
Recursive Function Definition for Types with Binders

Michael Norrish
Michael.Norrish@nicta.com.au

Canberra Research Laboratory, National ICT Australia
Research School of Information Science and Engineering,

Australian National University,
Acton 0200, AUSTRALIA

Abstract. This work describes the proof and uses of a theorem allowing defini-
tion of recursive functions over the type of λ-calculus terms, where terms with
bound variables are identified up to α-equivalence. The theorem embodies what
is effectively a principle of primitive recursion, and the analogues of this theo-
rem for other types with binders are clear. The theorem’s side-conditions require
that the putative definition be well-behaved with respect to fresh name generation
and name permutation. A number of examples over the type of λ-calculus terms
illustrate the use of the new principle.

1 Introduction

Theorem-proving tools have long supported the definition of (potentially recursive) al-
gebraic or inductive types. Not only do the tools prove the existence of such types, and
establish them within the logical environment, but they also provide methods for defin-
ing new functions over those types. Typically this is done by proving and using the new
type’s recursion theorem.

For example, a definition of a type of lists would assert that the new type had two
constructors: nil and cons, and that the cons constructor took two arguments, an ele-
ment of the parameter type α, and another list. The recursion theorem proved to accom-
pany this type would state:

∀n c. ∃h.
h(nil) = n ∧
∀a t. h(cons(a, t)) = c(a, t,h(t))

This theorem states that given any n, specifying the value of the function-to-be when ap-
plied to empty lists, and given any c, specifying what should happen when the function
is applied to a “cons-cell”, there exists a function h that exhibits the desired behaviour.
The cons behaviour, c, may refer to the component parts of the list, a and t, as well as
the result of h’s action on t.

For example, the existence of the map function can be demonstrated by instantiating
the recursion theorem so that n is λ f . nil, and c is λ(a, t, r) f . cons(f (a),r(f)). Note
how map’s additional parameter has been accommodated by making the range of the
function h itself a function-space.

In the friendlier world that users expect to inhabit, the user provides a definition for
map that looks like

map f nil = nil
map f (cons(h, t)) = cons(f (h),map f t)

It is then the responsibility of the tool implementation to recognise that this is a prim-
itive recursion over a list, to instantiate the recursion theorem appropriately, and to
manipulate the resulting theorem so that it again looks like what the user specified.
If, for example, the tool instantiates the theorem as above, it proves the existence of a
map function with its parameters in the wrong order; a little more work is required to
demonstrate the existence of the function that takes its function parameter first.

Finally, note that when a multi-parameter function’s other arguments do not change
in the recursive call (as happens with map, but not, for example, with foldl), it is also
possible to instantiate the theorem differently, but to the same ultimate effect. In the
case of map, n would be set to nil, and c to λ(a, t, r). cons(f (a),r). The resulting
instantiation of the recursion theorem would have f free. This could be generalised,
giving:

∀ f . ∃h.
h(nil) = nil ∧
∀a t. h(cons(a, t)) = cons(f (a),h(t))

An appeal to the Axiom of Choice1 (skolemisation) then moves the variable h out over
the universally quantified f , demonstrating the existence of an h taking two parameters.
This trick is not necessary with primitive recursive functions over normal inductive
types, but it will be useful in some of the examples below.

This much is well-understood technology. Unfortunately, there is no comparable, sim-
ple story to be told about the type of λ-calculus terms where bound variables are iden-
tified up to α-equivalence (or indeed, any type featuring α-equivalence). Section 7 dis-
cusses other approaches to this problem. Presented here is a new approach, based on two
significant sources: Gordon and Melham’s characterisation of α-equivalent λ-calculus
terms [5], and the Gabbay-Pitts idea of name (or atom) permutation as the basis for
syntax with binding [4].

