theorem 1 will follow from Theorem 3.

The standard operational semantics of CCS!, presented in Section 8, yields
one big labelled transition system for the entire language. Each individual CCS!

expression P appears as a state in this LTS. If desired, a process graph—an LTS
enriched with an initial state—for P can be extracted from this system-wide LTS
by appointing P as the initial state, and optionally deleting all states and transi-
tions not reachable from P . In the same vein, an operational Petri net semantics
yields one big Petri net for the entire language, but without an initial marking.
We call such a Petri net unmarked. Each process P ∈ TCCS! corresponds to a
marking dec(P) of that net. If desired, a Petri net for P can be extracted from
this system-wide net by appointing dec(P) as its initial marking, and optionally
deleting all places and transitions not reachable from dec(P).

The set GCCS! of places in the net—the grapes of [19]—is the smallest set
including:

A agent identifier
α.P prefixing

∑
i∈I Pi choice µ\a restriction

µ| left parallel component |µ right component µ[f] relabelling

for A∈K , α∈Act, P, Pi∈TCCS! , a∈H , µ∈GCCS! , index sets I, and relabellings f .
The mapping dec : TCCS! → P(GCCS!) decomposing a process expression into a
set of grapes is inductively defined by:

dec(α.P) = {α.P} dec(A) = {A}
dec(

∑
i∈I Pi) = {

∑
i∈I Pi} dec(P |Q) = dec(P)| ∪ |dec(Q)

dec(P\a) = dec(P)\a dec(P [f]) = dec(P)[f]

Here H[f],H\a,H| and |H are understood element by element; e.g. H[f] = {µ[f] |
µ ∈ H}. Moreover the binding is important, meaning that (|H)| 6= |(H|).

We construct the unmarked Petri net (S, T, F, ℓ) of CCS! with S := GCCS! ,
specifying the triple (T, F, ℓ) as a ternary relation→ ⊆ INS ×Act×INS. An element
H α−→ J of this relation denotes a transition u∈T with ℓ(u)=α such that •u=H
and u• = J . The transitions H α−→ J are derived from the rules of Table 2.

Henceforth, we write M [α〉 M ′, for markings M,M ′ ∈ ING
CCS! and α∈Act, if

there exists a transition u with M [u〉M ′ and ℓ(u) = α. In that case M = H +K
and M ′ = J +K for multisets of places H, J,K : GCCS! → IN with H α−→ J .

The following theorem says that function dec is a strong bisimulation ([45])
between the LTS and the unmarked Petri net of CCS!. Since markings of the form
dec(R) are plain sets (rather than multisets), it also follows that the Petri net of
each CCS! expression is safe.

Theorem 4 If R α−→ R′ for R,R′ ∈ TCCS! and α ∈ Act then dec(R) [α〉 dec(R′).

Moreover, if dec(R)[α〉M then there is a R′∈TCCS! with R
α−→ R′ and dec(R′)=M .

CCS: It’s not Fair! 25

{α.P} α−→ dec(P)
(dec(Pj)−K) α−→ J

{
∑

i∈I Pi}
α−→ J +K

(j ∈ I, K ≤ dec(Pj))

H α−→ J

H| α−→ J |

H a−→ J K ā−→ L

H|+ |K τ−→ J |+ |L

H α−→ J

|H α−→ |J

H α−→ J

H\a α−→ J\a
(a 6= α 6= ā)

H α−→ J

H[f] f(α)−−−→ J [f]

(dec(P)−K) α−→ J

{A} α−→ J +K

(
A

def
=P

K≤dec(P)

)

Table 2 Operational Petri net semantics of CCS!

Proof The first statement follows by induction on the derivability of the transition
R α−→ R′ from the rules of Table 1. We only spell out two representative cases; the
others are similar or straightforward.

– Suppose P |Q α−→ P ′|Q because P α−→ P ′. By induction dec(P) [α〉 dec(P ′).
Hence dec(P) = H +K and dec(P ′) = J +K for (multi)sets H, J,K ⊆ GCCS!

with H α−→ J . By Table 2 we obtain H| α−→ J |. Hence

dec(P |Q) = dec(P)|+ |dec(Q)
= H|+K|+ |dec(Q)
[α〉 J |+K|+ |dec(Q)
= dec(P ′)|+ |dec(Q)
= dec(P ′|Q) .

– Suppose A
def
= P and A α−→ P ′ since P α−→ P ′. By induction dec(P) [α〉 dec(P ′).

Hence dec(P) = H +K and dec(P ′) = J +K for sets H, J,K ⊆ GCCS! with
dec(P)−K = H α−→ J . By Table 2, dec(A) = {A} α−→ J +K = dec(P ′).

The second statement can be reformulated as

if (dec(R)−K) α−→ J with K ≤ dec(R)

then there is a R′ ∈ TCCS! with R α−→ R′ and dec(R′) = J+K.

for R∈TCCS! and K,J : GCCS! → IN. We prove it by induction on the derivability
of the transition dec(P)−K

α−→ J from the rules of Table 2.

