
An Isabelle Proof Method Language

Daniel Matichuk1,2, Makarius Wenzel3, and Toby Murray1,2

1 NICTA, Sydney, Australia?
2 School of Computer Science and Engineering, UNSW, Sydney, Australia
3 Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France

CNRS, Orsay, F-91405, France

Abstract. Machine-checked proofs are becoming ever-larger, presenting an in-
creasing maintenance challenge. Isabelle’s most popular language interface, Isar,
is attractive for new users, and powerful in the hands of experts, but has previ-
ously lacked a means to write automated proof procedures. This can lead to more
duplication in large proofs than is acceptable. In this paper we present Eisbach, a
proof method language for Isabelle, which aims to fill this gap by incorporating
Isar language elements, thus making it accessible to existing users. We describe
the language and the design principles on which it was developed. We evaluate its
effectiveness by implementing some tactics widely-used in the seL4 verification
stack, and report on its strengths and limitations.

1 Introduction

Machine-checked proofs, developed using interactive proof assistants, present an in-
creasing maintenance challenge as they become ever larger. For instance, the proofs
and specifications that accompany the formally verified seL4 microkernel now com-
prise 480,000 lines of Isabelle/HOL [9], while Isabelle’s Archive of Formal Proofs http:
//afp.sf.net now comprises over 900,000 lines. Each of these developments is updated
to ensure it runs with each new Isabelle release. Large proofs about living software im-
plementations present the additional maintenance challenge of having to be updated as
the software to which they apply evolves over time, as is the case with seL4.

The Isabelle proof assistant [15, §6] provides various languages for different pur-
poses, which sometimes overlap and sometimes complement each other. Most com-
monly used is the Isar language for theory specifications and structured proofs [14].
Isabelle/Isar sits alongside Isabelle/ML, which exposes the full power of system im-
plementation and extension, including the ability to implement new sub-languages of
the Isabelle framework. Isar itself is devoid of computation, but it may appeal to ar-
bitrarily complex proof tools from the library: so-called proof methods. These are are
usually implemented in Isabelle/ML. Isabelle/ML is integrated into the formal context
of Isabelle/Isar, and supports referring to logical entities or Isar elements via antiquota-
tions [13]. While this makes it reasonably easy to access the full power of ML in proofs,
the vast majority of Isabelle theories are written solely in Isar: the AFP comprises just
50 ML files, as compared to 1663 Isar (.thy) files only 6 of which embed ML code.
? NICTA is funded by the Australian Government through the Department of Communications and the Australian Research

Council through the ICT Centre of Excellence Program.

http://afp.sf.net
http://afp.sf.net

The Isar proof language does not support proof procedure definitions directly, but
this hasn’t prevented large verifications from being completed: the seL4 proofs rely
mainly on two custom tactics. This can be partly explained by the power of exist-
ing proof tools in Isabelle/HOL. However, it has arguably led to more duplication in
these proofs than is acceptable; managing duplication has been a challenge for the seL4
proofs in [1]. This duplication makes proof maintenance difficult, and highlights the
barrier to entry when implementing proof tools in Isabelle/ML. If automation can be ex-
pressed at a high level, a wider class of users can maintain and extend domain-specific
proof procedures, which are often more maintainable than long proof scripts.

In this paper, we present a proof method language for Isabelle, called Eisbach, that
allows writing proof procedures by appealing to existing proof tools with their usual
syntax. The new Isar command method-definition allows proof methods to be com-
bined, named, and abstracted over terms, facts and other methods. Eisbach is inspired
by Coq’s Ltac [4], and includes similar features such as matching on facts and the cur-
rent goal. However, Eisbach’s matching behaves differently to Ltac’s, especially with
respect to backtracking (see Section 3.5). Eisbach continues the Isabelle philosophy
of exposing carefully designed features to the user while leaving more sophisticated
functionality to Isabelle/ML: small snippets of ML may be easily included on demand.
Eisbach benefits from general Isabelle concepts, while easing their exposure to users:
pervasive backtracking, the structured proof context with named facts, and attributes to
declare hints for proof tools.

The following simple example defines a new proof method which identifies a list
in the conclusion of the current subgoal and applies the default induction principle to it
with the existing method induct. All newly emerging subgoals are solved with fastforce,
with additional simplification rules given as argument.

method-definition induct-list facts simp =
(match ?concl in ?P (?x :: ′a list)⇒ (induct ?x 7→ fastforce simp: simp))

Now induct-list can be called as a proof method to prove simple properties about lists.

lemma length (xs @ ys) = length xs + length ys by induct-list

The primary goal of Eisbach is to make writing proofs more productive, to avoid
duplication, and thereby lower the costs of proof maintenance. Its design principles are:

– To be easy to use for beginners and experts.
– To expose limited functionality, leaving complex functionality to Isabelle/ML.
– Seamless integration with other Isabelle languages.
– To continue Isar’s principle of readable proofs, creating readable proof procedures.

We begin in Section 2 by recalling some concepts of Isabelle and Isar. Section 3
then presents Eisbach, via a tour of its features in a tutorial style, concluding with
the development of a solver for first order logic. We describe Eisbach’s design and
implementation in Section 4, before evaluating it in Section 5 by implementing the two
most widely-used proof methods of the seL4 verification stack, and comparing them
against their original implementations. Section 6 then surveys related work on proof
programming languages, to put Eisbach in proper context. In Section 7 we compare
Eisbach to Coq’s Ltac and Mtac before considering future work and concluding.

