
1

Model Evolution Based Theorem Proving
Peter Baumgartner

Abstract—The area of Automated Theorem Proving is char-
acterized by the development of numerous calculi and proof
procedures, from “general purpose” to rather specialized ones
for specific subsets of first-order logic and logical theories. In
this article I highlight two trends that have received considerable
attention over the last ten years. The one is the integration of
reasoning methods for propositional and for first-order logic, with
a best-of-both-worlds motivation. The other is built-in reasoning
support modulo background theories, such as equality and inte-
ger arithmetic, which are of pivotal importance for, e.g., software
verification applications. I will survey the major paradigms in
this space from the perspective of our own developments, mainly
the model evolution calculus. It is an ongoing quest for the
convergence of automated reasoning methods.

I. FROM PROPOSITIONAL TO INSTANCE-BASED METHODS

In propositional satisfiability, usually called the “SAT prob-
lem”, the DPLL procedure, named after its authors: Davis,
Putnam, Logemann, and Loveland [1], [2] is an important
method for building (complete) SAT solvers. Its popularity
is due to its simplicity, its polynomial space requirements,
and the fact that, as a search procedure, it is amenable to
powerful but also relatively inexpensive heuristics for reducing
the search space. Thanks to extensions like conflict-driven
clause learning, dynamic weight heuristics, restarts and care-
fully engineered data structures, the best SAT solvers today
can successfully attack real-world problems with hundreds
of thousands of variables and clauses. Indeed, due to these
extensions, modern SAT solvers are often subsumed under a
new name, “CDCL solvers” (conflict-driven clause learning
solvers). For the purpose of this article it is enough to consider
the DPLL core component only, and refer the reader to [3] for
more information on CDCL.

Interestingly, the DPLL procedure was actually devised in
origin as a proof-procedure for first-order logic. Its treatment
of quantifiers is highly inefficient, however, because it is
based on enumerating all possible ground instances of an
input formula’s clause form, and checking the propositional
satisfiability of each of these ground instances one at a time.
Because of its primitive treatment of quantifiers the DPLL
procedure, which predates Robinson’s resolution calculus [4]
by a few years, was quickly overshadowed by resolution as
the method of choice for automated first-order reasoning.

One of the key insights in [4] concerns the use of most
general unifiers (MGUs). In brief, a unifier of two literals is
a substitution that makes these literals equal (a literal is an
atom or a negated atom). A unifier σ is most general if for
any unifier τ there is a substitution γ such that σγ = τ . Most
general unifiers act in concert with the resolution inference
rule for reasoning on clauses:

C ∨K L ∨D
(C ∨D)σ

if σ is a MGU of K and L

The notation L refers to the complement of L, that is, L with
the opposite sign.

Starting with the seminal work by Lee and Plaisted in
the early 1990s [5], researchers began to investigate how to
capitalize on both the speed of modern DPLL-based SAT
solvers and on successful concepts of first-order theorem
proving, such as the use of unification. This led to a family
of calculi and proof procedures for first-order logic known as
instance-based methods (IBMs).

All IBMs developed so far can be categorized as either “one-
level methods” or “two-level methods”. The basic idea behind
“two-level methods” is easy to explain: In an outer loop they
maintain a growing set M of instances of a given clause set as
determined by the method’s inference rules. The set M then is
periodically instantiated into a set of ground clauses M gr and
passed on to a SAT solver. More precisely, M gr is obtained
from M be uniformly replacing every variable by some (same)
constant. If the SAT solver determines unsatisfiability of M gr

it follows that the given clause set is unsatisfiable, too, and so
the procedure stops.

What distinguishes today’s two-level methods from the
naive instantiation approach above, among others, are their
inference rules to drive the derivation of the clauses in M in a
better, conflict-driven way based on unification. This can best
be seen with the Inst-Gen [6] method and its main inference
rule, which is the following:

C ∨K L ∨D
(C ∨K)σ (L ∨D)σ

if σ is a MGU of K and L

The Inst-Gen inference rule differs from the resolution rule
by keeping the instantiated premises separate instead of com-
bining them into a new clause. In contrast, Resolution may
generate new clauses of unbounded length.

