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Abstract

We describe the mechanisation of some foundational results in the theory of context-free lan-

guages (CFLs), using the HOL4 system. We focus on push-down automata (PDAs). We show

that two standard acceptance criteria for PDAs (“accept-by-empty-stack” and “accept-by-final-

state”) are equivalent in power. We are then able to show that the pushdown automata (PDAs)

and context-free grammars (CFGs) accept the same languages by showing that each can emulate

the other. With both of these models to hand, we can then show a number of basic, but important

results. For example, we prove the basic closure properties of the context-free languages such as

union and concatenation. Along the way, we also discuss the varying extent to which textbook

proofs (we follow Hopcroft and Ullman) and our mechanisations diverge: sometimes elegant

textbook proofs remain elegant in HOL; sometimes the required mechanisation effort blows up

unconscionably.

Keywords: context-free languages, context-free grammars, pushdown automata, closure

properties, HOL4

1. Introduction

A context-free grammar (CFG) provides a simple and precise mechanism for describing the

methods by which phrases in languages are built from smaller blocks, capturing the “block struc-

ture” of sentences. The simplicity of the formalism makes it amenable to rigorous mathematical
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study. Context-free grammars are also simple enough to allow the construction of efficient pars-

ing algorithms using pushdown automata (PDAs). These “predicting machines” use knowledge

about their stack contents to determine whether and how a given string can be generated by the

grammar. For example, PDAs underlie the construction of efficient parsers for LR grammars.

The theory of context-free languages is well understood and elegant. It is also of clear practi-

cal importance, being the basis for the description and implementation of computer programming

language syntax. For these reasons, we feel it is a natural object for mechanised study. Our con-

tribution in this paper is to describe the mechanisation of a number of basic results in this area.

The most significant of these is the equivalence of the CFG and PDA models for context-free

languages. Needless to say, there is no question that this theory is in any doubt! Nonetheless,

there are a number of other reasons for performing these mechanisations:

• We investigate the degree to which the mechanical system (HOL4 Gordon and Melham

(1993); Slind and Norrish (2008) in our case) is capable of dealing with such important

mathematics.

• We also provide an important basis for future, more complicated mechanised develop-

ments. Without basic results such as those proved here, mechanised developments such as

our verification of generation of SLR automata (Barthwal and Norrish, 2009) would not be

possible. The library of proofs, techniques and notations developed here provides the basis

from which further work on verified language theory can proceed at a quickened pace.

• The mechanisation work is an engaging intellectual exercise in itself; performing proofs of

this sort is a very good way to iron out any wrinkles in one’s understanding of the material.

As such, we highly recommend mechanisation to all!

The rest of the paper is structured as follows. We introduce the basic details of our types

(languages, grammars and automata) in Sections 2 and 3. In Section 4 we describe the two

ways in which a PDA can accept an input (“acceptance by empty stack” and “acceptance by

final state”), and show that they are equivalent in power. In Section 5, we present some closure

properties for context-free languages.

It turns out that closure under union, concatenation and Kleene closure (Sections 5.1 to 5.3)

are easy to formalise. These results depend on the fact that given any two grammars, G1 and G2,

one can rename the variables such that variables of G1 and G2 are disjoint. The main effort goes
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into establishing this ‘disjoint’ property. The remaining closure property illustrates how equiv-

alence results for different models can be a great help: closure under substitution (Section 5.4)

uses a ‘parse tree’ representation (Section 5.4.1) for derivations (rather than derivation lists).

Finally, in Sections 6 and 7 we describe the paper’s most involved mechanisations: proofs of

the result that the CFG and PDA formalisms are equivalent in power.

HOL4: Background, Theorems and Notation. The work described in this paper was all car-

ried out in HOL4 (Gordon and Melham, 1993; Slind and Norrish, 2008), a modern interactive

theorem-proving system, or proof assistant. Based on the “LCF philosophy”, HOL4 has a small

trusted code base, its proof kernel. All theorems proved in the system ultimately depend only on

that kernel, providing a high degree of confidence in their validity.

In this paper, all statements identified as HOL Theorems are theorems mechanically proved

in the system and automatically pretty-printed to LATEX from the relevant theory in the HOL4

development. Any discussion of proofs accompanying these theorems will be in an informal

style. The actual proof scripts consumed by the system are typically quite incomprehensible, for

all that they do embody the mathematical essence of the proof. For this reason, the paper does

not include any HOL4 source code directly. Of course, full sources are available for download

(see the following “availability” section).

Notation specific to this paper is explained as it is introduced. Otherwise, HOL4 supports a

notation that is a generally pleasant combination of predicate logic (quantifiers ∀, ∃, connectives

∧, ⇒, for example) and functional programming (λ for function abstraction, juxtaposition for

function application).

Lists are written between square brackets, e.g., [1; 2]. The length of a list ℓ is written |ℓ|.

The concatenation of ℓ1 and ℓ2 is written ℓ1 ++ ℓ2 . Overloading notation, we use ∈ (and /∈) to

refer to membership (non-membership) of both lists and sets. Lists support a range of functions

from the functional programming world such as MAP and FLAT (which takes a list of lists and

returns the concatenation of all the member lists).

Concrete sets are written between braces, e.g., {1; 2}. We can write set comprehensions

in typical syntax: the expression {x | x < 4} denotes the set of numbers less than 4. If R is

a (curried) binary relation (such that we write R x y when x and y are linked in the relation),

then R∗ is the reflexive and transitive closure of R.

3



Availability. Both HOL4 itself and the sources for this work are available from github.com.

The paper’s sources are at http://github.com/mn200/CFL-HOL, and build with the

latest repository version of HOL4. They will also build with the next official release of HOL4,

Kananaskis-8, due in August 2012.

Acknowledgements. NICTA is funded by the Australian Government as represented by the De-

partment of Broadband, Communications and the Digital Economy and the Australian Research

Council through the ICT Centre of Excellence program.

2. Context-Free Grammars

Symbols. Grammars use symbols of two types, terminals and non-terminals. We use HOL’s

parametric polymorphism to allow both sorts of symbol to draw from arbitrary types, which then

become type-arguments to the binary type-operator symbol. The definition is

(’nts, ’ts) symbol = NTS of ’nts | TS of ’ts

This means that the type of symbols has two constructors, NTS and TS, and that, for example,

TS has type

’ts -> (’nts, ’ts) symbol

For values t from the type ’ts, the term TS t is a (terminal) symbol.

Rules and Grammars. A rule is a pair of a non-terminal symbol and a possible expansion for

that non-terminal. We then write N ; rhs to indicate that pairing of N and rhs , with N of type

’nts and rhs a list of symbols, thus of type (’nts, ’ts) symbol list. A grammar is

then a pair of a start symbol with a list of rules. Traditional presentations of grammars often

include separate sets corresponding to the grammar’s terminals and non-terminals. It’s easy to

derive these sets from the grammar’s rules and start symbol, so we shall occasionally write a

grammar G as a tuple (V, T, P, S) in the proofs to come. Here, V is the list of non-terminals, T

is the list of terminals, P is the list of productions and S is the start symbol.