2 Some Isabelle Concepts

Isabelle was originally introduced as yet another Logical Framework by Paulson [12],
to allow rapid prototyping of implementations of inference systems, especially versions
of Martin-Löf type theory. Some key concepts of current Isabelle can be traced back to
this heritage, although today most applications are done exclusively in the object-logic
Isabelle/HOL, and the general system framework has changed much in 25 years.

Isabelle/Pure is a minimal version of higher-order logic, which serves as general
framework for Natural Deduction (with arbitrary nesting of rules). There are Pure con-
nectives for universal parameters

∧
x. �, premises A =⇒ �, and a notion of schematic

variables ?x (stripped outermost parameters). The Pure connectives outline inference
rules declaratively, for example conjunction introduction A =⇒ B =⇒ A ∧ B or well-
founded induction wf r =⇒ (

∧
x. (

∧
y. (y, x) ∈ r =⇒ P y) =⇒ P x) =⇒ P a.

Isabelle/HOL is a rich library of logical theories and tools on top of Isabelle/Pure.
It is the main workhorse for big applications, but is subsumed by the general concepts
of Isabelle, so w.l.o.g. it is subsequently not explained further.

The logical framework of Isabelle/Pure is augmented by extra-logical infrastructure
of Isabelle/Isar, which provides the general setting for structured reasoning. The actual
Isar proof language [14] is merely an application of that: it provides particular expres-
sions for human-readable proofs within the generic framework. Some of the underlying
concepts of Isabelle architecture are outlined below, as relevant for Eisbach.

Fact. While the inference kernel operates on thm entities (as in LCF or HOL), Isabelle
users always encounter results as thm list, which is called fact. This represents the idea
of multiple results, without auxiliary conjunctions to encode it within the logic. There is
notation to append facts, or to project sub-lists, without any formal reasoning involved.

Goal state. Following [12], the LCF goal state as auxiliary ML data structure is given
up, and replaced by a proven theorem that states that the current subgoals imply the
main conclusion. Goal refinement means to infer forwards on the negative side of some
implication, so it appears like backwards reasoning. The proof starts with the trivial
fact C =⇒ C and concludes with zero subgoals =⇒ C, i.e. C outright. Administra-
tive goal operations, e.g. shuffling of subgoals or restricted subgoal views, work by
elementary inferences involving =⇒ in Isabelle/Pure. While outermost implications
represent subgoals, outermost goal parameters correspond to schematic variables (or
meta-variables), but the latter aspect is subsequently ignored for simplicity.

Tactic. Isabelle tactics due to [12] follow the idea behind LCF tactics, but implement
the backwards refinement more directly in the logical framework, without replaying
tactic justifications (as still seen in HOL or Coq today). This avoids the brittle concen-
tration of primitive inferences at qed-time. Moreover, backtracking is directly built-in,
by producing an unbounded lazy list of results, instead of just zero or one. LCF-style
tacticals are easily recovered, by composing functions that map a goal state to a se-
quence of subsequent goal states. Rich varieties of combinators with backtracking are
provided, although modern-time proof tools merely use a more focused vocabulary.

Subgoal structure. An intermediate goal state with n open subgoals has the form
H1 =⇒ ... Hn =⇒ C, each with its own substructure H = (

∧
x. A x =⇒ B x), for

zero or more goal parameters (here x) and goal premises (here A x). Following [12],
this local context is implicitly taken into account when natural deduction rules are com-
posed by lifting, higher-order unification, and backward chaining. Isar users encounter
this operation frequently in the proof method rule, and the rule attributes OF or THEN.

Other proof tools may prefer direct access to hypothetical terms and premises, when
inspecting a subgoal. In Isabelle today the concept of subgoal focus achieves that: the
proof context is enriched by a fixed term x and assumed fact A x, and the subgoal
restricted to B x. After refining that, the result is retrofitted into the original situation.

Proof context. Motivated by the Isar proof language [14], the structured proof context
provides general administrative structure, to complement primitive thm values of the
inference kernel. The idea is to provide a first-class representation in ML, of open situ-
ations with hypothetical terms (fixed variable x) and assumptions (hypothetical fact A);
Hindley-Milner type discipline with schematic polymorphism is covered as well. Proof
contexts are not restricted to this logical core, but may contain arbitrary tool-specific
context data. A typical example is the standard environment of facts (see above), which
manages both static and dynamic entries: a statically named fact is interchangeable with
its thm list as plain value, but a dynamic fact is a function depending on the context.

Attributes. Facts and contexts frequently occur together, and may modify each other
by means of attributes (which have their own syntax in Isar). A rule attribute modifies
a fact depending on the context (e.g. fact [of t] to instantiate term variables), and a
declaration attribute modifies the context depending on a fact (e.g. fact [simp] to add
Simplifier rules to the context). Such declarations for automated proof tools also work
in hypothetical contexts, with fixed x and assumed A x. There is standard support to
maintain named collections of dynamic facts, with attributes to add or delete list entries.

3 Eisbach

3.1 Isar Proof Methods

Eisbach provides the ability to write automated reasoning procedures to non-expert
users of Isabelle, specifically users only familiar with the use of Isabelle/Isar [14].