One-level methods share with two-level methods the prin-
ciple of working with instances only of the given clauses.
One-level methods, however, do not integrate a propositional
method, they generalize a propositional method for first-order
logic [7], [8], [9]. In the following I will focus on the Model
Evolution (ME) calculus [9].

ME has been introduced as a lifting of the propositional core
of the DPLL procedure to the first-order level. To describe how
it works, it is instructive to recapitulate the main idea behind
propositional DPLL: given a propositional clause set S, one
picks an atom, say A, from a clause in S, and creates by
splitting two new clause sets S[A/>] and S[A/⊥] (the clause
set S[A/⊥] is the set S with every occurrence of A replaced
by ⊥). The clause sets can be further simplified according
to Boolean algebra, e.g. C ∨ ⊥ ≡ C and C ∨ > ≡ >. If
a (simplified) clause set contains ⊥, it is unsatisfiable. If not,
another atom occurring in that clause set is picked for splitting,



2

until all atoms have been exhausted (with the conclusion that
S is satisfiable), or all the sets generated are shown to be
unsatisfiable, which means that S is unsatisfiable.

In view of ME, DPLL as described above can be seen as
calculus with the following split inference rule:

Λ ` S ∪ {A ∨ C}
Λ ∪ {A} ` S ∪ {A ∨ C} Λ ∪ {¬A} ` S ∪ {A ∨ C}

if A /∈ Λ and ¬A /∈ Λ.
The sequent data structure Λ ` S represents a current clause

set S together with a context Λ. The context Λ represents
the guesses made so far whether an atom A is set to > or
⊥, corresponding to including the literal A or ¬A in the left
or right conclusion of an inference, respectively. There are
additional inference rules corresponding to simplification by
Boolean algebra, not displayed here. Preferring simplification
over splitting leads eventually to a sequent Λ ` S such that no
atom in Λ occurs in S. Unsatisfiability then reduces to testing
if ⊥ ∈ S.

The effect of split can be described semantically: a context
Λ represents a partial interpretation that can be turned into
a total interpretation IΛ by assigning false to all atoms not
occurring in Λ and otherwise assigns the truth values specified
by Λ as described above. This way, the split rule always
“repairs” in its left branch the current interpretation IΛ towards
an interpretation IΛ∪{A} that satisfies the previously falsified
clause A ∨ C. In the satisfiable case, the calculus derives a
sequent of the form Λ ` ∅, and IΛ provides a model for the
initially given clause set — a very useful feature.

The ME calculus can be seen as lifting this model generation
process to the first-order level. While the overall layout of the
calculus is the same, in a sequent Λ ` S the context Λ now
consists of a set of possibly non-ground literals, and the clause
set S consists of possibly non-ground clauses. The lifted split
rule is as follows:

Λ ` S ∪ {C}
Λ ∪ {Lσ} ` S ∪ {C} Λ ∪ {Lσ} ` S ∪ {C}

if L ∈ C, Lσ /∈ Λ, Lσ /∈ Λ, and σ is a context unifier of
C against Λ. A context unifier of a clause L1 ∨ · · · ∨ Ln,
where n ≥ 1, against Λ is a most general simultaneous
unifier of the sets {Li,Ki}, for some (fresh variants of) literals
Ki ∈ Λ. (For technical reasons we assume every Λ contains
the pseudo-literal ¬x, whose complement unifies with every
positive literal.) Akin to two-level methods, a context Λ ` S
is unsatisfiable if some clause in S can be matched by a
context unifier to the ground version of Λ that is obtained
by simultaneously replacing all variables in Λ by a (the same)
constant. In addition to these rules, the calculus contains a
number of simplification rules whose purpose is, again like in
DPLL, to simplify the clause set and, as a consequence, to
speed up the computation.