Definition A list of symbols (or sentential form) s derives t in a single step if s is of the form

αAγ, t is of the form αβγ, and if A;β is one of the rules in the grammar. In HOL, relation

sf1 ⇒g sf2 holds iff sentential form sf1 can derive sentential form sf2 with respect to gram-

mar g .
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HOL Definition 1.

sf1 ⇒g sf2 ⇐⇒

∃α γ β A.

α ++ [NTS A] ++ γ = sf1 ∧ α ++ β ++ γ = sf2 ∧

A; β ∈ rules g

We also write sf1 ⇒∗

g sf2 to indicate that sf2 is derived from sf1 in zero or more steps.

We can also represent derivations more concretely using derivation lists. If an arbitrary

binary relation R holds on adjacent elements of list ℓ which has x as its first element and y as

its last element, then we write R ⊢ ℓ � x → y . For example a derivation sequence ℓ1 ⇒

ℓ2 ⇒ ℓ3 . . . ⇒ ℓn can be represented using lists as derives g ⊢ ℓ � ℓ1 → ℓn where

ℓ = ℓ1ℓ2 . . . ℓn, and derives g is the binary relation underneath sf 1 ⇒g sf 2.

In the context of grammars, R relates sentential forms. Later we will use the same notation

to relate derivations in a PDA. Using this very concrete formulation simplifies the mechanisation

of the proofs of a number of theorems.

Definition The language of a grammar consists of all the words (lists of only terminal symbols)

that can be derived from the start symbol.

HOL Definition 2.

L g = {w | [NTS (startSym g)] ⇒∗

g w ∧ isWord w }

Function isWord w returns true if all the elements in the sentential form w are terminal

symbols.

3. Pushdown Automata

We model PDAs as records containing four components: the start state (start or q0); the

starting stack symbol (ssSym or Z0); the list of final states (final or F ); and the next state
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transitions (final or δ).

pda =

<| start : ’state;

ssSym : ’ssym;

next : (’isym, ’ssym, ’state) trans list;

final : ’state list |>

The input alphabet (Σ), stack alphabet (Γ) and the states for the PDA (Q) can be easily extracted

from the above information. In prose proofs, we will occasionally refer to a PDA M as the

tuple (Q,Σ,Γ, δ, q0, Z0, F ). We have used lists instead of sets to avoid unnecessary finiteness

constraints in our proofs.

The trans type describes a single transition, or link in the state machine’s control graph.

Such a transition is a tuple of an optional input symbol, a stack symbol and a state, and the next

state along with the stack symbols (possibly none) to be added onto the current stack. The next

field of the PDA record is a list of such transitions.

trans = (’isym option # ’ssym # ’state) # (’state # ’ssym list)

In HOL, a PDA transition in machine M is expressed using a binary relation on “instanta-

neous descriptions” of the tape, the machine’s stack, and its internal state. We write

(q,i::α,s) ⊢M (q ′,i ′,s ′)

to mean that in state q , looking at input i with stack s , M can transition to state q ′, with the input

becoming i ′ and the stack becoming s ′. The input i ′ is either the same as i::α (referred to as

an ǫ move) or is equal to α. Here, consuming the input symbol i corresponds to SOME i and

ignoring the input symbol is NONE in the trans type.

Using the concrete derivation list notation, we write ID M ⊢ ℓ � x → y to mean that

the list ℓ is a sequence of valid instantaneous descriptions for machine M , starting with descrip-

tion x and ending with y. Transitions are not possible in states where the stack is empty and only

ǫ moves are possible in states where the input is empty.

There are two ways in which a PDA can accept its input. The first way in which a PDA

recognises an input is “acceptance by final state”. This gives us the language accepted by final

state (lafs). In this scenario, the automata reaches an accepting state after it is has finished

reading the input, and the stack contents are irrelevant.
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HOL Definition 3 (lafs).

lafs M =

{w |

∃ state stack .

(M .start,w,[M .ssSym]) ⊢∗

M (state,[],stack) ∧

state ∈ M .final}

The second is “acceptance by empty stack”. This gives us the language accepted by empty

stack (laes). In this case the automata empties its stack when it is finished reading the input.

We shall see that the two criteria for acceptance have equivalent power.

HOL Definition 4 (laes).

laes M = {w | ∃ state . (M .start,w,[M .ssSym]) ⊢∗

M (state,[],[])}

To be consistent with the notation in Hopcroft and Ullman, in what follows, function laes is

also referred to as N (thusN(M) is the language accepted byM using the empty stack criterion),

and function lafs is simply L.

4. Equivalence of acceptance by final state and empty stack

The first property we establish is that the languages accepted by PDA by final state are exactly

the languages accepted by PDA by empty stack. This is done by establishing that PDAs of one

type can be emulated by PDAs of the other.

4.1. PDA construction for acceptance by empty stack

Theorem 4.1. For every machine M2 accepting language L by final state, there is a machine

M1 such that N(M1) = L.

Proof Let PDA M2 = (Q,Σ,Γ, δ, q0,m, Z0, F ). We invent new states qe and q′0, and a new

stack symbol X0, and then let M1 = (Q ∪ {qe, q
′

0},Σ,Γ ∪ {X0}, δ
′, q′0, X0, φ), where δ′ is

defined by the following rules:

Rule 1 δ′(q′0, ǫ,X0) = (q0, Z0X0).

Rule 2 For all q in F , and Z in Γ ∪ X0, δ′(q, ǫ, Z) contains (qe, ǫ).

Rule 3 For all Z in Γ ∪ X0, δ′(qe, ǫ, Z) contains (qe, ǫ).
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Rule 4 δ′(q, a, Z) includes the elements of δ(q, a, Z) for all q, a and Z .

M1 simulates M2 by first putting a M2’s stack marker (Z0) on its stack (Rule 1). Below this,

M2 preserves its own bottom of stack marker X0. This ensures that M1 does not accidentally

accept if M2 empties its stack without entering a final state. Rule 4 allows M1 to process the

input in exactly the same manner as M2. Rule 2 gives M1 the opportunity to enter the state qe

(triggering Rule 3) when M2 enters a final state. Rule 3 allows M1 to pop off the remaining stack

contents once M1 has accepted the input, thus accepting the input by empty stack criterion.

In HOL, we define a function newm that constructs the new machine. It takes not just the

input machine M2 as a parameter, but also new states (q′0 and qe) and the new stack symbol X0.

HOL Definition 5 (newm).

newm M2 (q ′

0,X0,qe) =

(let d =

[((NONE,X0,q
′

0),M2.start,[M2.ssSym; X0])] ++ M2.next ++

finalStateTrans qe M2.final (X0::stkSymsList M2 M2.next) ++

newStateTrans qe (X0::stkSymsList M2 M2.next)

in

〈start := q ′

0; ssSym := X0; next := d; final := []〉)

where finalStateTrans implements Rule 2 of the construction, and newStateTrans

implements Rule 3.