– Suppose dec(R)−K = {α.P} α−→ dec(P). Since the only set dec(R) containing
α.P is {α.P}, we have K = ∅, J = dec(P) and R= α.P . Take R′ := P .

– Suppose dec(R) −K′ = H[f] f(α)−−−→ J [f] because H α−→ J . Then R must have
the form P [f], so that dec(R) = dec(P)[f], and K′ must have the form K[f].
Thus dec(P)−K = H α−→ J , and by induction there is a P ′ ∈ TCCS! with
P α−→ P ′ and dec(P ′) = J + K. By Table 1, R = P [f] α−→ P ′[f]. Moreover,
dec(P ′[f]) = dec(P ′)[f] = J [f] +K[f] = J [f] +K′.

– The case for restriction proceeds likewise.

– Suppose dec(R) − K′ = H| α−→ J | because H α−→ J . Then R must have
the form P |Q, and K′ = (dec(P)| − H|) + |dec(Q) = K| + |dec(Q), where
K := dec(P) − H. Thus dec(P)−K = H α−→ J , so by induction there is a
P ′∈TCCS! with P α−→ P ′ and dec(P ′)=J+K. By Table 1, R = P |Q α−→ P ′|Q.
Moreover, dec(P ′|Q) = dec(P ′)|+ |dec(Q) = J |+K|+ |dec(Q) = J |+K′.

26 Rob van Glabbeek, Peter Höfner

– Suppose dec(R)−K′ = H|+|K τ−→ J |+|L becauseH a−→ J andK ā−→ L. Then
R has the form P |Q, and K′ = (dec(P)| −H|) + (|dec(Q)− |J) = K1|+ |K2,
where K1 := dec(P)−H and K2 := dec(Q)−J . Thus dec(P)−K1 = H a−→ J
and dec(Q)−K2 = J ā−→ L, so by induction there are P ′, Q′ ∈ TCCS! with
P

a−→ P ′, dec(P ′) = J + K1, Q
ā−→ Q′ and dec(Q′) = L + K2. By Table 1,

R = P |Q τ−→ P ′|Q′. Moreover, dec(P ′|Q′) = dec(P ′)|+ |dec(Q′) = J |+K1|+
|L+ |K2 = J |+ |L+K′.

– The case for the last rule for parallel composition follows by symmetry.

– Suppose dec(R)−K′ = {
∑

i∈I Pi}
α−→ J +K because (dec(Pj)−K) α−→ J for

some j∈I. Since the only set dec(R) containing
∑

i∈I Pi is {
∑

i∈I Pi}, we have
K′ = ∅ and R =

∑
i∈I Pi. By induction, there is a P ′

j ∈ TCCS! with Pj
α−→ P ′

j

and dec(P ′
j) = J+K. By Table 1, R =

∑
i∈I Pi

α−→ P ′
j .

– The case for recursion (agent identifiers) goes likewise. ⊓⊔

A trivial induction shows that there are no transitions without preplaces. The
following lemma implies that all reachable markings are finite, so that the Petri
nets of CCS! expressions have all the properties of nets imposed in Section 15.

Lemma 8 For any P ∈ TCCS! the set dec(P) is finite.

Proof A straightforward induction. ⊓⊔

The above operational Petri net semantics of CCS has the disadvantage that
initial concurrency in expressions of the form

∑
i∈I Pi or A is not represented [19].

Although this Petri net semantics matches the LTS semantics of CCS up to strong
(interleaving) bisimilarity—and thereby also the standard denotational Petri net
semantics of CCS-like operators [30]—, it does not match the standard deno-
tational Petri net semantics up to semantic equivalences that take concurrency
explicitly into account. For this reason Olderog [49] provides an alternative oper-
ational Petri net semantics that is more accurate in this sense. However, the work
of Olderog does not generalise in a straightforward way to the infinite sum con-
struct of CCS, and to unguarded recursion. In fact, a safe Petri net that accurately
models the concurrent behaviour of the CCS process

∑
i∈IN(ai.0|bi.0) would need

an uncountable initial marking, and hence falls outside the class of nets we handle
in Section 15. Since the accurate modelling of concurrency is not essential for this
paper, we therefore use the semantics of [19].

18 Fair Schedulers Cannot be Rendered in CCS!—Proof

Lemma 9 The mapping dec : TCCS! → P(GCCS!) is injective.

Proof A straightforward induction on the structure of the elements in TCCS! . ⊓⊔

Lemma 10 Let P ∈ TCCS! . For any path π = dec(P)u1M1u2M2u3 . . . in the
unmarked Petri net of CCS! there is a unique path π̂ = P α1−→ P1

α2−→ P2
α3−→ . . .

of the same (finite or infinite) length in the LTS of CCS! with dec(Pi) =Mi and
ℓ(ui) = αi for all i.

Proof A straightforward induction on i, using Theorem 4 and Lemma 9. ⊓⊔

CCS: It’s not Fair! 27

The following observations are based directly on Table 2 and the definition of dec.