Isar is a document-oriented proof language, focusing on producing and present-
ing human-readable formal proofs. Such proofs are a structured argument about why
a claim is true, with invocations to proof methods to decompose a claim into multiple
goals or to solve outstanding proof goals. For the purposes of this paper, proof method
invocations come in two forms: structured and unstructured.

The structured form is “by method1 method2”, where the initial method1 performs
the main structural refinement of the goal, and the terminal (optional) method2 may
solve emerging subgoals; the proof is always closed by implicit assumption steps to
finish-off trivial subgoals. For example, “by (induct n) simp-all” splits-up a problem by
induction and solves it by simplification, or “by (rule impI)” applies a single rule and
expects the remaining goal state to be trivial up to unification.

The unstructured form is “apply method”, which applies the proof method to the
goal without insisting the proof be completed; further apply commands may follow

to continue the proof, until it is eventually concluded by the command done (without
implicit steps for closing). After one or two apply steps, the foreseeable structure of
the reasoning is usually lost, and the Isar proof text degenerates into a proof script:
understanding it later typically requires stepping through its intermediate goal states.

The method expressions above may combine basic proof methods using Isar’s method
combinators. Unlike former tacticals, there is only a minimalistic repertoire for repeated
application, alternative choice, and sequential composition (with backtracking). Such
methods are used in-place, to address a particular proof problem in a given situation.

Eisbach allows compound proof methods to be named, and extend the name space
of basic methods accordingly. Method definitions may abstract over parameters: terms,
facts, or other methods. Additionally, Eisbach provides an expressive matching facility
that can be used to manage control flow and perform proof goal analysis via unification.

Subsequently, we will follow the development of a small first order logic solver in
Eisbach, gradually increasing its scope and demonstrating the main language elements.

3.2 Combinators and Backtracking

There are four combinators in Isar. Firstly, “,” is sequential composition of two methods
with implicit backtracking: “meth1,meth2” applies meth1, which may produces a set of
possible results (new proof goals), before applying meth2 to all results produced by
meth1. Effectively this produces all results in which the application of meth1 followed
by meth2 is successful.

At the end of each apply command, the first successful result from all those pro-
duced is retained.

The second Isar combinator is “|”, alternative composition: “meth1|meth2” tries
meth1 and falls through to meth2 when meth1 fails (yields no results). The third combi-
nator “?” is a unary combinator that suppresses failure: meth? returns the original proof
state when meth fails, rather than failing. Lastly, “+” is a unary combinator for repeated
method application: meth+ repeatedly applies meth until meth fails, at which point it
yields the proof state obtained before the final failing invocation of meth.

A typical method invocation might look as follows:

lemma P ∧ Q −→ P by ((rule impI, (erule conjE)?) | assumption)+

Which, informally, says: “Apply the implication introduction rule, followed by op-
tionally eliminating any conjunctions in the assumptions. If this fails, solve the goal
with an assumption. Repeat this action until it is unsuccessful.”

As well as the above lemma, this invocation will prove the correctness a small class
of propositional logic tautologies. With the method-definition command we can define
a proof method that makes the above functionality available generally.

method-definition prop-solver1 = ((rule impI, (erule conjE)?) | assumption)+
lemma P ∧ Q ∧ R −→ P by prop-solver1

3.3 Abstraction

We can abstract this method over its introduction and elimination rules to make it more
generally applicable. The facts keyword declares fact parameters for use in the method.

These arguments are provided when the method is invoked, in the form of lists of facts
for each, using Isar’s standard method-sections syntax. Below we generalise the method
above over its intro and elim rules respectively that it may apply.

method-definition prop-solver2 facts intro elim =
((rule intro, (erule elim)?) | assumption)+

lemma P ∧ Q −→ P by (prop-solver2 intro: impI elim: conjE)

Above, the introduction and elimination rules need to be provided for each method
invocation. Traditionally Isabelle proof methods avoid this by using tool-specific data
as part of the proof context, which are managed using attributes (see Section 2) to add
and remove entries. A method invocation retrieves the facts that it needs to know about
whenever it is invoked, using the run-time proof context.

Eisbach supports creating new fact collections in the context using a new Isar com-
mand declare-attributes. A fact parameter [p] surrounded by square brackets declares
that fact to be backed by the fact collection p. It can be augmented further when a
method is invoked using the common syntax meth p: facts, but can also be managed in
the proof context with the Isar command declare.

declare-attributes intro elim

method-definition prop-solver3 facts [intro] [elim] =
((rule intro, (erule elim)?) | assumption)+

declare impI [intro] and conjE [elim]

lemma P ∧ Q −→ P by prop-solver3

Methods can also abstract over terms using the for keyword, optionally providing
type constraints. For instance, the following proof method elim-all takes a term y of
any type, which it uses to instantiate the x-variable of the allE (forall elimination) rule
before applying that rule as an elimination rule. The instantiation is performed here by
Isar’s where attribute. This has the effect of instantiating a universal quantification ∀ x.
P x in one of the current assumptions by replacing it with the term P y.

method-definition elim-all for Q :: ′a⇒ bool and y :: ′a =
(erule allE [where P = Q and x = y])

The term parameters y and P can be used arbitrarily inside the method body, as part
of attribute applications or arguments to other methods. The expression is type-checked
as far as possible when the method is defined, however dynamic type errors can still
occur when it is invoked (e.g. when terms are instantiated in a parameterized fact).
Actual term arguments are supplied positionally, in the same order as in the method
definition.

lemma ∀ x. P x =⇒ P a by (elim-all P a)