As with DPLL, a sequent Λ ` S induces a Herbrand
interpretation IΛ, again serving as a candidate model for
S, which possibly needs to be repaired. From the semantic
viewpoint, context unifiers serve to identify clauses in S that
are falsified by IΛ in a conflict-driven way. This is how the

ME calculus gets its strength, by avoiding split inferences on
clauses that are already satisfied.

The above exposition leaves out many details and improve-
ments, which can be found in [9].

In conclusion, like the two-level methods, ME works with
instances of clauses identified by most general unification to
drive proof search. Unlike the two-level methods, it does not
include a propositional method, it extends it. For this reason,
ME cannot use a SAT-solver in a black-box style, which is
a drawback. Consequently, it requires additional efforts to
import successful developments from the CDCL world. A
good example for that is clause learning, the inclusion of
certain derived clauses for the purpose of cutting off search
space. In [10] we have shown how to extend ME with clause
learning, even in a generalized form. On the other hand,
its lifted data structure and induced first-order interpretation
enable ME with semantic redundancy criteria that are not
possible with two-level methods.

All IBMs are decision procedures for the class of clauses
resulting from the translation of conjunctions of Bernays-
Schönfinkel formulas into clause form. Such clauses contain
no function symbols, but no other restrictions apply. That
fragment, also known as Datalog, is is notoriously difficult to
decide by resolution methods, even refined ones. On the other
hand, refined versions of resolution decide other fragments of
first-order logic that are not decidable by IBMs.

These theoretical differences are reflected by implementa-
tions and problem classes they are good at. Indeed, the annual
theorem proving contest is dominated by resolution based
provers (better said: superposition-based, see Section II) and
IBMs. Very roughly speaking, the former tend to perform bet-
ter for proving validity, the latter for establishing satisfiability.

II. EQUALITY

In many theorem proving applications, a proper treatment
of equational theories or equality is mandatory. Software
verification applications, for example, often require reasoning
about data structures such as lists, arrays and records, in
combination with (integer) arithmetic. Typically, this requires
axioms like the following:

x ≤ z ∨ ¬(x ≤ y) ∨ ¬(y ≤ z) (1)
x ≤ y ∨ y ≤ x (2)

select(store(a, i, e), i) ≈ e (3)
select(store(a, i, e), j) ≈ select(a, j) ∨ i ≈ j (4)

select(a0, i) ≤ select(a0, j) ∨ i ≈ j ∨ ¬(i ≤ j) (5)

The clauses (1) and (2) are properties of total orders, clauses
(3) and (4) axiomatize arrays, and clause (5) says that the array
a0 is sorted. The symbol ≈ is the equality symbol.

The original resolution calculus did not feature inference
rules for reasoning with equations. A superficial way to fix
this consists in adding the axioms for the equality relation to
the initially given clauses and leave the calculus untouched.
However, it soon turned out that this approach leads to a too
big search space and can be used for toy examples only. It
took another 25 years until the development of the “modern”



3

theory of resolution had begun in the 1990s [11]. This lead
to a breakthrough in resolution theory by unifying more or
less all resolution variants and improvements until then in a
single theoretical framework, yet more elegant, general and
powerful. A major outcome of that was the superposition
calculus, a highly improved generalization of the resolution
calculus with inference rules for equality reasoning (see [12]).
It is implemented in the leading theorem provers for equational
reasoning today.

Roughly speaking, superposition formalizes the concept of
“replacing equals by equals” in the following inference rule:

l ≈ r ∨ C ′ L[u] ∨ C
(L[r] ∨ C ∨ C ′)σ

where σ is an MGU of l and u, u is not a variable and
certain ordering restrictions apply. The notation L[u] means
that the literal L contains the subterm u. The rule replaces u
in L by r and applies the substitution to the resulting clause,
which contains the rest-clauses C and C ′, similarly as in
the resolution rule. The ordering restrictions allow the rule
to partner only certain, maximal literals (in a given ordering
on terms) and to not replace u by a larger term.