Observation 1 Let dec(P |Q) [u〉 M . Then M has the form dec(P ′|Q′) and either
– Q=Q′ and dec(P) [v〉 dec(P ′) for a v∈T with ℓ(v)=ℓ(u), •u=•v| and u•=v•|,
– P=P ′ and dec(Q) [w〉 dec(Q′) for a w∈T with ℓ(w)=ℓ(u),•u=|•w and u•=|w•,
– or dec(P) [v〉 dec(P ′) and dec(Q) [w〉 dec(Q′) for v, w ∈ T with ℓ(v) = c ∈ H ,

ℓ(w) = c̄, •u= •v|+ |•w and u• = v•|+ |w•.

For each such transition u, the transitions v and w discovered above are called
the left- and right-projections of u, respectively, when they exist. Hence any path
π starting from a marking dec(P |Q) can be uniquely decomposed into a path π1

starting from dec(P) and a path π2 starting from dec(Q), notation π ⇛ π1|π2.
The path π1 fires all existing left-projections of the transitions in π, in order, and
π2 its right-projections.

Lemma 11 If π ⇛ π1|π2 and π1 is α-enabled, then so is π.

Proof Let π1 = M ′
0v1M

′
1v2M

′
2v3 . . . be α-enabled. Then there is a h ≥ 0 and a

transition v with ℓ(v) = α such that M ′
h[v〉 and •v ∩ •vi = ∅ for all i > h. Let

π = M0u1M1u2M2u3 Let k ≥ h be such that v0 . . . vh is the sequence of
existing left-projections of u1 . . . uk. The marking Mk has the form dec(Pk|Qk) =
dec(Pk)| ∪· |dec(Qk) with M ′

h = dec(Pk). Since
•v ≤ dec(Pk), by Table 2 there

exists a transition v′ with ℓ(v′) = α and
•
v′ = •v| ≤ dec(Pk)| ≤ Mk. So Mk[v

′〉.
Moreover, since •v ∩ •vi = ∅ for all i > h we have

•
v′ ∩ •ui = ∅ for all i > k. It

follows that π is α-enabled. ⊓⊔

Lemma 12 If π ⇛ π1|π2, π1 is c-enabled and π2 is c̄-enabled, for some c ∈ H ,
then π is τ -enabled.

Proof Let π = M0u1M1u2M2u3 Since π ⇛ π1|π2, each marking Mi has the
form dec(Pi|Qi) = dec(Pi)| ∪· |dec(Qi). By the same reasoning as in the previous
proof, there is a k1 ≥ 0 and a transition v with ℓ(v) = c such that •v ≤ dec(Pi)
and •v| ∩ •ui = ∅ for all i ≥ k1. Likewise, there is a k2 ≥ 0 and a transition w
with ℓ(w) = c̄ such that •w ≤ dec(Qi| and |•w ∩ •ui = ∅ for all i ≥ k2.

Let k = max(k1, k2). By the fourth rule of Table 2 there is a transition u with
ℓ(u)=τ and •u=•v|+|•w≤Mk and •u∩•ui=∅ for all i > k. So π is τ -enabled. ⊓⊔

Observation 2 Let dec(P\c) [u〉 M . Then M has the form dec(P ′\c) and we
have dec(P) [v〉 dec(P ′) for a v ∈ T with ℓ(v) = ℓ(u), •u= •v\c and u• = v•\c.

For each such transition u, the transition v discovered above is called the projec-
tion of u. Hence any path π starting from a marking dec(P)\c can be uniquely
decomposed into a path π′ starting from dec(P), notation π ⇛ π′\c. The path π′

fires all the projections of the transitions in π, in order.

Lemma 13 If π ⇛ π′\c and π′ is α-enabled with c 6= α 6= c̄, then π is α-enabled.

Proof Let π′ = M ′
0v1M

′
1v2M

′
2v3 . . . be α-enabled. Then there is a k ≥ 0 and a

transition v with ℓ(v) = α such that M ′
k[v〉 and •v ∩ •vi = ∅ for all i > k. Let

π = M0u1M1u2M2u3 The marking Mk has the form dec(Pk\c) = dec(Pk)\c
with M ′

k = dec(Pk). Since
•v ≤ dec(Pk) and c 6= α 6= c̄, by Table 2 there exists

a transition v′ with ℓ(v′) = α and
•
v′ = •v\c ≤ dec(Pk)\c = Mk. So Mk[v

′〉.
Moreover, since •v ∩ •vi = ∅ for all i > k we have

•
v′ ∩ •ui = ∅ for all i > k. It

follows that π is α-enabled. ⊓⊔

28 Rob van Glabbeek, Peter Höfner

Observation 3 Let dec(P [f]) [u〉 M . Then M has the form dec(P ′[f]) and we
have dec(P) [v〉 dec(P ′) for a v ∈ T with f(ℓ(v)) = ℓ(u), •u= •v[f] and u• = v•[f].

For each such transition u, the transition v discovered above is called a projection
of u—it need not be unique. Hence any path π starting from a marking dec(P)\c
can be decomposed into a path π′ starting from dec(P), notation π ∈ π′[f]. The
path π′ fires projections of the transitions in π, in order.

Lemma 14 If π ∈ π′[f] and π′ is α-enabled, then π is f(α)-enabled.