3.4 Custom Combinators

The four existing combinators in Isar (mentioned above) quickly prove to be too re-
strictive when writing tactics in Eisbach. A fifth combinator (“ 7→”) was added, which
takes two methods and, in contrast to “,”, invokes the second method on all subgoals

produced by the first. This is necessary to handle cases where the number of subgoals
produced by a method cannot be known statically.

lemma True ∧ True ∧ True by (intro conjI 7→ rule TrueI)

To more usefully exploit Isabelle’s backtracking, the explicit requirement that a
method solve all produced subgoals is frequently useful. This can easily be written as
a higher-order method using “ 7→”. The methods keyword denotes method parameters
that are other proof methods to be invoked by the method being defined.

method-definition solve methods m = (m 7→ fail)

Given some method-argument m, solve m applies the method m and then fails when-
ever m produces any new unsolved subgoals – i.e. when m fails to completely discharge
the goal it was applied to.

With these simple features we are ready to write our first non-trivial method. Re-
turning to the first order logic example, the following method definition applies various
rules with their canonical methods.

method-definition prop-solver facts [intro] [dest] [elim] [subst] =
(assumption
| rule intro | drule dest | erule elim | subst subst | subst (asm) subst |
(erule notE 7→ solve prop-solver))+

The only non-trivial part of this method definition is the final alternative (erule notE
7→ solve prop-solver). Here, in the case that all other alternatives fail, the method takes
one of the assumptions ¬ P of the current goal and eliminates it with the rule notE,
causing the goal to be proved to become P. The method then recursively invokes itself
on the remaining goals. The job of the recursive call is to demonstrate that there is a
contradiction in the original assumptions (i.e. that P can be derived from them). Note
this recursive invocation is applied with the solve method to ensure that a contradiction
will indeed be shown. In the case where a contradiction cannot be found, backtracking
will occur and a different assumption ¬ Q will be chosen for elimination.

After declararing some standard rules to the context, e.g. (P =⇒ False) =⇒¬ P as
[intro] and ¬¬ P =⇒ P as [dest], the prop-solver becomes capable of solving non-trivial
propositional tautologies.

lemma (A ∨ B) ∧ (A −→ C) ∧ (B −→ C) −→ C by prop-solver

3.5 Matching

Matching allows the user to introspect the goal state, and to implement more explicit
control flow. When performing a match, the user provides a term or fact collection ts to
match against, along with a collection of pattern-method pairs (p, m): roughly speaking,
when the pattern p matches any member of ts, the inner method m will be executed with
schematic variables mentioned in p appropriately instantiated. In the case of matching
against a fact collection, an optional name may be given for each pattern, which will be
bound to the fact that was successfully matched out of term ts. The special term ?concl
is always defined to be the conclusion of the first subgoal, and the special fact prems is
always defined to be the premises of the first subgoal. Using either in the term t allows

the user to perform matches against (i.e. to introspect) the current goal-state; doing
so causes an implicit subgoal focus (see also Section 4) which binds these two names
appropriately, creating a local context of local goal parameters (as fixed term variables)
and premises (as hypothetical theorems).

In the following example we extract the predicate of an existentially quantified con-
clusion in the current subgoal and search the current premises for a matching fact. If
both matches are successful, we then instantiate the existential introduction rule with
both the witness and predicate, solving with the matched premise.

method-definition solve-ex =
(match ?concl in ∃ x. ?Q x⇒
(match prems in U: Q ?y⇒ (rule exI [where x = y and P = Q, OF U])))

The first match matches the pattern ∃ x. ?Q x against the current conclusion, binding
the pattern ?Q to a particular term Q in the inner match. Next the pattern Q ?y is matched
against all premises of the current subgoal. Once a match is found, the local fact U is
bound to the matching premise and the variable y is bound to the matching witness. The
existential introduction rule P x =⇒ ∃ x. P x is then instantiated with y as the witness
and Q as the predicate, with its proof obligation solved by the local fact U (using the
Isar attribute OF). The following example is a trivial use of this method.

lemma halts p =⇒ ∃ x. halts x by solve-ex

Matching is performed from top to bottom, considering each pattern in turn until
a match is found. When attempting to match a pattern, Eisbach tries to match the pat-
tern against all provided terms/facts before moving on to the next pattern. Successful
matches serve as cut points for backtracking. Specifically, once a match is made no
other patterns will be attempted regardless of the outcome of the inner method m. How-
ever, all possible unifiers of that pattern will be explored, re-executing the method m
with different variable bindings when backtracking.

The method foo below fails for all goals that are conjunctions. Any such goal will
match the first pattern, causing the second pattern (that would otherwise match all goals)
to never be considered. If multiple unifiers exist for the pattern ?P ∧ ?Q against the
current goal, then the failing method fail will be (uselessly) tried for all of them.

method-definition foo =
(match ?concl in ?P ∧ ?Q⇒ fail ?R⇒ prop-solver)

This behaviour is in direct contrast to the backtracking done by Coq’s Ltac [4],
which will attempt all patterns in a match before failing. This means that the failure of
an inner method that is executed after a successful match does not, in Ltac, cause the
entire match to fail, whereas it does in Eisbach. In Eisbach the distinction is important
due to the pervasive use of backtracking. When a method is used in a combinator chain,
its failure becomes significant because it signals previously applied methods to move
to the next result. Therefore, it is better for match to not mask such failure in Eisbach.
One can always rewrite a match in Eisbach using the combinators ? and | to have it try
subsequent patterns in the case of an inner-method failure. The following proof method,
for example, always invokes prop-solver for all goals because its first alternative either
never matches or (if it does match) always fails.

