Mobile Multicores: Use Them or Waste Them

Aaron Carroll and Gernot Heiser

NICTA and University of New South Wales

{Aaron.Carroll,gernot}@nicta.com.au

Abstract

Energy management is a primary consideration in the design of modern smartphones, made more interesting by the recent proliferation of multi-core processors in this space. We investigate how core offlining and DVFS can be used together on these systems to reduce energy consumption. We show that core offlining leads to very modest savings in the best circumstances, with a heavy penalty in others, and show the cause of this to be low per-core idle power. We develop a policy in Linux that exploits this fact, and show that it improves up to 25% on existing implementations.

1 Introduction

Energy efficiency is a first-class concern in mobile embedded systems, such as the smartphone, due to battery constraints. At the same time, multi-core processors are emerging in the embedded space, with high-end smartphones now shipping with quad-core application processors. Such systems present new challenges and opportunities for energy management.

Modern processors provide mechanisms to control power consumption. Offlining allows the operating system to power-down individual cores, allowing the remaining cores to continue processing. DVFS, dynamic voltage and frequency scaling, provides for the reduction of CPU operating frequency (at the cost of performance), thus reducing dynamic power per the equation $P \propto fV^2$.

In this paper we investigate the combined efficacy of these two mechanisms on a smartphone applications processor. In particular we focus on slack management, i.e., managing an under-utilised processor to reduce energy without adversely affecting performance.

We start in Section 2 by measuring the energy consumption of a range of synthetic workloads while varying the core frequency and number of active cores. We analyse this data in Section 3 and conclude that offlining cores is generally ineffective as a power management policy.

We propose high-level principles for designing a unified offline/DVFS policy, and in Section 4 describe the implementation of such a policy, medusa, in the Linux kernel. In Section 5 we perform a series of benchmarks to evaluate its effectiveness, comparing it against existing policies.

2 Motivation

To motivate our design, we first measure the energy consumption of a series of workloads, keeping the total work constant but varying the CPU frequency and number of online cores; this pair forms the operating point, or OP. loadcpu is designed to emulate periodic real-time workloads. It consists of 4 processes executing a tight busy-loop for a certain number of iterations, and then sleeping for the remainder of the 50 ms period. The number of iterations is set to achieve the desired total CPU load: we used 10, 25, 50 and 75% of maximum capacity (i.e. 4 cores running at maximum frequency). The total execution time and amount of work performed are both constant, with duty cycle varying with the OP. We run each workload only at OPs that can sustain the required throughput (i.e. utilisation $\leq 100\%$ without over-running the 50 ms interval).

loadmem is similar to loadcpu, but rather than executing a busy-loop, it strides through memory performing read-modify-write on buffers equal in size to the L2 cache. We also ran a fully CPU-bound workload (spin), which executes a fixed number of iterations of a busy-loop across 4 processes, and ran it across the full range of OPs. Finally, we use a software video decoder playing an H.264-encoded video across OPs able to decode all frames with no overrun. In all cases, the average of 3 iterations is reported, with worst-case relative standard deviation of 6%.

We run these workloads on 2 embedded platforms: the Samsung Galaxy S III (SGS3), a latest-generation off-
Table 1: Platform characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>SGS3</th>
<th>MDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoC</td>
<td>Exynos 4412</td>
<td>APQ8064</td>
</tr>
<tr>
<td>CPU cores</td>
<td>Cortex-A9</td>
<td>Krait</td>
</tr>
<tr>
<td>Frequency (MHz) min</td>
<td>200</td>
<td>384</td>
</tr>
<tr>
<td>max</td>
<td>1400</td>
<td>1512</td>
</tr>
<tr>
<td>Cache (KiB)</td>
<td>L0 (I/D)</td>
<td>4 / 4</td>
</tr>
<tr>
<td></td>
<td>L1 (I/D)</td>
<td>32 / 32</td>
</tr>
<tr>
<td></td>
<td>L2 (shared)</td>
<td>1024</td>
</tr>
<tr>
<td>OS</td>
<td>Android 4.0.4</td>
<td></td>
</tr>
</tbody>
</table>

The results of `loadcpu` on both platforms are shown in Figures 1 and 2. The behaviour is similar on both platforms. Energy consumption is very weakly dependent on the number of cores used, except at low load (10%), where it is significantly more efficient to use a single core at mid to high frequency. For any number of cores, energy is an increasing function of frequency (Fig. 2(a) 1 core @ 800 MHz being a single exception). Minimum energy is observed at minimum frequency, and the reverse is also true: maximum energy at maximum frequency. We omit the results of `loadmem` but note virtually identical behaviour on MDP, with SGS3 showing a stronger positive correlation between number of cores and energy. Our observations otherwise continue to hold.