Proof Just as the proof of Lemma 13. ⊓⊔

Observation 4 Let π be a path in the unmarked Petri net of CCS!.
Then π ⇛ π1|π2 implies that π̂1|π̂2 is a decomposition of π̂ (c.f. Page 12).
Likewise, if π ⇛ π′\c or π ∈ π′[f] then π̂′ is a decomposition of π̂.

Proposition 1 Let π be a path in the unmarked Petri net of CCS!. If Y includes
all actions α ∈ Act for which π is α-enabled, and Y ⊆ H , then π̂ is Y-just.

Proof Define a path η in the LTS of CCS! to be Y-justen, for Y ⊆ Act, if η has the
form π̂ for π a path in the unmarked Petri net of CCS!, and Y includes all actions
α ∈ Act for which π is α-enabled. Note that if η is Y-justen, it is also Y ′-justen
for any Y ⊆ Y ′ ⊆ Act. We show that the family of predicates Y-justnessen, for
Y ⊆ H , satisfies the five requirements of Definition 1.

– Let π̂ be a finite Y-justen path. Suppose the last state Q of π̂ admits an
action α /∈ Y , Then, using Theorem 4, the last marking dec(Q) of π enables a
transition labelled α. Thus π is α-enabled, contradicting the Y-justnessen of π.

– Suppose π̂ is a Y-justen path of a process P |Q with Y ⊆H . Then Y includes all
actions α∈Act for which π is α-enabled. Let π1 and π2 be the paths such that
π ⇛ π1|π2. By Observation 4 π̂ can be decomposed into the paths π̂1 of P and
π̂2 of Q. Let X ⊆ Act be the set of actions α for which π1 is α-enabled, and
let Z ⊆ Act be the set of actions α for which π2 is α-enabled. By definition,
π̂1 is X-justen and π̂2 is Z-justen.
If π1 is α-enabled then π is α-enabled by Lemma 11. This implies that X ⊆ Y .
In the same way it follows that Z ⊆ Y . Now suppose X ∩ Z̄ 6= ∅. Then π1 is c-
enabled and π2 is c̄-enabled, for some c ∈ H . So, by Lemma 12, π is τ -enabled,
in contradiction with τ 6∈ Y ⊆ H . We therefore conclude that X ∩ Z̄ = ∅.

– Suppose π̂ is a Y-justen path of a process P\c. Then Y includes all actions
α ∈ Act for which π is α-enabled. Let π′ be the path such that π ⇛ π′\c. By
Observation 4 π̂ is a decomposition of the path π̂′ of P . Let X ⊆ Act be the
set of actions α for which π′ is α-enabled. If π′ is α-enabled with c 6= α 6= c̄
then π is α-enabled by Lemma 13. This implies that X \ {c, c̄} ⊆ Y and hence
X ⊆ H . It follows that π̂′ is X-justen, and hence Y ∪{c, c̄}-justen.

– Suppose π̂ is a Y-justen path of a process P [f]. Then Y includes all actions
α ∈ Act for which π is α-enabled. Let π′ be a path such that π ∈ π′[f]. By
Observation 4 π̂ is a decomposition of the path π̂′ of P . Let X ⊆ Act be the set
of actions α for which π′ is α-enabled. If π′ is α-enabled then π is f(α)-enabled
by Lemma 14. This implies that f(X) ⊆ Y . It follows that π̂′ is X-justen, and
hence f−1(Y)-justen.

CCS: It’s not Fair! 29

– Suppose π′ is a suffix of an Y-justen path π. Then Y includes all actions α∈Act
for which π is α-enabled, and thus all α for which π′ is α-enabled. Hence π′ is
Y-justen.

Since Y-justness is the largest family of predicates that satisfies those requirements,
Y-justnessen implies Y-justness. ⊓⊔

Corollary 1 Let π be a path starting from dec(P) in the unmarked Petri net of
CCS!. If π is complete, then so is π̂. Moreover, if π̂ is a-enabled, for a ∈ H , then
so is π. ⊓⊔

Proof of Theorem 1 Suppose there does exist a CCS! expression F as considered
in Theorem 1. Then it suffices to show that [[F]] is a net N as considered in
Theorem 3. Thus, we show that [[F]] satisfies the four properties of Theorem 3.

1. Let π be a complete path of [[F]] that has finitely many occurrences of ri.
By Lemma 10 π̂ is a path of F that has finitely many occurrences of ri. By
Corollary 1 it is complete. By Requirement 1 of Theorem 1, π̂ is ri-enabled.
So by Corollary 1, π is ri-enabled.

2. Let π be a complete path of [[F]]. Then π̂ is a complete path of [[F]]. By
Requirement 2 of Theorem 1, on π̂ each ri is followed by a ti. Using Lemma 10,
the same holds for π.

3. Let π be a finite path of [[F]]. Then π̂ is a path of F . By Requirement 3 of
Theorem 1, on π̂, and thus on π, are no more occurrences of ti than of ri.