We first prove that if x ∈ L(M2) then x ∈ N(M1). As x is accepted by final state,

(q0, x, Z0) ⊢∗

M2
(q, ǫ, γ) for some q ∈ F , and γ ∈ Γ∗. Now consider M1’s behaviour on

input x. Rule 1 gives (q′0, x,X0) ⊢M1
(q0, x, Z0X0).

By Rule 2, every move of M2 is a legal move for M1, so we also have (q0, x, Z0X0) ⊢∗

M1

(q, ǫ, γX0). In Hopcroft and Ullman, this last step is justified by

If a PDA can make a sequence of moves from a given ID, it can make the same

sequence of moves from any ID obtained from the first by inserting a fixed string of

stack symbols below the original stack contents.

Simple asides such as the above end up requiring a proof first that single transitions can have

arbitrary symbols added underneath their stacks, followed by an induction to show

HOL Theorem 1.

(q,x,stk) ⊢∗

M (q ′
,x ′

,stk ′
) ⇒ ∀ ℓ. (q,x,stk ++ ℓ) ⊢∗

M (q ′
,x ′

,stk ′
++ ℓ)
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Returning to the proof, by Rules 3 and 4, (q, ǫ, γX0) ⊢
∗

M1
(qe, ǫ, ǫ). Therefore, (q′0, x,X0) ⊢

∗

M1

(qe, ǫ, ǫ), and M1 accepts x by empty stack. Our final HOL theorem is

HOL Theorem 2.

X0 /∈ stkSyms M2 ∧ q ′

0 /∈ states M2 ∧ qe /∈ states M2 ⇒

x ∈ lafs M2 ⇒

x ∈ laes (newm M2 (q ′

0,X0,qe))

(Note the requirement that the new states and stack symbol must be suitably fresh.)

The converse, if x ∈ N(M1) then x ∈ L(M2), is straightforward, and we can then conclude

with a HOL version of Theorem 4.1

HOL Theorem 3.

INFINITE U(:’ssym) ∧ INFINITE U(:’state) ⇒

∀M2. ∃M1. lafs M2 = laes M1

(U(:’ssym) is the universal set of all possible stack symbols and U(:’state) is the uni-

versal set of all possible states.)

The two extra conditions in the premise of the HOL statement are sufficient to ensure that

we will always be able to pick fresh states q′0 and qe, as well a fresh stack symbol X0. The

requirement to be explicit with details such as this are entirely typical of the mechanisation

process.

4.2. PDA construction for acceptance by final state

Briefly, we present the construction of a “final-state-accepting” PDA that accepts the same

inputs as an “empty-stack-accepting” PDA.

Theorem 4.2. If L is N(M1) for some PDA M1, then L is L(M2) for some PDA M2.

Proof We simulate M1 using M2 and detect when M1 empties its stack, M2 enters a final state

when and only when this occurs. Let PDA M1 be (Q,Σ,Γ, δ, q0, Z0, φ). Given fresh states q′0

and qf , and a fresh stack symbol X0, let M2 = (Q ∪ {q′0, qf},Σ,Γ ∪ {X0}, δ
′, q′0, X0, {qf}),

where δ′ is defined by the following rules:

Rule 1 δ′(q′0, ǫ,X0) = {(q0, Z0X0)}.

Rule 2 for all q in Q, a in Σ ∪ ǫ, and Z in Γ, δ′(q, a, Z) = δ(q, a, Z).
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Rule 3 for all q in Q, δ′(q, ǫ,X0) contains (qf , ǫ).

HOL Definition 6 (newm’).

newm’ M1 (q ′

0,X0,qf ) =

(let d =

[((NONE,X0,q
′

0),M1.start,[M1.ssSym; X0])] ++

M1.next ++

MAP (toFinalStateTrans X0 qf ) (statesList M1)

in

〈start := q ′

0; ssSym := X0; next := d; final := [qf ]〉)

Rule 1 causes M2 to enter the initial ID of M1, except that M2 will have its own bottom-of-

stack marker X0, which is below the symbols of M1’s stack. Rule 2 allows M2 to simulate M1.

Should M1 ever erase its entire stack, then M2, when simulating M1, will erase its entire stack

except the symbol X0 at the bottom. Rule 3 causes M2, when the X0 appears, to enter a final

state thereby accepting the input x.

We proceed in a similar manner to the proof of Theorem 4.1, establishing L(M2) = N(M1):

HOL Theorem 4.

INFINITE U(:’ssym) ∧ INFINITE U(:’state) ⇒

∀M1. ∃M2. laes M1 = lafs M2

Again, we must use the precondition that the universes of the types of symbols and states are

infinite.

5. Closure properties

Context-free languages are closed under the following operations (Hopcroft and Ullman,

1979). That is, if L and P are context-free languages and D is a regular language, the following

languages are context-free as well:

• the Kleene star L∗ of L

• the image (L) of L under a homomorphism

• the concatenation L ⌢ P of L and P
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• the union L ∪ P of L and P

• language obtained by substituting a language for a terminal in a second language

In this section we go through the HOL formalisation for proving closure of CFGs under

union, concatenation, Kleene star operation, substitution. The closure under homomorphism

follows from closure under the substitution operation.

We provide only a brief overview of the first two since they were straightforward to mecha-

nise. First we establish the ‘disjoint’ property which allows renaming of variables in a grammar

without affecting the language of the grammar. This forms the crucial part of proving the closure

properties.

HOL Theorem 5.

INFINITE U(:α) ⇒

∃ g ′. L g = L g ′ ∧ DISJOINT (nonTerminals g) (nonTerminals g ′
)

This theorem corresponds to the text statement “we may rename variables at will without chang-

ing the language generated” in Hopcroft and Ullman. This theorem is a necessary assumption

for the closure properties that follow. Note also that, since we are renaming variables (by picking

new ones), we need the premise that the type universe of the non-terminal symbols be infinite.

Closure properties typically merge rules of two different grammars in a particular way. For

example, the union of two grammars, G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) results

in grammar G = (V1 ∪ V2 ∪ {S}, T1 ∪ T2, P, S), where P3 is P1 ∪ P2 plus the productions

S → S1|S2. Here S is not in V1 or V2. In order to prove L(G1) ∪L(G2) = L(G) we need to be

able to distinguish the derivations of G1 from G2. This distinction is clear if the non-terminals

of G1 and G2 do not overlap. Hence, the need for the disjoint property.

Proof We first define renaming a single variable. Function rename returns the new value (x′)

if x is the variable we are interested in, i.e. the variable e.

HOL Definition 7 (rename).

rename x x ′ e = if e = x then x ′
else e

Using rename, we can rename the non-terminal nt to nt′ for a particular rule.

HOL Definition 8 (ruleNt2Nt’).

ruleNt2Nt’ nt nt ′ (ℓ; r) =

(rename nt nt ′ ℓ;MAP (rename (NTS nt) (NTS nt ′)) r)
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Now given a new replacement value (nt′) for a non-terminal nt, we systematically rename

all nts to nt′ in our old grammar G p s (we write G for the pairing function that takes a list of

productions p and a start symbol s and returns the corresponding grammar). Note that we need

to rename the start symbol as well. This is our function grNt2Nt’.