Gordon and Melham’s work is a significant starting point because it defines a type
in HOL (classical simple type theory) exactly corresponding to the type of (untyped) λ-
calculus terms, augmented with a “constant” constructor allowing the injection of any
other arbitrary type into the terms. It corresponds to a type that one might declare in
SML as

datatype ’a term = CON of ’a
| VAR of string
| APP of ’a term * ’a term
| LAM of string * ’a term

1 The recursion theorem can be strengthened so that ∃h turns into ∃!h. Moving this out past
universal quantifiers is then only an appeal to the Axiom of Definite Choice.

except that the bodies of abstractions (under the LAM constructor) are identified up to
α-equivalence.

Accompanying this type are the core theorems and constants that identify it as an
implementation of the λ-calculus. There is a substitution function, a function for cal-
culating free variables, and various theorems that describe how these functions behave.
There are two further important facts about the Gordon-Melham work:

– Despite their potentially misleading title, “Five axioms of alpha conversion”, Gor-
don and Melham did not assert any new HOL axioms. Their type is constructed
entirely definitionally, on top of a model of de Bruijn terms.

– Their theory of terms is first-order. By α-equivalence, the following equation holds

LAM v (VAR v) = LAM u (VAR u)

but LAM is not a binder at the logical level, and there are no function spaces used.
The Gordon-Melham theory is not one of higher-order abstract syntax, and there
are no exotic terms.

Using the CON constructor, it is straightforward to construct new types with binders
on top of the basic Gordon-Melham terms. In earlier work [7], I implemented the types
Λ′ and Λ′∗ from Barendregt [2], and proved finiteness of developments and the stan-
dardisation theorem. That work demonstrated that the Gordon-Melham theory is a vi-
able basis for theorem-proving with binders.

Nonetheless, in this earlier work, I had to manually define the new types, and almost
all of the various functions over them. This sort of work is painful and a significant
obstacle for many users. The current work describes technology for solving one of these
two important problems, that of function definition. The other problem, that of defining
new types, is another significant project in its own right.

My second inspiration, Gabbay’s and Pitts’s ideas about permutation as a basis for
syntax with binders, is itself an independent approach to the problem of recursive func-
tion definition. It is discussed in this role in Section 7. My work attempts to take the
permutation idea and move it into a setting where some of its fundamental assump-
tions no longer apply. This is valuable because permutations exhibit properties, even
in HOL’s classical simple type theory, that make them much easier to work with than
substitutions.

The rest of this paper is arranged as follows: Section 2 provides a series of motivat-
ing examples, designed to illustrate a range of different problems in function definition.
Section 3 is a discussion of how the Gordon-Melham recursion principle can be slightly
adjusted, enabling the definition of a size function. Section 4 describes how a permuta-
tion or swap function can be defined using the same principle. Section 5 then presents
the derivation of the final recursion principle. Section 6 describes how the principle
forms the basis for an automatic tool for performing function definition, and how it
copes with the examples of Section 2. I discuss related work in Section 7, and conclude
in Section 8.

2 Motivating examples

The following functions, with their increasing complexity, provide a test for any prin-
ciple of function definition. They are presented here in the form in which users would
want to write them, mimicking how one might write them in a functional language with
pattern-matching.

Each of the given functions respects the α-equivalence relation. A clause of the form

f (LAM v t) = E

has equal values E for every possible renaming of the bound variable v (possibly subject
to side-conditions on the equation, see below). If f (LAM v t) were E, but f (LAM u (t[v 7→
u])) were E ′, and these expressions had different values, then this would be a contra-
diction: the two input terms are equal, so their f -values must be equal too. This work’s
new recursion principle embodies restrictions which ensures that the new functions are
well-behaved in this respect.

Case analysis: The is app function distinguishes constructors without looking at
their arguments.

is_app (CON k) = F is_app (VAR s) = F
is_app (APP t u) = T is_app (LAM v t) = F

Examining constructor arguments: The rator function pulls apart an application
term and returns the first argument. On other types of term, its value is unspecified.

rator (APP t u) = t

There is a sister function, rand which returns the other argument of an APP.
Simple recursion: The size function returns a numeric measurement of the size of a

term.

size (CON k) = 1
size (VAR s) = 1
size (APP t u) = 1 + size t + size u
size (LAM v t) = 1 + size t