4. Let π be a path of [[F]], featuring two occurrences of ti and tj (i, j ∈ {1, 2}).
These occurrences also occur on π̂. By Requirement 4 of Theorem 1, an action
e occurs between them. ⊓⊔

19 Concluding Remarks

This paper presented a simple fair scheduler—one that in suitable variations occurs
in many distributed systems—of which no implementation can be expressed in
CCS. In particular, Dekker’s and Peterson’s mutual exclusion protocols cannot
be rendered correctly in CCS. These conclusions remain true if CCS is extended
with progress and certain fairness assumptions, namely justness as presented in
this paper. However, as shown in [14], it is possible to correctly render Dekker’s
protocol—and thereby a fair scheduler—in CCS enriched with a stronger fairness
assumption. We argue, however, that such fairness assumptions should not be
made lightly, as in certain contexts they allow the derivation of false results.

It does not appear hard to extend CCS with an operator that enables expressing
this fair scheduler without relying on a fairness assumption. In [29] for instance we
give a simple specification of a fair scheduler in an extension of CCS with broadcast
communication. In [15] it is shown that it suffices (for the correct specification
of Dekker’s algorithm) to extend a CCS-like process algebra with non-blocking
reading actions. A priority mechanism [12] would also be sufficient.

Let ⊲ for instance be a +-like operator that schedules an action from its left
argument if possible, and otherwise runs its right argument. Then F̂1, with

F1
def
= (r1.t1.e.F2)⊲ (τ.F2) and F2

def
= (r2.t2.e.F1)⊲ (τ.F1)

30 Rob van Glabbeek, Peter Höfner

appears to be a fair scheduler. Here ·̂ is the CCS-context specified in Section 13.
F is basically a round-robin scheduler which checks whether r1 is enabled; if

so, it performs the sequence r1.t1.e; if not, it does an internal action and tries to
perform r2.

An interesting question is what kind of extension of CCS is needed to enable
specifying all processes of this kind. It appears that the formalism CCS+LTL that
we employed in Section 11 to specify our fair scheduler can be used to specify a
wide range of similar systems. Such a specification combines a CCS specification
with a fairness component, consisting of a set of LTL formulas that narrows down
the complete paths of the specified process. An intriguing challenge is to find
an extension of CCS, say by means of extra operators, that makes the fairness
component redundant, i.e. an extension such that any CCS+LTL process can be
expressed in the extended CCS without employing a fairness component.

For certain properties of the form (
∨

i GFai) ⇒ (
∨

j GFbj) where the ai and
bi are action occurrences—hence for specific strong fairness properties—one can
define a fairness operator that transforms a given LTS into a LTS that satisfies
the property [55]. This is done by eliminating all the paths that do not satisfy the
property via a carefully designed parallel composition. The fairness operator can
be expressed in a variant of the process algebra CSP. The question above asks
whether something similar can be done, in a more expressive process algebra, for
arbitrary LTL properties, or perhaps for a larger class of fairness properties.

Acknowledgements We gratefully thank the anonymous referees. Their reports showed deep
insights in the material, and helped a lot to improve the quality of the paper. In particular,
the link between our fair scheduler and Peterson’s mutual exclusion protocol was made by one
of the referees.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Modelling mutual exclusion algorithms.
In: Reactive Systems: Modelling, Specification and Verification, pp. 142–158. Cambridge
University Press (2007). doi:10.1017/CBO9780511814105.008

2. Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for distributed program-
ming. Distributed Computing 2(4), 226–241 (1988). doi:10.1007/BF01872848

3. Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of Com-
puting 8(2), 188–208 (1996). doi:10.1007/BF01214556

4. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair ab-
straction rule. Theoretical Computer Science 51(1/2), 129–176 (1987). doi:10.1016/
0304-3975(87)90052-1

5. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Ready-trace semantics for concrete process
algebra with the priority operator. Computer Journal 30(6), 498–506 (1987). doi:10.
1093/comjnl/30.6.498

6. Baeten, J.C.M., Luttik, B., van Tilburg, P.: Reactive Turing machines. In: O. Owe, M. Stef-
fen, J.A. Telle (eds.) Fundamentals of Computation Theory, pp. 348–359 (2011). doi:10.
1007/978-3-642-22953-4_30

7. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: J.W. de Bakker,
M. Hazewinkel, J.K. Lenstra (eds.) Mathematics and Computer Science, CWI Monograph
1, pp. 89–138. North-Holland (1986)

8. Bergstra, J.A., Klop, J.W.: Verification of an alternating bit protocol by means of process
algebra. In: W. Bibel, K.P. Jantke (eds.) Mathematical Methods of Specification and
Synthesis of Software Systems ’85, LNCS, vol. 215, pp. 9–23. Springer (1986). doi:10.
1007/3-540-16444-8_1

9. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Com-
puter Networks 14, 25–59 (1987). doi:10.1016/0169-7552(87)90085-7

http://dx.doi.org/10.1017/CBO9780511814105.008
http://dx.doi.org/10.1007/BF01872848
http://dx.doi.org/10.1007/BF01214556
http://dx.doi.org/10.1016/0304-3975(87)90052-1
http://dx.doi.org/10.1016/0304-3975(87)90052-1
http://dx.doi.org/10.1093/comjnl/30.6.498
http://dx.doi.org/10.1093/comjnl/30.6.498
http://dx.doi.org/10.1007/978-3-642-22953-4_30
http://dx.doi.org/10.1007/978-3-642-22953-4_30
http://dx.doi.org/10.1007/3-540-16444-8_1
http://dx.doi.org/10.1007/3-540-16444-8_1
http://dx.doi.org/10.1016/0169-7552(87)90085-7