The natural research question arises whether the successful
concepts behind superposition can be used for building-in
equality into different calculi, such as IBMs. In the following
I will briefly discuss two such developments.

In [13] we have shown how to integrate a superposition-like
inference rule into ME. The resulting calculus, MEE, relies
heavily on notions and techniques originally developed for the
superposition calculus. As a result, MEE features powerful
redundancy criteria that boost efficiency for clause sets that
involve equality.

This integration, however was non-trivial because of the
rather different layout of the two calculi. While superposition
maintains clause sets as its main data structure, MEE works
with contexts, as explained in Section I, and a set of clauses,
paired into sequents. Moreover, we had to move from clauses
C to constrained clauses, pairs of the form C·Γ. The constraint
Γ expresses conditions under which the clause C has been
derived. Constraints are needed to get a sound calculus. The
MEE calculus has two main inference rules, ME’s split rule,
and the following adaptation of the superposition rule:

l ≈ r L[u] ∨ C · Γ
(L[r] ∨ C · Γ ∪ {l ≈ r})σ

In contrast to the superposition rule, the left premise is always
a unit clause. This is possible because it is in conjunction
with a current sequent Λ ` S where the left (right) premise is
taken from Λ (S, respectively) and the conclusion goes into
S. Similar ordering restrictions apply.

MEE and superposition are conceptually rather different cal-
culi and suitable for different problem domains. See again [13]
for a description of the MEE implementation, the E-Darwin
prover, and experiments with it.

Consider again the clause set above. When setting up such
axiom sets a natural question is whether they are consis-
tent (satisfiable), clearly a desirable property. However, when

passed to a state-of-the art IBM (such as E-Darwin) or super-
position system, neither will terminate on it. The redundancy
criteria available with either of these are just too weak to get
termination. In general, one cannot predict if the prover will
ever terminate or not.

Problems like these motivated us to consider the combina-
tion of MEE and superposition. The rationale is to exploit the
benefits of MEE and superposition on clause logic fragments
they are best suited for. In the example above, the clauses (1)
and (2) fall into the Datalog fragment, which MEE is suitable
for, and the clauses (3) - (5) are best treated by superposition:
superposition terminates on (3)-(5) alone, but not on (1) and
(2); MEE terminates on (1) and (2) alone, but not on (3)-(5).

This problem is fixed in the combined MEE and superposi-
tion calculus [14]. The main data structure of that calculus is
the same as in MEE, sequents with contexts and constrained
clauses. The main inference rules are the split and the su-
perposition rule, again taken from MEE, and the following
superposition calculus rule adapted for constrained clauses:

l ≈ r ∨ C ′ · Γ′ L[u] ∨ C · Γ
(L[r] ∨ C ∨ C ′ · Γ ∪ Γ′ ∪ {l ≈ r})σ

The above rule is applied to constrained clauses from S, where
Λ ` S is the current sequent, and the conclusion goes into S.

The calculus gets its power from allowing the user to
“tag” clauses or their literals for treatment by the MEE or
superposition rules, respectively. If desired, the tags can be
chosen in a way that the pure version of either calculus results.
With suitably chosen tags, the combined calculus terminates
on our example. In general, suitably chosen tags can result
in significant search space reduction. How well this translates
into practice will have to be seen with an implementation,
which we do not yet have.

III. THEORY REASONING

The logic considered in the previous section is predicate
logic with equality. Although it is expressive enough in a
theoretical sense, many applications benefit from building in
knowledge about specific theories, or background theories,
into a theorem prover by dedicated inference rules or plug-in
decision procedures. A prime example is that of linear integer
arithmetic (LIA). The satisfiability problem for arbitrary LIA
formulas is decidable (by quantifier elimination methods), and
theorem provers can greatly benefit from using a LIA decision
procedure as a black-box reasoner.