Recursion mentioning a bound variable: The enf function is true of a term if it is
in η-normal form. (The FV function returns the set of a term’s free variables.)

enf (CON k) = T
enf (VAR s) = T
enf (APP t u) = enf t ∧ enf u
enf (LAM v t) = enf t ∧

(is_app t ∧ rand t = VAR v ⇒
v ∈ FV (rator t))

Simple recursion (terms as range type): The (admittedly artificial) stripc function
replaces all CON terms with (λx.x).

stripc (CON k) = LAM "x" (VAR "x")
stripc (VAR s) = VAR s
stripc (APP t u) = APP (stripc t) (stripc u)
stripc (LAM v t) = LAM v (stripc t)

Recursion with an additional parameter: Given the ternary type of possible direc-
tions to follow when passing through a term ({Lt,Rt,In}), corresponding to the
two sub-terms of an APP constructor and the body of an abstraction, return the set
of paths (lists of directions) to the occurrences of the given free variable in a term.

v_posns v (VAR s) = if s = v then {[]} else /0

v_posns v (CON k) = /0

v_posns v (APP t u) = (IMAGE (CONS Lt) (v_posns v t))
∪

(IMAGE (CONS Rt) (v_posns v u))
v 6= x ⇒

v_posns v (LAM x t) = IMAGE (CONS In) (v_posns v t)

The IMAGE (CONS x) construction above takes a set and adds x to the front of
all its elements (which are all lists). After this definition is made, it is easy to prove
(by induction) that

v 6∈ FV(t) ⇒ v posns v t = /0

Another useful LAM clause immediately follows:

v_posns v (LAM v t) = /0

One advantage of the new recursion principle is that it automatically derives the
side-condition attached to the LAM-clause above, necessary to make it valid.

Recursion with varying parameters (terms as range): A variant of the substitution
function, which substitutes a term for a variable, but further adjusts the term be-
ing substituted by wrapping it in one application of the variable "f" per binder
traversed.

sub’ M v (VAR s) = if v = s then M else VAR s
sub’ M v (CON k) = CON k
sub’ M v (APP t u) = APP (sub’ M v t) (sub’ M v u)

v 6= x ∧ "f" 6= x ∧ x 6∈ FV(M) ⇒
sub’ M v (LAM x t) =

LAM x (sub’ (APP (VAR "f") M) v t)

Again, the preconditions on the LAM-clause in this example ensure that the func-
tion respects α-equivalence. This function can be given another clause for the LAM
constructor in the same way as for v posns above, giving

sub’ M v (LAM v t) = LAM v t

Even with this addition, the equations may not seem to provide a complete spec-
ification of the behaviour of the function. What, for example, is the behaviour if
the bound variable is "f"? In fact, the function is well-defined, but its value may
need to be calculated by first α-converting an abstraction to use a new bound vari-
able. That this is always possible is guaranteed by the new recursion principle: it
requires that there be only finitely many names to which a bound variable can not
be renamed. Here, the unavailable names are v, "f" and the names in FV(M).

3 The recursion principle: first steps

One of the Gordon-Melham theorems characterising the type of λ-calculus terms is the
following principle of recursion (where t[v 7→ u] is a capture-avoiding substitution of a
term u for a variable v throughout term t):

∀con var app lam.
∃hom.

(∀ k. hom(CON k) = con(k)) ∧
(∀ s. hom(VAR s) = var(s)) ∧
(∀ t u. hom(APP t u) = app (hom t) (hom u) t u) ∧
(∀ v t. hom(LAM v t) =

lam (λy. hom(t[v 7→ VAR(y)])) (λy. t[v 7→ VAR(y)]))

(1)

This differs from the usual form of a recursion theorem in the clause for LAM. The lam
function is not passed the result of a recursive call, but a function instead. This function
takes a string, substitutes it for the bound variable through the body, and returns the
result of the recursive function applied to this. Similarly, rather than getting access
to the body of the abstraction directly, lam only gets to see it hidden behind another
function that performs a substitution.