CCS: It’s not Fair! 31

10. Bouali, A.: Weak and branching bisimulation in Fctool. Research Report RR-1575, Inria-
Sophia Antipolis (1992). URL https://hal.inria.fr/inria-00074985/document

11. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential pro-
cesses. J. ACM 31(3), 560–599 (1984). doi:10.1145/828.833

12. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In: J.A. Bergstra,
A. Ponse, S.A. Smolka (eds.) Handbook of Process Algebra, chap. 12, pp. 711–765. Elsevier
(2001). doi:10.1016/B978-044482830-9/50030-8

13. Corradini, F., Di Berardini, M.R., Vogler, W.: Fairness of actions in system computations.
Acta Informatica 43(2), 73–130 (2006). doi:10.1007/s00236-006-0011-2

14. Corradini, F., Di Berardini, M.R., Vogler, W.: Liveness of a mutex algorithm in a fair
process algebra. Acta Informatica 46(3), 209–235 (2009). doi:10.1007/s00236-009-0092-9

15. Corradini, F., Di Berardini, M.R., Vogler, W.: Time and fairness in a process algebra with
non-blocking reading. In: M. Nielsen, A. Kucera, P.B. Miltersen, C. Palamidessi, P. Tuma,
F.D. Valencia (eds.) Theory and Practice of Computer Science (SOFSEM’09), LNCS, vol.
5404, pp. 193–204. Springer (2009). doi:10.1007/978-3-540-95891-8_20

16. Corradini, F., Vogler, W., Jenner, L.: Comparing the worst-case efficiency of asyn-
chronous systems with PAFAS. Acta Informatica 38(11/12), 735–792 (2002). doi:10.
1007/s00236-002-0094-3

17. Costa, G., Stirling, C.: A fair calculus of communicating systems. Acta Informatica 21,
417–441 (1984). doi:10.1007/BF00271640

18. Costa, G., Stirling, C.: Weak and strong fairness in CCS. Information and Computation
73(3), 207–244 (1987). doi:10.1016/0890-5401(87)90013-7

19. Degano, P., De Nicola, R., Montanari, U.: CCS is an (augmented) contact free C/E system.
In: M.V. Zilli (ed.) Mathematical Models for the Semantics of Parallelism, LNCS, vol. 280,
pp. 144–165. Springer (1987). doi:10.1007/3-540-18419-8_13

20. Dijkstra, E.W.: Over de sequentialiteit van procesbeschrijvingen (1962 or 1963). URL
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF. Circulated privately

21. Dijkstra, E.W.: Cooperating sequential processes. In: F. Genuys (ed.) Programming Lan-
guages: NATO Advanced Study Institute, pp. 43–112. Academic Press (1968)

22. Esparza, J., Bruns, G.: Trapping mutual exclusion in the box calculus. Theoretical Com-
puter Science 153(1-2), 95–128 (1996). doi:10.1016/0304-3975(95)00119-0

23. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks used for modelling, verifying and analysing
AODV. Tech. Rep. 5513, NICTA (2013). Available at http://arxiv.org/abs/1312.7645

24. Francez, N.: Fairness. Springer (1986). doi:10.1007/978-1-4612-4886-6
25. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In:

P.W. Abrahams, R.J. Lipton, S.R. Bourne (eds.) Principles of Programming Languages
(POPL ’80), pp. 163–173. ACM (1980). doi:10.1145/567446.567462

26. van Glabbeek, R.J.: On specifying timeouts. In: L. Aceto, A.D. Gordon (eds.) Short
Contributions from the Workshop on Algebraic Process Calculi: The First Twenty Five
Years and Beyond, ENTCS, vol. 162, pp. 112–113. Elsevier (2005). doi:10.1016/j.entcs.
2005.12.083

27. van Glabbeek, R.J.: Musings on encodings and expressiveness. In: B. Luttik, M.A. Reniers
(eds.) Proceedings Combined 19th International Workshop on Expressiveness in Concur-
rency and 9th Workshop on Structured Operational Semantics, EPTCS, vol. 89, pp. 81–98.
Open Publishing Association (2012). doi:10.4204/EPTCS.89.7

28. van Glabbeek, R.J., Goltz, U., Schicke, J.W.: Abstract processes of place/transition sys-
tems. Information Processing Letters 111(13), 626–633 (2011). doi:10.1016/j.ipl.2011.
03.013

29. van Glabbeek, R.J., Höfner, P.: Progress, fairness and justness in process algebra. CoRR
abs/1501.03268 (2015). URL http://arxiv.org/abs/1501.03268

30. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concur-
rency. In: J.W.d. Bakker, A.J. Nijman, P.C. Treleaven (eds.) Parallel Architectures and
Languages Europe (PARLE’97), Vol. II: Parallel Languages, LNCS, vol. 259, pp. 224–242.
Springer (1987). doi:10.1007/3-540-17945-3_13