In the example in Section II, a prover that builds-in LIA
does not need the clauses (1) and (2) as they are LIA-valid. The
axioms (3) and (4) are still needed, of course, to axiomatize
arrays. Technically, the symbols store and select are said to be
free symbols; unlike the symbols of LIA (≤, +, − etc) their
meaning is not fixed a priori.

Unfortunately, theorem proving with first-order formulas
over LIA and free symbols is very hard, both theoretically
and practically. Computability results do not even permit a
semi-decision procedure. That is, in contrast to first-order logic
(with or without equality), one cannot devise a theorem prover
that, resource limits aside, will prove every theorem.



4

One way to “fix” that problem is to restrict to fragments
that are computationally more friendly. For example, in [15]
we have devised ME(LIA), an extension of ME that builds-in
LIA. ME(LIA) supports free predicate symbols and integer-
valued symbolic constants from finite domains. With that, for
example, reasoning on arrays in a finite index range 1 . . . a
can be expressed, where the constant a is confined to finite
intervals, e.g., 5 . . . 8. With such restrictions, the calculus is
complete, and without them it may still find a proof in some
cases. Further restricting the variables to finite intervals, too,
makes the logic decidable, and the calculus terminating.

The currently dominating approach to theorem proving
modulo theories, however, is a family of proof procedures
subsumed under the name Satisfiability Modulo Theories
(SMT). In one of its main approaches, DPLL(T ), a DPLL-
style SAT-solver is combined with a decision procedure for the
quantifier-free fragment of the background theory T [16]. The
background theory T can itself be a combination of theories,
such as lists, arrays and LIA, provided certain reasonable
assumptions are met. Interestingly, superposition provers are
well-suited for integration as decision for theories like lists,
records and arrays into a DPLL(T )-solver [17].

Essentially, DPLL(T ) lifts these decision procedures to
one for arbitrary boolean combinations of literals over the
signature of T . In its simplest form it works as follows: given
a quantifier-free (i.e., ground) formula whose satisfiability
is to be determined. A trivial example is the clause set
{select(a0, 0) ≈ e, e > 0, select(a0, 0) < 0 ∨ e > 5}.
The background theory in question is that of arrays (clauses
(3) and (4) above) and LIA. The DPLL(T ) procedure starts
with a propositional logic abstraction, say, A, B, C ∨ D}
that is in one-to-one correspondence to the given clauses.
The abstraction is passed to a DPLL-solver. If it returns
unsatisfiable, the given clause set is unsatisfiable and the
procedure stops. Otherwise, taking the ME view of DPLL
in Section I, one obtains a context, undoes the abstraction
of the literals in it, and checks their T -satisfiability. In the
example, if {A,B,C} is that context, undoing the abstraction
gives {select(a0, 0) ≈ e, e > 0, select(a0, 0) < 0} , which is
unsatisfiable wrt. the intended theory. The procedure would at
this point go into another splitting branch and conclude with
the unabstracted context {select(a0, 0) ≈ e, e > 0, e > 5},
which is satisfiable.

Current SMT-solvers are highly improved versions of the
above basic procedure. Some of the best-known systems are
Yices, CVC4 and Z3, all professionally engineered. The latter
is a commercial product developed by Microsoft. SMT-solvers
are going to replace SAT-solvers in many applications that
require, e.g., integer arithmetic. Despite of their success,
the practical usefulness of SMT-solvers is sometimes rather
limited. DPLL(T ) is essentially limited to the ground case
and resorts to incomplete or inefficient heuristics to deal with
quantified formulas. In the example, if, say, the problem at
hand prescribes that a0 is a sorted array, the clause (5) can
be added. However, DPLL(T ) cannot deal natively with that
quantified formula. Instead, a DPLL(T ) solver will work with
finite approximations of (5), i.e., chose (finitely many) ground
instances of (5).