HOL Definition 9 (grNt2Nt’).

grNt2Nt’ nt nt ′ (G p s) =

G (MAP (ruleNt2Nt’ nt nt ′) p) (rename nt nt ′ s)

We then prove that such a single-step transformation preserves the language of the grammar.

HOL Theorem 6.

INFINITE U(:’nts) ⇒

NTS nt ′ /∈ nonTerminals g ⇒

L g = L (grNt2Nt’ nt nt ′ g)

Then, in order to get a new grammar g′ starting from the old grammar g such that the non-

terminals are disjoint, all we need to do is rename all the non-terminals in g such that the new

names introduced are not part of g.

This is achieved by repeatedly renaming the non-terminals away, using the following (and

the fact that the non-terminals of a grammar are a finite set):

HOL Theorem 7.

INFINITE U(:’nts) ⇒

∀ s.

FINITE s ⇒

∀ g . ∃ g ′. L g ′ = L g ∧ DISJOINT (nonTerminals g ′) s

The proof for the disjoint property (unlike the one line statement that sufficed in the text) was

∼440 lines of code.

After establishing this property we can now work on the various closure properties.

5.1. Union

Theorem 5.1. Context-free languages are closed under union.
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Let L1 and L2 be CFLs generated by G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2), re-

spectively. Since we may rename variables at will (proven above) without changing the language

generated, we assume V1 and V2 are disjoint. Assume also that S3 is not in V1 or V2.

For L1 ∪L2 construct grammar G3 = (V1 ∪ V2 ∪ S3, T1 ∪ T2, P3, S3), where P3 is P1 ∪ P2

plus the productions S3 → S1|S2. Given grammars G1 and G2, function grUnion constructs

such a grammar G3.

HOL Definition 10 (grUnion).

grUnion s0 g1 g2 =

G

(rules g1 ++ rules g2 ++ [s0 ;[NTS (startSym g1)]] ++

[s0 ;[NTS (startSym g2)]]) s0

Proof If w is in L1, then the derivation S3 ⇒G3
S1 ⇒∗

G1
w is a derivation in G3, as every

production of G1 is a production of G3. Similarly, every word in L2 has a derivation in G3

beginning with S3 ⇒ S2. Thus, L1 ∪ L2 ⊆ L(G3).

For the converse let w be in L(G3). Then the derivation S1 ⇒ w begins with either S3 ⇒G3

S1 ⇒∗

G3
w or S3 ⇒G3

S2 ⇒∗

G3
w. In the former case, as V1 and V2 are disjoint, only symbols

of G1 may appear in the derivation S1 ⇒∗

G3
w. Thus S1 ⇒∗

G1
w, and w is in L1. Analogously,

if the derivation starts S3 ⇒∗

G3
S2, we may conclude w is in L2. Hence, L(G3) ⊆ L1 ∪ L2, so

L(G3) = L1 ∪ L2, as desired.

The HOL expression of Theorem 5.1 is:

HOL Theorem 8.

INFINITE U(:’nts) ⇒ ∀ g1 g2. ∃ g . L g = L g1 ∪ L g2

5.2. Concatenation

Theorem 5.2. Context free grammars are closed under concatenation.

LetL1 andL2 be CFLs generated by the CFGs G1 = (V1, T1, P1, S1) andG2 = (V2, T2, P2, S2),

respectively. Since we may rename variables at will without changing the language generated,

we assume V1 and V2 are disjoint. Assume also that S3 is not in V1 or V2.

For concatenation, let G3 = (V1 ∪ V2 ∪ S3, T1 ∪ T2, P3, S3) where P3 is P1 ∪ P2 plus the

production S3 → S1S2.

In HOL this is expressed using function grConcat.
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HOL Definition 11 (grConcat).

grConcat s0 g1 g2 =

G

(rules g1 ++ rules g2 ++

[s0 ;[NTS (startSym g1); NTS (startSym g2)]]) s0

A proof that L(G3) = L(G1)L(G2) follows.

Proof P3 is P1 ∪ P2 plus the productions S3 → S1S2. If w is in L1L2, then w = w1w2 such

that w1 is in L1 and w2 is in L2. The derivation S3 ⇒G3
S1S2 ⇒∗

G3
(w1w2) is a derivation in

G3, such that S1 ⇒∗ w1 and S2 ⇒∗ w2, as every production of both G1 and G2 is a production

of G3. Thus L1L2 ⊆ L(G3).

For the converse let w be in L(G3). Then the derivation S1 ⇒ w begins with S3 ⇒G3

S1S2 ⇒∗

G3
w. As V1 and V2 are disjoint, we can divide w into two parts, say w1w2 such that w1

is derived from S1 and w2 from S2.

Only symbols of G1 may appear in the derivation S1 ⇒∗

G3
w1. Thus S1 ⇒∗

G1
w1, and

w1 is in L1. Analogously we have S2 ⇒∗

G3
w2 and we may conclude w2 is in L2. Hence,

L(G3) ⊆ L1L2, so L(G3) = L1L2, as desired.

The statement for Theorem 5.2 in HOL is:

HOL Theorem 9.

INFINITE U(:’nts) ⇒ ∀ g1 g2. ∃ g . L g = conc (L g1) (L g2)

where

conc S1 S2 = { s | ∃ u v . u ∈ S1 ∧ v ∈ S2 ∧ s = u ++ v }

5.3. Kleene closure

The Kleene closure of set P is represented by P ∗. Let G be a grammar and let S be its start

symbol. Then the Kleene closure of the language of G, L(G)∗, contains all the words generated

using the grammar G1 which contains all the rules from the original grammar plus the additional

rules S0 → SS0 and S0 → ǫ. Here S0 is the start symbol of G1 and does not occur in G.

Theorem 5.3. Context free languages are closed under Kleene closure.

In HOL, the Kleene closure is defined using an inductive relation over the following rules:
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HOL Definition 12 (Kleene).

[] ∈ A∗

s ∈ A

s ∈ A∗

s1 ∈ A s2 ∈ A∗

s1 ++ s2 ∈ A∗

Let L be a CFL generated by the CFG G = (V, T, P, S). We define a new grammar G1

that generates all the strings which are in the Kleene closure of grammar G. Let G1 = (V ∪

S1, T, P1, S1) where P1 is P plus the production S1 → SS1 and S1 → ǫ.

In HOL this construction is done using function grClosure.

HOL Definition 13 (grClosure).

grClosure s0 g =

G (rules g ++ [s0 ;[NTS (startSym g); NTS s0]] ++ [s0 ;[]])

s0

A proof that L(G)∗ = L(G1) follows a similar methodology as used in proofs above. In

HOL, Theorem 5.3 becomes

HOL Theorem 10.

INFINITE U(:’nts) ⇒ ∀ g . ∃ g ′. L g ′
= (L g)∗

5.4. Substitution

A more interesting closure proof is that of the substitution operation. The proof of this prop-

erty is based on the notion of parse trees. We first present a brief overview of the implementation

of parse trees in HOL.