Figure 1: MDP loadcpu energy at 10, 25, 50 and 75% load.

Figure 2: SGS3 loadcpu normalised energy vs. frequency (MHz) at 10, 25, 50 and 75% load.

The results of `loadmem` on MDP and SGS3 are shown in Figure 3 and again show common features across platforms. At any frequency, energy decreases with increasing number of cores; hence, energy is minimised with 4 online cores, and maximised with 1 core (at minimum frequency). The optimal frequency varies with the number of cores, but note that with additional cores, the optimal frequency never increases, but sometimes decreases. Figure 4 shows the video decode results on SGS3, displaying similar behaviour to `loadcpu`, as does the same benchmark running on MDP (not shown).

We also performed similar measurements on the Pandaboard, a development platform based around the OMAP4 SoC, featuring a dual-core Cortex-A9 CPU. However, this platform is less interesting since fewer operating points are supported (2 cores and 4 frequencies). For brevity we omit the results, but note that they are similar to the above, and our observations hold.

3 Analysis

Clearly, the energy cost of choosing an incorrect operating point is substantial. Indeed, this result is well known from the single-core DVFS literature [SLSPH09]. Our results
show that the multi-core processor only exacerbates this problem, both by increasing the penalty of incorrect OP selection, and by increasing the size of the optimisation problem with the additional “number of online cores” dimension. Moreover, the results show that the offline and DVFS mechanisms are inherently tied: one cannot be optimised independently of the other. Applying the naive wisdom that lower power implies lower energy, i.e. that fewer cores result in lower energy consumption, leads to catastrophic results.

In the periodic case, reducing frequency tends to reduce energy consumption. Furthermore, and maybe surprisingly, for a particular frequency there is little variation of energy consumption with the number of online cores. However, the increased computation power of a larger number of cores makes it possible to run the workload at a lower frequency, and thus reduce energy consumption—the opposite of the naive expectation!

This is a consequence of the low idle power of each core, as we can show with a simple model. Consider an n-core CPU at fixed frequency:

$$R_{CPU} = P_{uncore} + n(P_{active} + P_{idle}),$$

where P_{idle} is the power consumed for an online but idle core (i.e. in a shallow sleep state), and P_{active} is the additional power when computing. P_{uncore} is the power consumed by the remainder of the CPU (buses, last-level cache, etc.) Substituting T for the period of the workload, and t for the per-period execution time (where $t < T$), we get per-period energy of

$$E_{CPU} = P_{uncore}T + n(P_{active}t + P_{idle}T).$$

For a workload with good scalability (i.e. $t = \alpha/n$), we get

$$E_{CPU} = P_{uncore}T + \alpha P_{active} + nP_{idle}T,$$

and hence

$$E_{CPU} = (P_{uncore} + nP_{idle})T + k.$$

This shows that the CPU energy consumption at a fixed frequency is independent of n if the idle power of an online core is low.

For CPU-bound workloads it is always more energy-efficient to run with more cores online, because increasing throughput reduces execution time and thus reduces the accumulation of static CPU energy. This is an example of the race-to-idle policy, which is well-documented in the DVFS literature [MLH02]. However, with DVFS, dynamic power is super-linear in frequency and hence race-to-idle is not necessarily optimal. On the other hand, core power is linear in the number of online cores, and thus additional cores are always more efficient. Again this can be demonstrated with a simple model,

$$R_{CPU} = P_{uncore} + nP_{core}.$$ \hspace{1cm} (5)

Assuming scalability ($t \propto 1/n$) where t is the execution time, we get

$$E_{CPU} \propto \frac{P_{uncore} + P_{core}}{n}.$$ \hspace{1cm} (6)

The scalability requirement can be relaxed by replacing the assumption of workload-independent dynamic power by the approximation that $P_{dynamic}$ is proportional to instructions per cycle [SKK11], from which it follows that $E_{dynamic}$ is proportional to the number of executed instructions, which is constant for a fixed workload. Expanding P_{active} into its dynamic and static components, from Equation 1 we get

$$E_{CPU} = (P_{uncore} + n(P_{static} + P_{idle}))t + nE_{dynamic}.$$ \hspace{1cm} (7)

If we execute i instructions spread across n cores, then from the above assumption,

$$E_{dynamic} \propto i/n,$$

hence

$$E_{CPU} = (P_{uncore} + n(P_{static} + P_{idle}))t + k.$$ \hspace{1cm} (9)

Thus, if $P_{static} + P_{idle}$ is small compared with P_{uncore}, then increasing n has negligible impact on E_{CPU}, even for workloads with sub-linear scalability. Note that for the purposes of this analysis we can treat P_{uncore} as constant—adding the dynamic uncore contribution would only strengthen our argument.