The heuristics for choosing such ground instances often
work amazingly well in practice. However, the principle
problem of incompleteness remains. On the one hand, one
may accept the obvious consequence that “some” theorems
remain unproved. On the other hand, if an incomplete system
terminates without a proof, one must not conclude that a
given conjecture formula is disproven. That is, one cannot say
that there is a counterexample that falsifies it — a situation
that often occurs during program development or specification
design.

Addressing this intrinsic limitation of DPLL(T ) for rea-
soning with quantified formulas is one of the main motiva-
tions for some of our work on first-order theorem proving
modulo theories. The ME(LIA) approach above is of that
kind, however it does not feature built-in equality and does
not support free function symbols. The more recent MEE(T)
calculus [18] is more powerful in this regard. The calculus
layout is similar to the MEE calculus of Section II. It also
works with constrained clauses, however the constraints now
include an additional component c which expresses conditions
in terms of the background theory. The main inference rule is
as follows:

l ≈ r L[u] ∨ C · Γ · c
(L[r] ∨ C · Γ ∪ {l ≈ r} · c)σ

As a simple example for how MEE(T) works, consider the
clauses x > 5 → f(x) ≈ g(x) and ¬(f(y + y) ≈ g(8)).
These clauses will be refuted, essentially, by deriving with
the inference rules the set {v1 = v2 + v2, v1 > 5, v1 = 8}
of background theory constraints, which is to be determined
satisfiable by a LIA-solver coupled in a black-box style.

The MEE(T) calculus is rather complex and not easy to
implement. Moreover, although it improves over ME(LIA), it
still does not support free background-sorted function symbols,
such as read above. Indeed, developing first-order theorem
provers, or SMT solvers for that matter, that provide “rea-
sonably complete” reasoning support in the presence of such
symbols is a major unsolved research challenge. However, in-
vestigations into that problem are clearly worth pursuing, with
the goal of developing systems that can be used more reliably
for both proving theorems and finding counterexamples. In the
following I will indicate the core of the problem and partial
solutions.

In order to obtain a, say, (refutationally) complete superpo-
sition calculus one has to make sure that any clause set that is
closed under inference rule applications (modulo redundancy)
and that does not contain the empty clause is satisfiable.
Without background theories one usually argues with Herband
models, which prescribe a fixed, trivial interpretation for
function symbols. This does not work with background theo-
ries such as LIA and instead requires synthesizing functions
ranging into the integers. For example, the singleton clause
set {x > y → f(x, y) > f(y, x)} is satisfiable, which can be
seen by interpreting f as the projection function of pairs on
its first argument.

Unfortunately, the underlying search space is not enumer-
able in general and takes theorem proving beyond semi-
decidability. To somewhat remedy this undesirable situation



5

and to recover semi-decidability one can impose certain a pri-
ori restrictions: first, the given clause set has to be “sufficiently
complete”. Intuitively, this means that already the input clause
set constrains the interpretations for free function symbols
with a background result sort to functions ranging into that
background sort. For example, adding the clause f(x, y) ≈ x
to the clause set above achieves that. Without it, say, f(1, 2)
could be interpreted as a “junk” non-integer domain element
a in an extended background domain Z ∪ {a}.

The second restriction requires that the background theory
enjoys compactness, i.e., satisfiability of all finite subsets of a
set S of background formulas entails satisfiability of S.

In [19], Bachmair, Ganzinger, and Waldmann introduced the
hierarchical superposition calculus as a generalization of the
superposition calculus for black-box style theory reasoning.
It is complete, under the stated restrictions, for clause sets
that are fully abstracted (i.e., where no literal contains both
foreground and background theory symbols). Unfortunately,
turning a formula into a fully abstract one may destroy
sufficient completeness. In [20] we show that this problem
can be avoided by using a suitably modified calculus.