5.4.1. Derivation (or parse) trees

In Section 2 we introduced derivation lists for modeling derivations in a grammar. Now we

introduce derivation or parse trees, an alternate formalisation for representing derivations in a

grammar. When explaining a derivation using pen and paper it is common to show multiple ex-

pansions in parallel. In such a case each derivation step involves a one-step expansion of all the

non-terminals. The derivation

A ⇒ A1A2A3 ⇒ a1A2A3 ⇒ a1a2A3 ⇒ a1a2a3

in a grammar G, where a1, a2, a3 are terminals and A,A1,A2,A3 are non-terminals, can be

represented using the following diagram.
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A

A1

a1

A2

a2

A3

a3

Here, non-terminal A is the root node and terminals a1, a2, a3 are the leaf nodes. The rules

in G that allow this derivation are A → A1A2A3, A1 → a1, A2 → a2 and A3 → a3.

This structure on the derivable strings in a grammar is called a derivation tree or a parse tree.

A tree is recursively defined as either a leaf node (no expansion possible hereafter) or a node

which can expand to multiple derivation trees. In HOL:

(’nts, ’ts) ptree

= Leaf of ’ts | Node of ’nts ⇒ (’nts, ’ts) ptree list

The terms leaves, fringe or the yield of a tree all stand for the leaf nodes that do not have any

children. This is slightly different from a leaf node represented as a node with an empty (ǫ) node

as its only child, the definition in Hopcroft and Ullman.

HOL Definition 14 (fringe).

fringe (Leaf tm) = [tm]

fringe (Node x ptl) = FLAT (MAP (λ a. fringe a) ptl)

Relationship between derivation trees and derivations A tree is a correct derivation tree

for a grammar if and only if it is valid with respect to the rules in the grammar (validptree).

A tree is considered valid with respect to grammar G if each expansion step corresponds to some

rule in G.

HOL Definition 15 (validptree).

validptree g (Node n ptl) ⇐⇒

n;getSymbols ptl ∈ rules g ∧

∀ e. e ∈ ptl ⇒ isNode e ⇒ validptree g e

validptree g (Leaf tm) ⇐⇒ F

(getSymbols ptl returns the symbols corresponding to the top level nodes of the parse
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tree list ptl . Function isNode tree returns true if and only if tree is a node, i.e. corresponds to

a non-terminal.)

We differ slightly from Hopcroft and Ullman in what we consider to be a derivation tree.

Hopcroft and Ullman state that for a tree to be a valid derivation tree for G, amongst other

conditions, the root node has to be the start symbol of G and the root node derives a word. We

instead define a looser version where in a derivation tree is valid as long as each expansion is a

valid rule in G. Thus, the root node does not have to be the start symbol of G but the derived

string has to be composed of only terminals.

If a tree is a valid parse tree with respect to a grammar then one can construct a corresponding

derivation from the yield from the root non-terminal.

HOL Theorem 11.

validptree g t ⇒ [root t] ⇒∗

g MAP TS (fringe t)

Similarly, if a terminal string can be derived from a non-terminal one can construct a parse

tree for the derivation.

HOL Theorem 12.

derives g ⊢ dl � [NTS A] → y ⇒

isWord y ⇒

∃ t . validptree g t ∧ MAP TS (fringe t) = y ∧ root t = NTS A

Theorem 5.4. Let G = (V, T, P, S) be a context-free grammar. Then S ⇒∗ α if and only if

there is a derivation tree in grammar G with yield α.

HOL Theorem 13.

w ∈ L g ⇐⇒

∃ t .

validptree g t ∧ MAP TS (fringe t) = w ∧

root t = NTS (startSym g)

With the help of the above framework we can now proceed with a proof of closure under

substitution.

Theorem 5.5. Context-free grammars are closed under substitution.
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Let G = (V, T, P, S). The substitution involves creating a new grammarG
′

from the original

grammar G in the following manner. The start symbol of G′ is the same as the start symbol of

G. Each terminal symbol a in G gets associated with another grammar Ga. This means that

for every rule A → α in G, any occurrence of a in α is substituted with the start symbol of

grammar Ga. Thus, replacing terminal a in the words generated by G with any of the words of

Ga gives us the words generated by G
′

. We will show that the L(G
′

) = replace a wa sg , where

replace substitutes the word wa for terminal a in sentence sg , wa ∈ L(Ga) and sg ∈ (V ∪ T )∗.

Substitution is easy to visualise using the parse tree framework. Given a derivation tree for some

input in the original grammar, the substitution operation results in replacing each of the leaf

nodes by a derivation tree of some input belonging in the language of another grammar.

Proof Function substGr is responsible for the construction of G′. Here, gsub is the grammar

whose start symbol gets substituted for terminal tm in original grammar g. The substitution

is done for each rule (substRule) in g. Again, without loss of generality we assume that

non-terminals in g and gsub are disjoint.

HOL Definition 16 (substGr).

substGr (tm,gsub) g =

G

(rules gsub ++

MAP (substRule (TS tm,NTS (startSym gsub))) (rules g))

(startSym g)

We then define the replace function in HOL. Function replace substitutes word s for

symbol sym in the given sentence and returns a set of all possible substitutions.

HOL Definition 17 (replace).

replace [] sym s = {[]}

replace (NTS x::rst) sym s =

IMAGE (CONS (NTS x)) (replace rst sym s)

replace (TS t::rst) sym s =

if t 6= sym then

IMAGE (CONS (TS t)) (replace rst sym s)

else

conc s (replace rst sym s)
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To prove the closure, we have to establish:

HOL Theorem 14.

DISJOINT (nonTerminals g) (nonTerminals gsub) ⇒

(w ′ ∈ L (substGr (tm,gsub) g) ⇐⇒

∃w . w ∈ L g ∧ w ′ ∈ replace w tm (L gsub))

For the “if” direction we prove:

HOL Theorem 15.

DISJOINT (nonTerminals g) (nonTerminals gsub) ∧ w ∈ L g ∧

w ′ ∈ replace w tm (L gsub) ⇒

w ′ ∈ L (substGr (tm,gsub) g)

For the “only if” direction we use the notion of derivation trees to assert membership in the

language of the grammar. For a derivation tree valid with respect to grammar gsub, one can

construct a derivation tree valid with respect to grammar g such that replacing the terminal in

yield of g by some yield w of gsub gives a yield for G′.

HOL Theorem 16.

validptree (substGr (sym,gsub) g) t ∧

root t ∈ nonTerminals g ∧

DISJOINT (nonTerminals g) (nonTerminals gsub) ⇒

∃ t ′ w .

MAP TS (fringe t ′) = w ∧

MAP TS (fringe t) ∈ replace w sym (L gsub) ∧

validptree g t ′ ∧ root t ′ = root t

The correspondence between derivation trees and derivations lets us derive the “only if”

statement.

HOL Theorem 17.

DISJOINT (nonTerminals g) (nonTerminals gsub) ∧

w ′ ∈ L (substGr (tm,gsub) g) ⇒

∃w . w ∈ L g ∧ w ′ ∈ replace w tm (L gsub)

Thus, we now have the closure under substitution.
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Corollary 5.6 (Closure under homomorphism). The property that CFLs are closed under ho-

momorphism follows directly from closure under substitution since homomorphism is just a spe-

cial type of substitution.