31. Goldin, D.Q., Smolka, S.A., Attie, P.C., Sonderegger, E.L.: Turing machines, transition
systems, and interaction. Information and Computation 194(2), 101–128 (2004). doi:10.
1016/j.ic.2004.07.002

32. Gorla, D.: Towards a unified approach to encodability and separation results for process
calculi. Information and Computation 208(9), 1031–1053 (2010). doi:10.1016/j.ic.2010.
05.002

https://hal.inria.fr/inria-00074985/document
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1016/B978-044482830-9/50030-8
http://dx.doi.org/10.1007/s00236-006-0011-2
http://dx.doi.org/10.1007/s00236-009-0092-9
http://dx.doi.org/10.1007/978-3-540-95891-8_20
http://dx.doi.org/10.1007/s00236-002-0094-3
http://dx.doi.org/10.1007/s00236-002-0094-3
http://dx.doi.org/10.1007/BF00271640
http://dx.doi.org/10.1016/0890-5401(87)90013-7
http://dx.doi.org/10.1007/3-540-18419-8_13
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF
http://dx.doi.org/10.1016/0304-3975(95)00119-0
http://arxiv.org/abs/1312.7645
http://dx.doi.org/10.1007/978-1-4612-4886-6
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1016/j.entcs.2005.12.083
http://dx.doi.org/10.1016/j.entcs.2005.12.083
http://dx.doi.org/10.4204/EPTCS.89.7
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://arxiv.org/abs/1501.03268
http://dx.doi.org/10.1007/3-540-17945-3_13
http://dx.doi.org/10.1016/j.ic.2004.07.002
http://dx.doi.org/10.1016/j.ic.2004.07.002
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1016/j.ic.2010.05.002

32 Rob van Glabbeek, Peter Höfner

33. Groote, J.F., Ponse, A.: The syntax and semantics of µCRL. In: A. Ponse, C. Verhoef,
S.F.M. van Vlijmen (eds.) Algebra of Communicating Processes ’94, Workshops in Com-
puting, pp. 26–62. Springer (1995). doi:10.1007/978-1-4471-2120-6_2

34. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and proba-
bitilies. In: Real-Time Systems Symposium (RTSS ’90), pp. 278–287. IEEE Computer
Society (1990). doi:10.1109/REAL.1990.128759

35. Hennessy, M., Regan, R.: A process algebra for timed systems. Information and Compu-
tation 117(2), 221–239 (1995). doi:10.1006/inco.1995.1041

36. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs
(1985)

37. Kindler, E., Walter, R.: Mutex needs fairness. Inf. Process. Lett. 62(1), 31–39 (1997).
doi:10.1016/S0020-0190(97)00033-1

38. Kleinrock, L.: Analysis of a time-shared processor. Naval Research Logistics Quarterly
11(1), 59–73 (1964). doi:10.1002/nav.3800110105

39. Lamport, L.: The temporal logic of actions. ACM Trans. Programming Languages and
Systems 16(3), 872–923 (1994). doi:10.1145/177492.177726

40. Lauer, P.E., Torrigiani, P.R., Shields, M.W.: COSY - a system specification language based
on paths and processes. Acta Informatica 12, 109–158 (1979). doi:10.1007/BF00266047

41. van Leeuwen, J., Wiedermann, J.: Beyond the Turing limit: Evolving interactive systems.
In: L. Pacholski, P. Ruzicka (eds.) Theory and Practice of Informatics (SOFSEM ’01),
LNCS, vol. 2234, pp. 90–109. Springer (2001). doi:10.1007/3-540-45627-9_8

42. Lehmann, D.J., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: The ethics of con-
current termination. In: S. Even, O. Kariv (eds.) Automata, Languages and Programming
(ICALP), LNCS, vol. 115, pp. 264–277. Springer (1981). doi:10.1007/3-540-10843-2_22

43. Lüttgen, G., Vogler, W.: A faster-than relation for asynchronous processes. In: K.G.
Larsen, N. M. (eds.) Concurrency Theory (CONCUR ’01), LNCS, vol. 2154, pp. 262–276.
Springer (2001). doi:10.1007/3-540-44685-0_18

44. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly 2(3),
219–246 (1989). Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands

45. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
46. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I + II. Information

and Computation 100(1), 1–77 (1992). doi:10.1016/0890-5401(92)90008-4
47. Nagle, J.: On packet switches with infinite storage. RFC 970, Network Working Group

(1985). URL http://tools.ietf.org/rfc/rfc970.txt
48. Nagle, J.: On packet switches with infinite storage. IEEE Trans. Communications 35(4),

435–438 (1987). doi:10.1109/TCOM.1987.1096782
49. Olderog, E.-R..: Nets, Terms and Formulas: Three Views of Concurrent Processes and their

Relationship. No. 23 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press (1991)

50. Parrow, J.: Expressiveness of process algebras. ENTCS 209, 173–186 (2008). doi:10.1016/
j.entcs.2008.04.011

51. Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing Let-
ters 12(3), 115–116 (1981). doi:10.1016/0020-0190(81)90106-X