In practice, sufficient completeness is a rather restrictive
property. While there are application areas where one knows in
advance that every input is sufficiently complete, in most cases
this does not hold. As a user of an automated theorem prover,
one would like to see a best effort behaviour: The prover
might for instance try to make the input sufficiently complete
by adding further theory axioms or forced mapping of terms
that could be interpreted as junk to domain elements. In [20]
we describe several techniques for that, not described here.
Just to give an example, it applies to the term select(a0, 0)
in the example above, which otherwise may be mapped to
some junk element. We also report on an implementation and
first experiments with it, which demonstrate the benefits of the
added power.

IV. CONCLUSIONS

The purpose of this article was to emphasize some current
trends in automated theorem proving. The format taken was
that of a guided tour through their underlying reasoning
techniques as indicated by their main inference rules and data
structures. I hope that by that the reader got a first impression
of how the different calculi relate to each other. The tour had
a certain focus on instance based methods, including Model
Evolution, which have proven to be a successful alternative to
classical, superposition based theorem proving. The develop-
ments are far from finished, though. While the convergence
of instance based methods, SAT-solving and superposition is
already well visible, the same cannot be said for their theory-
reasoning versions. A lot needs to be done, for instance, to
integrate DPLL(T ), instance-based and superposition calculi
for theory reasoning in one theoretical framework (let alone
in an efficient implementation).

a) Acknowledgements: The insightful and critical re-
marks of the two reviewers helped a lot to improve the paper.

NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

b) Author: Peter Baumgartner is a Principal Researcher
and Research Leader with NICTA, Australia’s center of excel-
lence in information and communication technology. He also
is an adjunct Associate Professor at the Australian National
University in Canberra. Before joining NICTA, he worked at
the University Koblenz-Landau (Germany) from 1990 until
2003, and at the Max-Planck-Institut for Computer Science in
Saarbrücken (Germany) from 2003 to 2005. He holds a Ph.D.
in Computer Science and a Habilitation degreee, both from
the University Koblenz-Landau. His main interests are in first-
order logic theorem proving and its applications to software
verification, knowledge representation and dynamic systems
analysis.

Email: Peter.Baumgartner@nicta.com.au

REFERENCES

[1] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM, vol. 7, no. 3, pp. 201–215, Jul. 1960. [On-
line]. Available: http://www.acm.org/pubs/articles/journals/jacm/1960-7-
3/p201-davis/p201-davis.pdf

[2] M. Davis, G. Logemann, and D. Loveland, “A machine
program for theorem proving,” Communications of the ACM,
vol. 5, no. 7, pp. 394–397, Jul. 1962. [Online]. Avail-
able: http://www.acm.org/pubs/articles/journals/cacm/1962-5-7/p394-
davis/p394-davis.pdf

[3] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause learning
sat solvers,” in Handbook of Satisfiability, ser. Frontiers in Artificial
Intelligence and Applications, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. IOS Press, 2009, vol. 185, pp. 131–153.

[4] J. Robinson, “A machine-oriented logic based on the resolution princi-
ple,” JACM, vol. 12, no. 1, pp. 23–41, January 1965.

[5] S.-J. Lee and D. Plaisted, “Eliminating Duplicates with the Hyper-
Linking Strategy,” Journal of Automated Reasoning, vol. 9, pp. 25–42,
1992.

[6] H. Ganzinger and K. Korovin, “New directions in instantiation-based
theorem proving,” in Proc. 18th IEEE Symposium on Logic in Computer
Science,(LICS’03). IEEE Computer Society Press, 2003, pp. 55–64.

[7] R. Letz and G. Stenz, “Proof and Model Generation with Discon-
nection Tableaux,” in LPAR, ser. Lecture Notes in Computer Science,
R. Nieuwenhuis and A. Voronkov, Eds., vol. 2250. Springer, 2001.