method-definition foo1 =
((match ?concl in ?P ∧ ?Q⇒ fail) | (match ?concl in ?R⇒ prop-solver))

Note that matching can be performed against arbitrary terms or facts, with ?concl
and prems being special cases. For example, we could match out of a given set of facts
to locate rules with matching assumptions and conclusions.

method-definition match-rules facts my-facts =
(match my-facts in U: ?P =⇒ ?Q and U ′: Q =⇒ ?R
⇒ (rule U [THEN U ′]))

This example demonstrates use of the and keyword, which chains patterns linearly.
First, a fact matching ?P =⇒ ?Q is found and named U. Then, having bound Q from the
pattern, a fact matching Q =⇒ ?R is matched from my-facts. If patterns are matched,
then U and U ′ are bound to local facts and the method body is executed.

lemma
assumes f 1: A =⇒ B and f 2: B =⇒ C
shows A =⇒ C by (match-rules my-facts: f 1 f 2)

3.6 Example

We complete our tour of the features of Eisbach by extending the propositional logic
solver presented earlier to first-order logic. The following method instantiates univer-
sally quantified assumptions by simple guessing, relying on backtracking to find the
correct instantiation. Specifically, it instantiates assumptions of the form ∀ x. ?P x by
finding some type-correct term y by matching other assumptions against ?H ?y, using
type annotations to ensure that the types match correctly. The use of the previously de-
fined elim-all method here ensures that the same assumption that was matched is the
one that will be eliminated. The same matching is also performed against the conclusion
to find possible instantiations there too.

method-definition guess-all =
(match prems in U: ∀ x. ?P (x :: ′a)⇒
(match prems in ?H (?y :: ′a)⇒
(elim-all P y)
| match ?concl in ?H (?y :: ′a)⇒

(elim-all P y)))

The higher order pattern ?H ?y is used to find arbitrary subterms y within the
premises or conclusion of the current goal. It makes use of Isabelle/Pure’s workhorse
of higher order unification (although matching involves pattern-matching only). While
such a pattern-match need not bind all variables to be valid, to avoid trivial matches,
Eisbach considers only those matches that bind all variables mentioned in the pattern.

The inner-match must be duplicated over both the premises and conclusion because
of the logical distinction between facts (the premises) and terms (the conclusion). This
might look strange to users of Coq’s Ltac, where these notions are identified; however,
it does not limit the expressivity of Eisbach.

Similar to our previous solve-ex method, we introduce a method which attempts
to guess at an appropriate witness for an existential proof. In this case, however, the

method simply guesses the witness based on terms found in the current premises, again
using higher order matching as in the guess-all method above.

method-definition guess-ex =
(match ?concl in
∃ x. ?P (x :: ′a)⇒
(match prems in ?H (?x :: ′a)⇒

(rule exI [where x = x and P = P])))

These methods can now be combined into a surprisingly powerful first order solver.

method-definition fol-solver =
((guess-ex | guess-all | prop-solver) 7→ solve fol-solver)

The use of solve here on the recursive call to the method ensures that the recursive
subgoals are solved. Without it, the recursive call could potentially prematurely termi-
nate and leave the goal in an unsolvable state (due to an incorrect guess for a quantifier
instantiation).

After declaring some standard rules in the context, this method is capable of solving
various standard problems.

lemma (∀ x. P x) ∧ (∀ x. Q x) =⇒ (∀ x. P x ∧ Q x)
and ∃ x. (P x −→ (∀ x. P x))
and (∃ x. ∀ y. R x y) −→ (∀ y. ∃ x. R x y)
by fol-solver+

4 Design and Implementation

A core design goal of Eisbach is a seamless integration with other Isabelle languages,
notably Isar, ML, and object-logics. The primary motivation clearly being to make it
accessible to existing Isabelle/Isar users, with a secondary objective of both forward
and backward compatibility.

4.1 Static Closure of Concrete Syntax

Isabelle provides a rich selection of powerful proof methods, each with its own parser
and invocation style. Additionally, Isabelle’s theorem attributes, which perform context
and fact transformations, have their own parsers of arbitrary complexity. Rather than
re-write these tools to support Eisbach, we exploited an existing feature of the Isabelle
parsing framework whereby tokens have values (types, terms and facts) assigned to
them implicitly during parsing.

This implicit value assignment mechanism is the main workhorse of Eisbach, al-
lowing it to embed most Isar syntax as uninterpreted token lists. Eisbach then simply
serves as an interpretation environment: when a proof method is applied Eisbach instan-
tiates these token values appropriately based on the supplied arguments to the method
or results of matching, and then executes the resulting method body.

Although this presents some technical challenges and requires some minor modi-
fications to Isar, this proves to be a very effective solution to performing this kind of

language extension. The necessity of this patching will ideally disappear as the design
and implementation principles of Eisbach mature, and thus motivate the incorporation
of appropriate concepts into core Isabelle.

4.2 Subgoal Focusing

In Isabelle there is a logical distinction between universally quantified parameters (such
as x in

∧
x. P x) and arbitrary-but-fixed terms (such as x in P x). A subgoal in the former

form does not allow the x to be explicitly referenced (for example, my-fact [where y =
x] does not produce a valid theorem). To deal with this, a set of so-called “improper”
methods (like rule-tac) have traditionally been used, which are aware of this peculiarity.