52. Plotkin, G.D.: A powerdomain for countable non-determinism (extended abstract). In:
M. Nielsen, E.M. Schmidt (eds.) Automata, Languages and Programming (ICALP ’82),
LNCS, vol. 140, pp. 418–428. Springer (1982). doi:10.1007/BFb0012788

53. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science (FOCS
’77), pp. 46–57. IEEE (1977). doi:10.1109/SFCS.1977.32

54. Prasad, K.V.S.: A calculus of broadcasting systems. Science of Computer Programming
25(2-3), 285–327 (1995). doi:10.1016/0167-6423(95)00017-8

55. Puhakka, A., Valmari, A.: Liveness and fairness in process-algebraic verification. In: K.G.
Larsen, M. Nielsen (eds.) Concurrency Theory (CONCUR’01), LNCS, vol. 2154, pp. 202–
217. Springer (2001). doi:10.1007/3-540-44685-0_14

56. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. In:
L. Kott (ed.) Automata, Languages and Programming (ICALP ’86), LNCS, vol. 226, pp.
314–323. Springer (1986). doi:10.1007/3-540-16761-7_81

57. Reisig, W.: Petri nets – an introduction. EATCS Monographs on Theoretical Computer
Science, Volume 4. Springer (1985). doi:10.1007/978-3-642-69968-9

58. Vaandrager, F.W.: Expressiveness results for process algebras. In: J.W. de Bakker,
W.P. de Roever, G. Rozenberg (eds.) Proceedings REX Workshop on Semantics: Foun-
dations and Applications, LNCS, vol. 666, pp. 609–638. Springer (1993). doi:10.1007/
3-540-56596-5_49

http://dx.doi.org/10.1007/978-1-4471-2120-6_2
http://dx.doi.org/10.1109/REAL.1990.128759
http://dx.doi.org/10.1006/inco.1995.1041
http://dx.doi.org/10.1016/S0020-0190(97)00033-1
http://dx.doi.org/10.1002/nav.3800110105
http://dx.doi.org/10.1145/177492.177726
http://dx.doi.org/10.1007/BF00266047
http://dx.doi.org/10.1007/3-540-45627-9_8
http://dx.doi.org/10.1007/3-540-10843-2_22
http://dx.doi.org/10.1007/3-540-44685-0_18
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://tools.ietf.org/rfc/rfc970.txt
http://dx.doi.org/10.1109/TCOM.1987.1096782
http://dx.doi.org/10.1016/j.entcs.2008.04.011
http://dx.doi.org/10.1016/j.entcs.2008.04.011
http://dx.doi.org/10.1016/0020-0190(81)90106-X
http://dx.doi.org/10.1007/BFb0012788
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1016/0167-6423(95)00017-8
http://dx.doi.org/10.1007/3-540-44685-0_14
http://dx.doi.org/10.1007/3-540-16761-7_81
http://dx.doi.org/10.1007/978-3-642-69968-9
http://dx.doi.org/10.1007/3-540-56596-5_49
http://dx.doi.org/10.1007/3-540-56596-5_49

CCS: It’s not Fair! 33

59. Valmari, A., Setälä, M.: Visual verification of safety and liveness. In: M. Gaudel, J. Wood-
cock (eds.) Industrial Benefit and Advances in Formal Methods (FME’96), LNCS, vol.
1051, pp. 228–247. Springer (1996). doi:10.1007/3-540-60973-3_90

60. Vogler, W.: Efficiency of asynchronous systems, read arcs, and the MUTEX-problem.
Theor. Comput. Sci. 275(1-2), 589–631 (2002). doi:10.1016/S0304-3975(01)00300-0

61. Walker, D.J.: Automated analysis of mutual exclusion algorithms using CCS. Formal
Aspects of Computing 1(1), 273–292 (1989). doi:10.1007/BF01887209

62. Wegner, P.: Why interaction is more powerful than algorithms. Commununications of the
ACM 40(5), 80–91 (1997). doi:10.1145/253769.253801

http://dx.doi.org/10.1007/3-540-60973-3_90
http://dx.doi.org/10.1016/S0304-3975(01)00300-0
http://dx.doi.org/10.1007/BF01887209
http://dx.doi.org/10.1145/253769.253801

	Background
	Fairness Assumptions
	Specifications versus Actual Processes
	Our Contributions
	Peterson's and Dekker's Mutual Exclusion Protocols
	Overview
	A Fair Scheduler
	The Calculus of Communicating Systems
	The Necessity of Output Actions
	A Just Semantics of Parallelism
	Formal Specification of the Fair Scheduler
	Fair Schedulers Cannot be Rendered in CCS—Formalisation
	A Characterisation of Fair Schedulers without enabling
	(In)Correct Correctness Proofs of Peterson's and Dekker's Protocols
	Fair Schedulers Cannot be Rendered in Petri Nets—Formalisation
	Fair Schedulers Cannot be Rendered in Petri Nets—Proof
	An Operational Petri Net Semantics of CCS
	Fair Schedulers Cannot be Rendered in CCS—Proof
	Concluding Remarks