[8] P. Baumgartner, “FDPLL – A First-Order Davis-Putnam-Logeman-
Loveland Procedure,” in CADE-17 – The 17th International Conference
on Automated Deduction, ser. Lecture Notes in Artificial Intelligence,
D. McAllester, Ed., vol. 1831. Springer, 2000, pp. 200–219. [Online].
Available: FDPLL-CADE-17.pdf

[9] P. Baumgartner and C. Tinelli, “The Model Evolution Calculus as a
First-Order DPLL Method,” Artificial Intelligence, vol. 172, no. 4-5,
pp. 591–632, 2008. [Online]. Available: ME-AIJ-preprint.pdf

[10] P. Baumgartner, A. Fuchs, and C. Tinelli, “Lemma learning in the model
evolution calculus,” in Logic for Programming, Artificial Intelligence
and Reasoning (LPAR), ser. LNAI, M. Hermann and A. Voronkov,
Eds., vol. 4246. Springer, 2006, pp. 572–586. [Online]. Available:
ME-lemma-learning.pdf

[11] L. Bachmair and H. Ganzinger, “On Restrictions of Ordered Paramod-
ulation with Simplification,” in 10th International Conference on Auto-
mated Deduction, ser. LNAI 449, M. E. Stickel, Ed. Kaiserslautern,
FRG: Springer-Verlag, Jul. 24–27, 1990, pp. 427–441.

[12] R. Nieuwenhuis and A. Rubio, “Paramodulation-based theorem prov-
ing.” in Handbook of Automated Reasoning, J. A. Robinson and
A. Voronkov, Eds. Elsevier and MIT Press, 2001, pp. 371–443.

[13] P. Baumgartner, B. Pelzer, and C. Tinelli, “Model evolution with
equality – revised and implemented,” Journal of Symbolic Computation,
vol. 47, no. 9, pp. 1011–1045, September 2012. [Online]. Available:
MEE-revised-final.pdf

[14] P. Baumgartner and U. Waldmann, “A combined superposition and
model evolution calculus,” Journal of Automated Reasoning, vol. 47,
no. 2, pp. 191–227, August 2011. [Online]. Available: MESUP-long.pdf

[15] P. Baumgartner, A. Fuchs, and C. Tinelli, “ME(LIA) – Model Evolution
With Linear Integer Arithmetic Constraints,” in Proceedings of the
15th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR’08), ser. Lecture Notes in Artificial



6

Intelligence, I. Cervesato, H. Veith, and A. Voronkov, Eds., vol.
5330. Springer, November 2008, pp. 258–273. [Online]. Available:
MELIA.pdf

[16] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland
Procedure to DPLL(T),” Journal of the ACM, vol. 53, no. 6, pp. 937–
977, Nov. 2006.

[17] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz, “New results
on rewrite-based satisfiability procedures,” ACM Trans. Comput. Log.,
vol. 10, no. 1, 2009.

[18] P. Baumgartner and C. Tinelli, “Model evolution with equality modulo
built-in theories,” in CADE-23 – The 23nd International Conference
on Automated Deduction, ser. Lecture Notes in Artificial Intelligence,
N. Bjoerner and V. Sofronie-Stokkermans, Eds., vol. 6803. Springer,
2011, pp. 85–100. [Online]. Available: MEET-draft.pdf

[19] L. Bachmair, H. Ganzinger, and U. Waldmann, “Refutational theorem
proving for hierachic first-order theories,” Appl. Algebra Eng. Commun.
Comput, vol. 5, pp. 193–212, 1994.

[20] P. Baumgartner and U. Waldmann, “Hierarchic superposition with
weak abstraction,” in CADE-24 – The 24th International Conference
on Automated Deduction, ser. Lecture Notes in Artificial Intelligence,
M. P. Bonacina, Ed., vol. 7898. Springer, 2013, pp. 39–57. [Online].
Available: MPI-I-2013-RG1-002.pdf