It is important to note that premises within a subgoal are not local facts. In a struc-
tured Isar proof, assumptions are stated explicitly in the text via assumes or assume and
are accessible to attributes etc. In contrast, the local prefix

∧
x. A x =⇒ � of a subgoal

is not accessible to structured reasoning yet.
To allow the user to write methods that can operate directly on subgoal structure, we

decided to expose Isabelle’s subgoal focusing to Eisbach. Focusing creates a new goal
out of a given subgoal, but with its parameters lifted into fixed variables and premises
into local assumptions. This allows for uniform treatment of the goal state when match-
ing and parameter passing. In Eisbach, focusing is implicitly triggered whenever the
special term ?concl or special fact prems are mentioned. Focusing causes these names
to be bound to the conclusion and premises of the current subgoal, respectively.

To support its use in Eisbach, the existing subgoal focusing was enriched to be
more generally applicable. Premises, while turned into a local fact, still remain part of
the goal. This allows methods like erule to still remove premises from the goal.

5 Application and Evaluation

To evaluate Eisbach we re-implemented two existing proof methods: wp and wpc, which
are VCGs currently released as part of the AutoCorres framework [8]. They were used
extensively in the full functional correctness proof of seL4 [10] for both invariant and re-
finement proofs. They were originally designed for performing “weakest-precondition”
style reasoning against a shallowly embedded monadic Hoare logic [3]. The intelli-
gence of these methods lies in their large collection of stored facts, and have proven to
be more generally useful in other projects [11].

Together these two methods comprise 500 lines of Isabelle/ML, and 60 lines of
Isabelle/Isar for setup. However, they may be implemented in Eisbach almost trivially.

The Eisbach implementation of wp degenerates into the structured application of
some dynamic facts: wp supplies facts about monadic functions (e.g. Hoare triples),
wp-comb contains decomposition rules for postconditions, and wp-split splits goals
across monadic binds.

method-definition wp facts [wp] [wp-comb] [wp-split] =
((rule wp | (rule wp-comb, rule wp)) | rule wp-split)+

This obscures some details from the original implementation, in particular that the
collection of wp rules grows quite large and relying exclusively on rule resolution to
apply it is costly. This suggests potential improvements to Eisbach, such as allowing
facts in the context to be explicitly indexed.

The Eisbach implementation of wpc is slightly more involved. It makes use of a
simple custom attribute get-split, defined in Isabelle/ML, to retrieve the case-split rule
for a given term; such rules are used to decompose case distinctions on datatypes. The
apply-split method applies the retrieved case-split rule, specialized to the current goal.

method-definition apply-split for f =
(match [[get-split f]] in U: ?P and TERM ?x⇒
(match ?concl in ?R f ⇒
(rule U [THEN iffD2, of x R])))

We defined another higher-order method repeat-new to repeatedly apply a provided
method m to all produced subgoals.

method-definition repeat-new methods meth = (meth 7→ (repeat-new meth)?)

This method is then used in conjunction with worker lemmas to produce one sub-
goal for each constructor.

method-definition wpc ′ for f facts [wpc-helper] =
(apply-split f ,
rule wpc-helperI,
repeat-new (rule wpc-processors) 7→ (rule wpc-helper))

Finally, wpc matches the underlying monadic function out of the current Hoare
triple subgoal.

method-definition wpc =
(match ?concl in {|?P|} ?f {|?Q|} ⇒ (wpc ′ f) {|?P|} ?f {|?Q|},{|?E|} ⇒ (wpc ′ f))

Together, combined with a large body of existing lemmas, these methods calculate
weakest-precondition style proof obligations for the monadic Hoare logic of [3]. Addi-
tionally, with appropriate lemmas and some additional match conditions for wpc, these
methods are easily extended to other calculi such as that from [11].

To evaluate the effectiveness of these re-implemented methods, we re-ran the in-
variant proofs for the seL4 abstract functional specification using them in place of their
original implementations. These proofs constitute about 60,000 lines, including whites-
pace and comments. About 100 lines of Isabelle/ML were required to maintain syntactic
compatibility, and an approximately 0.5% change to the proof text itself was required
to resolve cases where proofs relied on quirky behaviour of the original methods in
very specific situations. The total running time for the proof increased from 8 minutes
to 19 minutes (run on an i7 quad-core 2.8Ghz iMac with 8GB of memory), indicating
that there is certainly room for optimization, but also that the overhead introduced by
Eisbach is not insurmountable.

See https://bitbucket.org/makarius/method definition/get/6f90e104b1a4.zip for the
full sources for these methods, with the implementation of Eisbach, the monadic Hoare
logic from AutoCorres and several non-trivial examples.

https://bitbucket.org/makarius/method_definition/get/6f90e104b1a4.zip

6 Related Work

The relation of proofs versus programs, proof languages versus programming languages,
and ultimately the quest for adequate proof programming languages opens a vast space
of possibilities that have emerged in the past decades, but the general problem is still
not settled satisfactorily. Different interactive provers have their own cultural traditions
and approaches, and there is often some confusion about basic notions and terminol-
ogy. Subsequently we briefly sketch important lines of programmable interactive proof
assistants in the LCF tradition, which includes the HOL family, Coq, and Isabelle itself.