Intuitively it is reasonable that per-core idle power is low on smartphone-class embedded processors. They typically have little on-core state, and a modern ARM core such as the Cortex-A9 heavily clock-gates, even in the lightest sleep state, which “reduces the power drawn to the static leakage current, leaving a tiny clock power overhead requirement to enable the device to wake up” [ARM10].

In Figure 5 we show this directly with a plot of idle power consumption as a function of cores online, at both maximum and minimum frequency, on the SGS3. The equations of linear fit show that P_{idle} is approximately 6 and 25 mW per core at minimum and maximum frequency, respectively. The corresponding uncore power is 263 mW and 415 mW. Hence, P_{uncore}/P_{idle} is > 16 at f_{max} and > 40
at \(f_{\text{min}} \). Further, we can determine \(P_{\text{static}} \) for one core by solving
\[
P_{\text{CPU}} = P_{\text{uncore}} + P_{\text{idle}} + P_{\text{dynamic}} + P_{\text{static}},
\]
using the values of \(P_{\text{uncore}} \) and \(P_{\text{idle}} \) from Figure 5 and \(P_{\text{CPU}} \) from our spin results (322 mW at \(f_{\text{min}} \) and 1092 mW at \(f_{\text{max}} \)). This yields a \(P_{\text{static}} \) of approximately 10 mW per core. Thus we expect to see, as we have indeed shown, that having more online cores reduces energy consumed.

From this analysis, we propose the following principles for design of an energy management policy: scale out (online cores) before scaling up (increasing frequency); offline cores conservatively; and reduce frequency aggressively.

4 Medusa: an offline-aware governor

Based on the principles outlined in Section 3, we have implemented such an energy management policy, medusa, in the Linux kernel running on the MDP platform. It aims to reduce energy consumption without affecting performance by managing slack time in the CPU. Medusa functions as a “cpufreq” DVFS governor, and additionally controls the number of online cores.

At a high level, the policy runs regularly (every 200 ms by default) and selects a new operating point by checking the following conditions, executing the first that applies.

1. If the number of runnable threads exceeds online cores, online additional cores (if available).
2. If any online core is at maximum utilisation, increase frequency to the next highest.
3. If all cores are under-utilised, set the frequency to that which maximises utilisation.
4. If any core is below 5% utilisation, offline it.

To improve OP stability, we apply a small amount of hysteresis, and average load across 3 update cycles for the purposes of reducing frequency and offlineing cores. Furthermore, to improve responsiveness, frequency is increased more aggressively after several consecutive increases, or when executing a new workload from a quiescent state.

The full implementation, including extensive logging, configuration, and debug support, is about 1000 lines of code. The only CPU-specific information used is the available frequencies and number of available cores.

5 Evaluation

To evaluate medusa, we ran a number of workloads and compared the energy consumption to that of 3 existing policies. Default is the built-in policy shipped with the MDP device, which uses the ondemand DVFS governor combined with a (closed-source and undocumented) userspace tool called mpdecision. Ondemand and conservative are standard Linux DVFS governors, but since they control only frequency, we repeated each experiment statically setting the number of active cores between 1 and 4, and report the result yielding minimum energy. Finally, where feasible we report the optimal-static OP; that is, the minimum energy consumption across all OPs when fixed for the full run. For ondemand, conservative and optimal-static, we discard any data where our OP constraint causes the benchmark to exceed nominal runtime.

In total we used 7 benchmarks of 4 types. AuTuTu is a 3D-intensive graphics benchmark. Angry Birds is a 2D game, and the scenario involves a short (2 minute) play through the game, using an input trace/replay methodology for repeatability. Video is playback of an H.264-encoded video using a software decoder. Finally, loadgen is the micro-benchmark from Section 2, again used at the same 4 load levels.

Figure 6 shows the normalised full-system energy consumption for each policy and benchmark, averaged over 3 iterations. Across all benchmarks, medusa performs equally or better than the dynamic policies, but is never more efficient than optimal-static. This is due to the elasticity of the workloads; that is, temporary overload is acceptable since the extra work can be completed later.
when load is lower, without causing overrun. Since the
dynamic policies (including medusa) are work-conserving,
they can not exploit such properties. Moreover, it is not
clear how such a policy could be implemented without
affecting performance for some applications.