6. Constructing a PDA for a CFG

In the next two sections, we discuss the paper’s most involved proof: that of the equivalence

of PDAs and CFGs. In fact, constructing a PDA for a CFG is a straightforward process so most

of the space is given to just one direction of the equivalence: the construction of a CFG from a

PDA.

For the simpler direction, we follow Hopcroft and Ullman and assume the grammar is in

Greibach normal form. Our mechanised proof that all grammars can be put into this normal form

is discussed in our earlier conference paper (Barthwal and Norrish (2010)).

So, let G = (V, T, P, S) be a context-free grammar in Greibach normal form generating L.

We construct machine M such that M = (q, T, V, δ, q, S, φ), where δ(q, a, A) contains (q, γ)

whenever A → aγ is in P . Every production in a grammar that is in GNF has to be of the form

A → aα, where a is a terminal symbol and α is a string (possibly empty) of non-terminal

symbols (isGnf). The automaton for the grammar is constructed by creating transitions from

the grammar productions, A → aα that read the head symbol of the RHS (a) and push the

remaining RHS (α) on to the stack. The terminals are interpreted as the input symbols and the

non-terminals are the stack symbols for the PDA.

trans q (ℓ; r) = ((SOME (HD r),NTS ℓ,q),q,TL r)

grammar2pda g q =

(let ts = MAP (trans q) (rules g)

in

〈start := q; ssSym := NTS (startSym g); next := ts;

final := []〉)

(Here HD returns the first element in the list and TL returns the remaining list. Function MAP

applies a given function to each element of a list.)

The PDA M simulates leftmost derivations of G. Since G is in Greibach normal form, each

sentential form in a leftmost derivation consists of a string of terminals x followed by a string
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of variables α. M stores the suffix α of the left sentential form on its stack after processing the

prefix x. Formally we show that

S
l
⇒∗ xα by a leftmost derivation if and only if (q, x, A) →∗

M (q, ǫ, α) (1)

This turns out to be straightforward process in HOL and is done by representing the grammar

and the machine derivations using derivation lists. Let dl represent the grammar derivation from

S to xα and dl′ represent the derivation from (q, x, A) to (q, ǫ, α) in the machine. Then an

induction on dl gives us the “if” portion of (1) and induction on dl′ gives us the “only if” portion

of (1). Thus, we can conclude the following,

HOL Theorem 18.

∀ g . isGnf g ⇒ ∃m. ∀ x . x ∈ L g ⇐⇒ x ∈ laes m

7. Constructing a CFG from a PDA

The CFG for a PDA is constructed by encoding every possible transition step in the PDA as

a rule in the grammar. The LHS of each production encodes the starting and final state of the

transition while the RHS encodes the contents of the stack in the final state.

Let M be the PDA (Q, δ, q0, Z0, φ) and Σ and Γ the derived input and stack alphabets,

respectively. We construct G = (V,Σ, P, S) such that V is a set containing the new symbol S

and objects of the form [q, A, p]; for q and p in Q, and A in Γ.

The productions P are of the following form: (Rule 1) S → [q0, Z0, q] for each q in Q; and

(Rule 2) [q, A, qm+1] → a[q1, B1, q2][q2, B2, q3]...[qm, Bm, qm+1] for each q, q1, q2, ..., qm+1 in

Q, each a in Σ∪{ǫ}, and A,B1, B2, ..., Bm in Γ, such that δ(q, a, A) contains (q1, B1B2...Bm)

(if m = 0, then the production is [q, A, q1] → a). The variables and productions of G have been

defined so that a leftmost derivation in G of a sentence x is a simulation of the PDA M when

fed the input x. In particular, the variables that appear in any step of a leftmost derivation in G

correspond to the symbols on the stack of M at a time when M has seen as much of the input as

the grammar has already generated.

From text to automated text:. For Rule 1 we only have to ensure that the state q is in Q. On

the other hand, there are multiple constraints underlying the statement of Rule 2 which will need

to be isolated for mechanisation and are summarised below.
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C2.1 The states q, q1 and p belong in Q (a similar statement for terminals and non-terminals can

be ignored since they are derived);

C2.3 the corresponding machine transition is based on the values of a and m and steps from

state q to some state q1 replacing A with B1...Bm;

C2.3 the possibilities of generating the different grammar rules based on whether a = ǫ, m = 0

or a is a terminal symbol;

C2.4 if m > 1 i.e. more than one non-terminal exists on the RHS of the rule then

C2.4.1 α is composed of only non-terminals;

C2.4.2 a non-terminal is an object of the form [q, A, p] for PDA from-state q and to-state

p, and stack symbol A;

C2.4.3 the from-state of the first object is q1 and the to-state of the last object is qm+1;

C2.4.4 the to-state and from-state of adjacent non-terminals must be the same;

C2.4.5 the states encoded in the non-terminals must belong to Q.

Whether we use a functional approach or a relational one, the succinctness of the above

definition is hard to capture in HOL. Using relations we can avoid concretely computing every

possible rule in the grammar and thus work at a higher level of abstraction. The extent of details

to follow are characteristic of mechanising such a proof. The relation pda2grammar captures

the restrictions on the rules for the grammar corresponding to a PDA.

HOL Definition 18.

pda2grammar M g ⇐⇒

pdastate (startSym g) /∈ statesList M ∧

set (rules g) = p2gStartRules M (startSym g) ∪ p2gRules M

The non-terminals are a tuple of a from-state, a stack symbol and a to-state, the states and the

stack symbols belonging to the PDA. As long as one of the components is not in the PDA, our

start symbol will be new and will not overlap with the symbols constructed from the PDA. The

first conjunct of pda2grammar ensures this. The function p2gStartRules corresponds to

Rule 1 and the function (p2gRules) ensures that each rule conforms with Rule 2. As already
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mentioned, Rule 2 turns out to be more complicated to mechanise due to the amount of detail

hidden behind the concise notation.

The p2gRules predicate (see Figure 1) enforces the conditions C2.1, C2.2, C2.3 (capturing

the four possibilities for a rule, A → ǫ; A → a, A → aα, where a is a terminal symbol and

A → α for non-terminals α).

HOL Definition 19.

p2gRules M =

{(q,A,q1);[] | ((NONE,A,q),q1,[]) ∈ M .next} ∪

{(q,A,q1);[TS ts] | ((SOME (TS ts),A,q),q1,[]) ∈ M .next} ∪

{(q,A,p);[TS ts] ++ L |

L 6= [] ∧

∃mrhs q1.

((SOME (TS ts),A,q),q1,mrhs) ∈ M .next ∧

ntslCond M (q1,p) L ∧ MAP transSym L = mrhs ∧

p ∈ statesList M } ∪

{(q,A,p);L |

L 6= [] ∧

∃mrhs q1.

((NONE,A,q),q1,mrhs) ∈ M .next ∧ ntslCond M (q1,p) L ∧

MAP transSym L = mrhs ∧ p ∈ statesList M }

Figure 1: Definition of p2gRules.