The original LCF proof assistant [7] has pioneered a notion of tactics and tacticals
(i.e. operators on tactics) that can be still seen in its descendants today. An LCF tactic
is a proof strategy that reduces a goal state to zero or more subgoals that are sufficient
to solve the problem. Tactics work in the opposite direction than inferences of the core
logic, which take known facts to derive new ones.

This duality of backward reasoning from goals versus forward reasoning from facts
is reconciled by tactic justifications: a tactic both performs the goal reduction and
records an inference for the inverse direction. At the very end of a tactical proof, all
justifications are composed like a proof tree, to produce the final theorem. This could
result in a late failure to finish the actual proof, e.g. due to programming errors in the
tactic implementation.

ML was invented for LCF as the Meta Language to implement tactics and other
tools around the core logical engine. Proofs are typically written as ML scripts, but
the activity of building up new theory content and associated tactics is often hard to
distinguish from mere application of existing tools from some library. The bias towards
adhoc proof programming is much stronger than in, for instance, Isabelle theories today.

The HOL family [15, §1] continues the LCF tradition with ML as the main inte-
grating platform for all activities of theory and tool development (using Standard ML
or OCaml today). Due to the universality of ML, it is of course possible to implement
different interface languages on the spot. This has been done as various “Mizar modes”
to imitate the mathematical proof language of Mizar [15, §2], or as “SSReflect for HOL
Light” that has emerged in the Flyspeck project, inspired by SSReflect for Coq [5].

The HOL family has the advantage that explorations of new possibilities are easy to
get started on the bare-bones ML top-level interface. HOL Light is particularly strong
in its minimalistic approach. In contrast, Isabelle tools need to take substantial system
infrastructure and common conveniences for end-users into account.

Coq [15, §4] started as another branch of the LCF family in 1985, but with quite
different answers to old questions of how proofs and programs are related. While the
HOL systems have replaced LCF’s Logic of Computable Functions by simply-typed
classical set-theory (retaining the key role of the Meta Language), Coq has internal-
ized computational aspects into its type-theoretic logical environment. Consequently,
the OCaml substrate of Coq is mainly seen as the system implementation language, and
has become difficult to access for Coq users. Implementing some Coq plug-in requires
separate compilation of OCaml modules which are then linked with the toplevel appli-
cation. An alternative is to drop into an adhoc OCaml shell interactively, but this only
works for the bytecode compiler, not the native compiler (preferred by default).

Since Coq can be understood as a dependently-typed functional programming lan-
guage in its own right, it is natural to delegate more and more proof tool development
into it, to achieve a grand-unified formal system eventually. A well-established ap-
proach is to use computational reflection in order to turn formally specified and proven
proof procedures into inferences that don’t leave any trace in the proof object. Recent
work on Mtac [16] even incorporates a full tactic programming language into Coq itself.

Ltac is the untyped tactic scripting language for Coq [4], and has been success-
fully applied in large Coq theory developments [2]. It has familiar functional language
elements, such as higher order functions and let-bindings. However, it contains imper-
ative elements as well, namely the implicit passing of the proof goal as global state.
The main functionality of Ltac is provided by a match construct for performing both
goal and term analysis. Matching performs proof search through implicit backtracking
across matches, attempting multiple unifications and falling through to other patterns
upon failure. Although syntactically similar to the match keyword in the term language
of Coq, Ltac tactics have a different formal status than Coq functions. Although this
serves to distinguish logical function application from on-line computation, it can re-
sult in obscure type errors that happen dynamically at run-time.

Mtac is a recently developed typed tactic language for Coq [16]. It follows an ap-
proach of dependently-typed functional programming: the behaviour of Mtactics may
be characterized within the logical language of the prover. Mtac is notable by taking
the existing language and type-system of Coq (including type-inference), and merely
adds a minimal collection of monadic operations to represent impure aspects of tac-
tical programming as first-class citizens: unbounded search, exceptions, and matching
against logical syntax. Thus the formerly separate aspect of tactical programming in
Ltac is incorporated into the logical language of Coq, which is made even more expres-
sive to provide a uniform basis for all developments of theories, proofs, and proof tools.
Thanks to strong static typing, Mtac avoids the dynamic type errors of Ltac.

This mono-cultural approach is quite elegant for Coq, but it relies on the inherent
qualities of the Coq logic and its built-in computational world-view. In contrast, the
greater LCF family has always embraced multiple languages that serve different pur-
poses: classic LCF-style systems are more relaxed about separating logical foundations
from computation outside of it (potentially with access to external tools and services).
Eisbach continues this philosophy. In Isabelle, the art of integrating different languages
into one system (not one logic) is particularly emphasized: standard syntactic devices
for quotation and anti-quotation support embedded sub-languages.

SSReflect [5] is the common label for various tools and techniques for proof en-
gineering in Coq that have emerged from large verification projects by G. Gonthier.
This includes a sophisticated proof scripting language that provides fine-grained con-
trol over moves within the logical subgoal structure, and nested contexts for single-
step equational reasoning. Actual small-scale reflection refers to implementation tech-
niques within Coq, for propositional manipulations that could be done in HOL-based
systems by more elementary means; the experimental SSReflect for HOL-Light re-uses
the proof scripting language and its name, but without doing any reflection.

