The APROMORE Initiative

Marcello La Rosa1,2, Marie-Christine Fauvet3
1Queensland University of Technology, Brisbane, Australia
2NICTA Queensland Lab, Brisbane, Australia
3LIG, University of Grenoble, France
m.larosa@qut.edu.au, Marie-Christine.Fauvet@imag.fr

Marcello La Rosa is a Senior Lecturer with the Business Process Management (BPM) discipline at the Queensland University of Technology (QUT), Brisbane, Australia, and Research Fellow at the NICTA Queensland Lab. He obtained his PhD in Computer Science with QUT in 2009. His research interests embrace various topics in BPM, such as management of large process model collections, process modeling, configuration and automation. He published over 40 papers and served as a reviewer for prestigious journals in computer science. Marcello also delivered numerous corporate trainings on BPM to practitioners of Australian organizations.

Marie-Christine Fauvet is Full Professor at Joseph Fourier University in Grenoble (France). She received a PhD in Computer Science in 1988. Her research interests include: object-oriented databases (versioning, schema evolution), temporal databases, composition and integration of service-based information systems, and more recently business process models. She published 80 papers in books, journals and conferences and she regularly acts as a reviewer for conferences, journals and academic research programs.

Abstract

Organizations put considerable efforts in describing their operations in the form of business process models. Such models can be applied, for communication purposes, as blueprints for performance improvement projects, to guide the development of IT systems, and to check compliance with relevant quality standards. As organizations mature in their uptake of business process management, this leads to increasing numbers of business process models within organizations. The availability of large process model collections forms both a challenge and an opportunity. The challenge is how to keep track of the various models within the same collection, as they may refer to each other, mutually overlap, supersede one another, and evolve. The opportunity lies in exploiting this potentially rich source of information to create new models and support application scenarios that were unforeseen at the time of their conception.

In the light of this background, the APROMORE initiative1 was started in 2009 with the aim to catalyze research on the management of process model collections. The APROMORE initiative kicked off as a collaboration among four academic institutions: Queensland University of Technology (Australia), Eindhoven University of Technology (Netherlands), University of Tartu (Estonia) and Humboldt University of Berlin (Germany). Later on, other universities joined the initiative, including Joseph Fourier University of Grenoble (France), University of Karlsruhe (Germany) and Vienna University of Economics (Austria). Moreover, Suncorp-Metway, one of the major insurance providers in Australia, sponsored the initiative within the context of a project co-funded with the Australian Research Council, which aims to achieve standardization and reuse in large process model collections.

The main objective of the APROMORE initiative is to design and develop the open source platform APROMORE2 [LRRvdA+11, FRS+10]. Beyond the typical features of a process model repository (e.g. model import and export), the

1www.apromore.org
2http://code.google.com/p/apromore
APROMORE platform aims to provide various advanced features specifically designed for the management of large process model collections. These include features to filter the repository and perform searches (e.g. by looking for similarities to an input model), to enhance the presentation of process model collections (e.g. by refactoring the process models), to design new process models (e.g. by merging existing models that are similar to each other) and to evaluate existing ones (e.g. along their soundness property). At the time of writing, some of these features have already been implemented (e.g. similarity search and merging) while others are available as separate prototypes (e.g. querying and clone detection) which will be incorporated in the platform in the future.

References