Condition ntslCond captures C2.4 by describing the structure of the components making

up the RHS of the rules when α is nonempty (i.e. has one or more non-terminals). The com-

ponent [q, A, p] is interpreted as a non-terminal symbol and q (frmState) and p (toState)

belong in the states of the PDA (C2.4.2), the conditions on q′ and ql that reflects C2.4.3 condition

on q1 and qm+1 respectively, C2.4.4 using relation adj and C2.4.5 using the last conjunct.
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HOL Definition 20.

ntslCond M (q ′
,ql) ntsl ⇐⇒

EVERY isNonTmnlSym ntsl ∧

(∀ e1 e2 p s. ntsl = p ++ [e1; e2] ++ s ⇒ adj e1 e2) ∧

frmState (HD ntsl) = q ′ ∧ toState (LAST ntsl) = ql ∧

(∀ e. e ∈ ntsl ⇒ toState e ∈ statesList M) ∧

∀ e. e ∈ ntsl ⇒ frmState e ∈ statesList M

(The LAST function returns the last element in a list.)

The constraints described above reflect exactly the information corresponding to the two

criteria for the grammar rules. On the other hand, it is clear that the automated definition looks

and is far more complex to digest. Concrete information that is easily gleaned by a human reader

from abstract concepts has to be explicitly stated in a theorem prover.

Now that we have a CFG for our machine we can plunge ahead to prove the following.

Theorem 7.1. If L is N(M) for some PDA M , then L is a context-free language.

To show that L(G) = N(M), we prove by induction on the number of steps in a derivation

of G or the number of moves of M that

(q, x, A) →∗

M (p, ǫ, ǫ) iff [q, A, p]
l
⇒∗

G x . (2)

7.1. Proof of the “if” portion of (2)

First we show by induction on i that if (q, x, A) →i (p, ǫ, ǫ), then [q, A, p] ⇒∗ x.

HOL Theorem 19.

ID M ⊢ dl � (q,x,[A]) → (p,[],[]) ∧ isWord x ∧

pda2grammar M g ⇒

[NTS (q,A,p)] ⇒∗

g x

Proof The proof is based on induction on the length of dl . The crux of the proof is breaking

down the derivation such that a single stack symbol gets popped off after reading some (possibly

empty) input.

Let x = aγ and (q, aγ,A) → (q1, γ, B1B2...Bn) →i−1 (p, ǫ, ǫ). The single step is

easily derived based on how the rules are constructed. For the i − 1 steps, the induction hy-

pothesis can be applied as long as the derivations involve a single symbol on the stack. The
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string γ can be written γ = γ1γ2...γn where γi has the effect of popping Bj from the stack,

possibly after a long sequence of moves. Note that B1 need not be the nth stack symbol from

the bottom during the entire time γ1 is being read by M . In general, Bj remains on the stack

unchanged while γ1, γ2...γj−1 is read. There exist states q2, q3, ..., qn+1, where qn+1 = p, such

that (qj , γj , Bj) →∗ (qj , ǫ, ǫ) by fewer than i moves (qj is the state entered when the stack

first becomes as short as n − j + 1). These observations are easily assumed by Hopcroft and

Ullman or for that matter any human reader. The more concrete construction for mechanisation

is as follows.

Filling in the gaps:. For a derivation of the form, (q1, γ, B1B2...Bn) →i (p, ǫ, ǫ), this is

asserted in HOL by constructing a list of objects (q0, γj , Bj , qn) (combination of the object’s

from-state, input, stack symbols and to-state), such that (q0, γj, Bj) →i (qn, ǫ), where i > 0,

γj is input symbols reading which stack symbol Bj gets popped off from the stack resulting in

the transition from state q0 to qn. The from-state of the first object in the list is q1 and the to-state

of the last object is p. Also, for each adjacent pair e1 and e2, the to-state of e1 is the same as the

from-state of e2. This process of popping off the Bj stack symbol turns out to be a lengthy one

and is reflected in the proof statement of HOL Theorem 20.

To be able to prove this, it is necessary to provide the assertion that each derivation in the

PDA can be divided into two parts, such that the first part (list dl0) corresponds to reading n

input symbols to pop off the top stack symbol. This is our HOL Theorem 21.

The proof of above is based on another HOL theorem that if (q, γη, αβ) →i (q′, η, β) then

we can conclude (q, γ, α) →i (q′, ǫ, ǫ) (proved in HOL). This is a good example of a proof

where most of the reasoning is “obvious” to the reader. This when translated into a theorem

prover results in a cascading structure where one has to provide the proofs for steps that are

considered “trivial”. The gaps outlined here are just the start of the bridging process between the

text proofs and the mechanised proofs.

Proof resumed:. Once these gaps have been taken care of, we can apply the inductive hypothesis

to get

[qj , Bj, qj+1]
l
⇒∗ γj for 1 ≤ j ≤ n. (3)

This leads to, a[q1, B, q2][q2, B2, q3]...[qn, Bn, qn+1]
l
⇒∗x.
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HOL Theorem 20.

ID M ⊢ dl � (q,inp,stk) → (qf ,[],[]) ⇒

∃ ℓ.

inp = FLAT (MAP tupinp ℓ) ∧ stk = MAP tupstk ℓ ∧

(∀ e. e ∈ MAP tuptost ℓ ⇒ e ∈ statesList M) ∧

(∀ e. e ∈ MAP tupfrmst ℓ ⇒ e ∈ statesList M) ∧

(∀ h t .

ℓ = h::t ⇒

tupfrmst h = q ∧ tupstk h = HD stk ∧

tuptost (LAST ℓ) = qf ) ∧

∀ e1 e2 pfx sfx .

ℓ = pfx ++ [e1; e2] ++ sfx ⇒

tupfrmst e2 = tuptost e1 ∧

∀ e.

e ∈ ℓ ⇒

∃m.

m < |dl | ∧

NRC (ID M) m (tupfrmst e,tupinp e,[tupstk e])

(tuptost e,[],[])

(Relation NRC R m x y is the RTC closure of R from x to y in m steps.)

HOL Theorem 21.

ID p ⊢ dl � (q,inp,stk) → (qf ,[],[]) ⇒

∃ dl0 q0 i0 s0 spfx .

ID p ⊢ dl0 � (q,inp,stk) → (q0,i0,s0) ∧ |s0| = |stk | − 1 ∧

(∀ q ′ i ′ s ′. (q ′,i ′,s ′) ∈ FRONT dl0 ⇒ |stk | ≤ |s ′|) ∧

((∃ dl1.

ID p ⊢ dl1 � (q0,i0,s0) → (qf ,[],[]) ∧ |dl1| < |dl | ∧

|dl0| < |dl |) ∨

(q0,i0,s0) = (qf ,[],[]))

(Predicate FRONT ℓ returns the list ℓ minus the last element.)
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Since (q, aγ,A) → (q1, γ, B1B2...Bn), we know

[q, A, p]
l
⇒ a[q1, B, q2][q2, B2, q3]...[qn, Bn, qn+1]

and so finally we can conclude

[q, A, p]
l
⇒∗ aγ1γ2...γn = x

The overall structure of the proof follows Hopcroft and Ullman, though at rather greater

length. The proofs in this section were quite involved, and we have only shown a small subset of

them due to space restrictions.