SSReflect emphasizes concrete proof scripts for particular problems, not general
proof automation. Scripts written by an expert of SSReflect can be understood by the

same, without stepping through the sequence of goal states in the proof assistant. Gen-
eral tools may be implemented nonetheless, by going into the Coq logic. The SSReflect
toolbox includes specific support for generic theory development based on canonical
structures. More recent work combines that approach with ideas behind Mtac, to inter-
nalize a generic proof programming language into Coq, in analogy to the well-known
type-class approach of Haskell, see [6].

7 Conclusion and Future Work

In this paper we have presented Eisbach, a high-level language for writing proof meth-
ods in Isabelle/Isar. It supports familiar Isar language elements, such as method combi-
nators and theorem attributes, as well as being compatible with existing Isabelle proof
methods. An expressive match construct enables the use of higher-order matching
against facts and subgoals to provide control flow. We showed that existing methods
used in large-scale proofs can be easily implemented in Eisbach. The resulting imple-
mentations are far smaller, and easier to understand.

Of the proof programming languages mentioned in Section 6, Eisbach purposefully
resembles Coq’s Ltac most closely. However, it seamlessly integrates with core Isabelle
technologies (fact collections, pervasive backtracking, subgoal focusing) to allow pow-
erful methods to be easily and succinctly written. When building on top of Isabelle/Isar,
it made most sense to implement an untyped proof programming language, rather than
trying to emulate ideas from languages like Mtac. This is because we wanted Eisbach to
be able to invoke existing Isar proof methods, which are untyped. While the absence of
typed proof procedures hasn’t hindered the development of large-scale proofs, the abil-
ity to annotate proof methods with information about how they are expected to trans-
form the proof state is potentially attractive. Although higher order methods can ap-
proximate run-time method contracts, we would be free to implement arbitrary contract
specification languages because proof methods exist outside the logic of Isabelle/Pure,
however this avenue of inquiry remains unexplored.

The evaluation demonstrates that Eisbach can already be effectively used to write
real-world proof tools, however it still lacks some important features. Firstly, some
debugging features are planned, beyond the current solution of manually printing in-
termediate goal states. Traces of matches and method applications will be presented,
ideally with some level of interaction from the user. Additionally more structured lan-
guage elements would provide a more natural integration with Isar (e.g. explicit subgoal
production and addressing). We would also like Eisbach to support parallel evaluation
by default. Method combinators outline a certain structure that should be used as a par-
allel skeleton wherever possible. For example, 7→ could use a parallel version of the
underlying tactical THEN_ALL_NEW, analogous to the existing PARALLEL_GOALS tacti-
cal of Isabelle/ML. Ultimately we plan to include Eisbach in a future Isabelle release,
with the aim of it becoming the primary means of writing proof methods.

Acknowledgements

We would like to thank Gerwin Klein, who was involved in the discussions on the
design of Eisbach and who provided early feedback on this paper. Thanks also to Peter
Gammie, Magnus Myreen, and Thomas Sewell for feedback on drafts of this paper.

References

[1] Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in managing
large-scale proofs. In Wenzel, M., ed.: Conferences on Intelligent Computer Mathematics
(CICM) / Mathematical Knowledge Management, Springer (2012)

[2] Chlipala, A.: Mostly-automated verification of low-level programs in computational sepa-
ration logic. ACM SIGPLAN Notices 46(6) (Jun 2011) 234

[3] Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement.
In Mohamed, O.A., Muñoz, C., Tahar, S., eds.: 21st TPHOLs. Volume 5170 of LNCS.,
Montreal, Canada, Springer (Aug 2008) 167–182

[4] Delahaye, D.: A tactic language for the system Coq. In: Int. Conf. Logic for Progr.,
Artificial Intelligence & Reasoning. Volume 1955 of LNCS., Springer (Nov 2000)

[5] Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formalized
Reasoning 3(2) (2010)

[6] Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation
less ad hoc. J. Funct. Program. 23(4) (2013) 357–401

[7] Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanized Logic of
Computation. LNCS 78. Springer (1979)

[8] Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified abstraction
of C. In Beringer, L., Felty, A., eds.: 3rd ITP. Volume 7406 of LNCS., Princeton, New
Jersey, Springer (Aug 2012) 99–115

[9] Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., Heiser, G.:
Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer
Systems (TOCS) (to appear).

[10] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an OS kernel. In: SOSP, Big Sky, MT, USA, ACM (Oct 2009) 207–220

[11] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for oper-
ating system kernels. In Chris Hawblitzel and Dale Miller, ed.: The Second International
Conference on Certified Programs and Proofs, Kyoto, Springer (Dec 2012) 126–142

[12] Paulson, L.C.: Isabelle: the next 700 theorem provers. In Odifreddi, P., ed.: Logic and
Computer Science. Academic Press (1990)

[13] Wenzel, M., Chaieb, A.: SML with antiquotations embedded into Isabelle/Isar. In Carette,
J., Wiedijk, F., eds.: Workshop on Programming Languages for Mechanized Mathematics
(PLMMS 2007). Hagenberg, Austria. (June 2007)

[14] Wenzel, M.: Isabelle/Isar—a versatile environment for human-readable formal proof doc-
uments. PhD thesis, Technische Universität München (2002)

[15] Wiedijk, F., ed.: The Seventeen Provers of the World. Volume 3600. (2006)
[16] Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a monad

for typed tactic programming in Coq. In Morrisett, G., Uustalu, T., eds.: ICFP, ACM (2013)

	An Isabelle Proof Method Language