On average, medusa consumes 85% the energy of the
default and ondemand policies, 75% in the best case.
Compared with conservative, medusa uses 97% on aver-
age, and 90% best case. However, note that for ondemand
and conservative we have selected the optimal number of
cores manually, whereas medusa does so automatically,
and so can adapt as the workload changes. Clearly this
is important, since the optimum varies significantly with
those policies: 4 cores 50% of the time, 3 cores 29%, 2
cores 14%, and 1 core in only 7% of cases.

6 Related work

Ghasemazar et al. [GPP10] takes a theoretical approach
to the problem of combining offline and DVFS. They
develop a control-theoretic feedback algorithm to select
an operating point, and evaluate it via simulation of an
Alpha-like processor. Compared with a baseline of all
online cores and open-loop DVFS, they show a 17% im-
provement in energy consumption. They demonstrate that
increasing the number of online cores always decreases
the optimum frequency. As noted earlier, we see a similar
though small effect. They claim that offline unused
cores is important, our results in most cases do not reflect
this.

Li and Martinez [LM06] develop a number of heuristics
to reduce the optimisation space and algorithms
to search for the optimal operating point. The policy is
reactive feedback-based, and hence depends on online
power measurement. They evaluate these on a simulated
Alpha, and show performance close to optimal for a range
of workloads. They claim that the optimal operating point
depends heavily on the power-performance curve of the
particular processor. We note that within the particular
class of CPUs in our study, variation in behaviour is is
somewhat limited.

Gupta et al. [GBK+12] consider the cost of the un-
core component of power consumption on heterogeneous
multi-core processors. They show that on desktop-class
systems, uncore consumes a significant fraction of CPU
energy, varying 20–80% of total depending on workload,
and that core and uncore power are approximately equal
at idle. Our data shows that uncore contributes a much
larger proportion of idle power in embedded-class pro-
cessors, demonstrating why our results differ from those in
the desktop/server space.

7 Conclusions and Future Work

We have shown that, due to the low per-core idle power
consumption of embedded applications processors, off-
lining of cores makes little sense for energy management
if work is available to run on them. This occurs for 2
reasons: one, onlineing cores allows access to lower, more
energy-efficient frequencies for equivalent throughput;
and two, completing the work quicker can reduce accumu-
lation of static CPU “uncore” power, which is significant
in such processors. A corollary of this for developers is
that writing multi-threaded applications can be effective
for reducing energy, even if the additional CPU through-
put is not required.

Using these observations, we have implemented
medusa, a Linux CPU frequency governor, that signif-
ically improves energy efficiency compared with several
existing implementations: up to 25% reduction with no
cases of increased energy.

In the present work, we have concentrated on manage-
ment of idle time to reduce energy consumption without
affecting performance. In future, we hope to extend this
work by incorporating active energy management using
multi-core-aware DVFS optimisation. The most promis-
ing path seems to be to extend the approach taken by
Koala [SLSPH09]: use a parameterised hardware model,
characterised offline, which observes the application be-
avour and uses performance counters to predict on-line
the system’s performance and energy response to changes
in operating points. Such a system would allow the trad-
ging of performance for reduced energy consumption.

Acknowledgements

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

dition, 2010. ARM DDI 0388F.

[GBK+12] Vishal Gupta, Paul Brett, David Koufaty, Dheeraj Reddy,
Scott Hahn, and Karsten Schwan. The forgotten ‘uncore’: On
the energy-efficiency of heterogeneous cores. In 2012
USENIX ATC, Boston, MA, USA, Jun 2012.

[GPP10] M. Ghasemazar, E. Pakbaznia, and M. Pedram. Minimiz-
ing energy consumption of a chip multiprocessor through
simultaneous core consolidation and DVFS. In ISCAS,

adaptation of parallel computation on chip multiprocessors.

[MLH+02] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen,
Ram Rajamony, and Raj Rajkumar. Critical power slope:
understanding the runtime effects of frequency scaling. In
16th Int. Conf. Supercomput., pages 35–44, New York, NY,

governors: A framework for continuously adaptive DVFS.

[SLSPH09] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters,
and Gernot Heiser. Koala: A platform for OS-level power
management. In 4th EuroSys Conf., Nuremberg, Germany,
Apr 2009.