7.2. Proof of the “only if” portion of (2)

Now suppose [q, A, p] ⇒i x. We show by induction on i that (q, x, A) →∗ (p, ǫ, ǫ).

HOL Theorem 22.

derives g ⊢ dl � [NTS (q,A,p)] → x ∧ q ∈ statesList M ⇒

isWord x ⇒

pda2grammar M g ⇒

(q,x,[A]) ⊢∗

M (p,[],[])

Proof The basis, i = 1, is immediate, since [q, A, p] → x must be a production of G and

therefore δ(q, x, A) must contain (p, ǫ). Note x is ǫ or in Σ here. In the inductive step, there are

three cases to be considered. The first is the trivial case, [q, A, p] ⇒ a, where a is a terminal.

Thus, x = a and δ(q, a, A) must contain (p, ǫ). The other two possibilities are

[q, A, p] ⇒ a[q1, B1, q2]...[qn, Bn, qn+1] ⇒i−1 x

where qn+1 = p or

[q, A, p] ⇒ [q1, B1, q2]...[qn, Bn, qn+1] ⇒i−1 x

where qn+1 = p. The latter case can be considered a specialisation of the first one such that

a = ǫ. Then x can be written as x = ax1x2...xn, where [qj , Bj , qj+1] ⇒
∗ xj for 1 ≤ j ≤ n and

possibly a = ǫ. This has to be formally asserted in HOL. Let α be of length n. If α ⇒m β,

then α can be divided into n parts, α = α1α2...αn and β = β1β2...βn, such that αi ⇒i βi in

i ≤ m steps.
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HOL Theorem 23.

derives g ⊢ dl � x → y ⇒

∃ ℓ.

x = MAP FST ℓ ∧ y = FLAT (MAP SND ℓ) ∧

∀ a b.

(a,b) ∈ ℓ ⇒

∃ dl ′. |dl ′| ≤ |dl | ∧ derives g ⊢ dl ′ � [a] → b

(The FLAT function returns the elements of (nested) lists, SND returns the second element of a

pair.)

Inserting Bj+1...Bn at the bottom of each stack in the above sequence of IDs gives us,

(qj , xj , BjBj+1...Bn) →∗ (qj+1, ǫ, Bj+1...Bn). (4)

The first step in the derivation of x from [q, A, p] gives us,

(q, x, A) → (q1, x1x2...xn, B1B2...Bn) (5)

is a legal move of M . From this move and (4) for j = 1, 2, ..., n, (q, x, A) →∗ (p, ǫ, ǫ) follows.

In Hopcroft and Ullman, the above two equations suffice to deduce the result we are interested

in.

Unfortunately, the sequence of reasoning here is too coarse-grained for HOL4 to handle. The

intermediate steps need to be explicitly stated for the proof to work out using a theorem prover.

These steps can be further elaborated as follows.1 By our induction hypothesis,

(qj , xj , Bj) →∗ (qj+1, ǫ, ǫ). (6)

Now consider the first step, if we insert x2...xn after input x1 and B2...Bn at the bottom of each

stack, we see that

(q1, x1...xn, B1...Bn) →∗ (p, ǫ, ǫ). (7)

Another fact that needs to be asserted explicitly is reasoning for (7).

This is done by proving the affect of inserting input/stack symbols on the PDA transitions.

Now from the first step, (5) and (7), (q, x, A) →∗ (p, ǫ, ǫ) follows.

1Their HOL versions can be found as part of the source code
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Equation (2) with q = q0 and A = Z0 says [q0, Z0, p] ⇒∗ x iff (q0, x, Z0) →∗ (p, ǫ, ǫ). This

observation, together with Rule 1 of the construction of G, says that S ⇒∗ x if and only if

(q0, x, Z0) →∗ (p, ǫ, ǫ) for some state p. That is, x is in L(G) if and only if x is in N(M) and

we have

HOL Theorem 24.

pda2grammar M g ∧ isWord x ⇒

([NTS (startSym g)] ⇒∗

g x ⇐⇒

∃ p. (M .start,x,[M .ssSym]) ⊢∗

M (p,[],[]))

To avoid the above being vacuous, we additionally prove the following:

HOL Theorem 25.

INFINITE U(:’pdastate) ⇒ ∀m. ∃ g . pda2grammar m g

The pre-condition is on the type of state in the PDA. This is necessary to be a able to choose

a fresh state (not in the PDA) to create the start symbol of the grammar as mentioned before.

8. Related work

In the general area of mechanised language theory, the earliest work we are aware of is

by Nipkow (1998). That paper describes a verified and executable lexical analyzer generator.

Focusing on core language theory as it does, we feel this work is the closest in nature to our own

mechanisation, though of course it covers regular rather than context-free languages.

Apart from our own earlier work on SLR parsing, there have recently been a number of pa-

pers directly concerned with mechanisation and verification of specific approaches to parsing.

For example, Koprowski and Binsztok (2011) describe the construction of a verified parser for

expression grammars. This formalism allows for parsers for a large class of languages to be

generated from natural specifications that look a great deal like context-free grammars. Another

example is Ridge (2011), which work presents a verified parser for all possible context-free gram-

mars, using an admirably simple algorithm. The drawback is that, as presented, the algorithm is

of complexity O(n5).

Parser combinators, popular in functional programming languages, are another approach to

the general parsing problem, and there has been some mechanisation work in this area. For

example, Danielsson (2010) presents a library of parser combinators that have been verified (in

the Agda system) to guarantee termination of parsing.
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Theory LOC #Definitions #Proofs

CFGs—background 3680 36 189

PDAs—background 1846 15 47

Empty Stack Acceptance ⇐⇒ Final State Acceptance 1795 6 75

PDA ⇐⇒ CFG 2598 16 50

Closure properties 1686 12 91

Table 1: Summary of proof effort

9. Conclusions

We have mechanised a large portion of the background theory of context-free grammars and

pushdown automata. This theory is fundamental to an important part of computer science, and

had not been mechanised previously. The work was pursued as part of a larger project (the first

author’s PhD): to mechanise one of the field’s standard textbooks. And, just as a textbook lays the

foundation for future research, we hope our mechanised theories provide a platform for others’

work in the area of context-free languages.

Inevitably, the mechanisation work occasioned a great many instances of “proof blowup”,

where something handled briefly in prose turns out to require a great deal of toil. Most of this

was simple tedium (necessary inductions are very easy for humans to glide past); at other times,

the effort seem to require rather more human ingenuity. A numerical summary of the blood,

sweat and tears per theory appears in Table 1. The total person-time taken was in the order of

one PhD student multiplied by 6 months.

Despite these issues around proof-size explosion, we also hope our mechanisation might be

a good basis for teaching language theory. Others, such as Blanc et al. (2007) and Pierce (2010)

have used the Coq system as part of courses on logic, mathematics and topics in theoretical

computer science. Given its central part in the curriculum, and given our success in the mech-

anisation of Hopcroft and Ullman, we now believe language theory to be an area well-suited to

mechanised pedagogy.
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