The last of the Gordon-Melham “axioms” states the existence of a function ABS
such that

LAM v t = ABS(λy. t[v 7→ VAR(y)]) (2)

Now instantiate lam of (1) with

λ f g. let z = NEW(FV(ABS(g))∪X) in lam′ (f z) z (g z)

The NEW function takes a finite set of strings, and returns a string not in that set.
Using (2), the last clause of the recursion theorem becomes

∀v t. hom(LAM v t) =
let z = NEW(FV(LAM v t)∪X) in

lam′ (hom(t[v 7→ VAR(z)])) z (t[v 7→ VAR(z)])
(3)

This introduces two new free variables into the theorem: lam′, which now gets direct ac-
cess to the result of a recursion, a bound variable and a term body; and X , an additional
set of variables that is to be avoided in the choice of z.

This is a generalisation of the technique that Gordon and Melham use in [5] to
define their Lgh (“length”) function (similar to size in Section 2 above). The extra X

parameter will be vital in defining permutation in Section 4 below. It is also important
to have access to the new name z, which stands in for a bound variable that has been
renamed to be fresh. Though the new recursion theorem has made the types involved in
the LAM clause slightly more palatable, the recursive call in the LAM clause is still over
a term that has had a substitution applied to it.

In the case of size (as done in [5]), it is possible to separately prove by induction
that size is invariant under variable renamings, that size(t[v 7→VAR(y)])=size(t).
This simplifies the LAM-clause so that the reference to the fresh z can disappear. This
trick is not strong enough in general. It doesn’t work for the stripc example func-
tion, as it is not the case that stripc(t[v 7→ VAR(y)]) = stripc(t). Still, the size
function is needed to perform induction on the size of terms, and so this first attempt at
a definitional principle is used to define the size constant. This preliminary principle
also helps with the definition of swap (see below), before being discarded.

4 Permutation in HOL

Next, the system must be extended with definitions of name permutation for all of the
relevant types.2 Because variables in the λ-calculus terms are of type string, names are
taken to be strings. The basic action of permutation on strings is simple to define:

swapstr x y s =̂ if x = s then y else (if y = s then x else s)

Defining a swap function over terms requires the use of the new version of the LAM-
clause (3) and the original principle (1), with the following instantiations3

var 7→ λs. VAR(swapstr x y s)
con 7→ CON
app 7→ λrt ru t u. APP rt ru
X 7→ {x,y}
lam′ 7→ λrt v t. LAM v rt

After generalising over x and y, and then applying the Axiom of Choice (skolemis-
ing), this results in the following theorem:

∃swap. ∀x y.
(∀s. swap x y (VAR s) = VAR(swapstr x y s)) ∧
(∀k. swap x y (CON k) = CON k) ∧
(∀t u. swap x y (APP t u) = APP (swap x y t) (swap x y u)) ∧
(∀v t. swap x y (LAM v t) =

let z = NEW(FV(LAM v t)∪{x,y}) in
LAM z (swap x y (t[v 7→ VAR(z)])))

(4)

2 Gabbay and Pitts use the notation (xy) · t to mean the permutation of x and y in t, where x and
y are names and t is generally of any type. In what follows, I use a wordier, but more explicit,
notation, where each swapping function is given a different name depending on the type of the
third argument.

3 The rt and ru names are chosen because these parameters correspond to the results of recursive
calls on t and u parameters respectively.

This suffices as a definition for a new constant swap, but the LAM-clause is unac-
ceptable as it stands. It needs to be shown that

swap x y (LAM v t) = LAM (swapstr x y v) (swap x y t)

This can be done by first showing that swap distributes over substitutions of variables
for variables:

swap x y (t[u 7→ VAR(v)]) =
(swap x y t)[swapstr x y u 7→ VAR(swapstr x y v)] (5)

Glossing over some of the details, this theorem suffices because it allows the swap and
the substitution to move past each other in the LAM-clause of (4), and for the LAM z (. . .)
there to be recognised as equal (through α-equivalence) to LAM (swapstr x y v) (. . .).

The proof of (5) is by induction on the size of t.
The next important property of swap is that it can be used instead of substitution

when a fresh variable is being substituted for another:

v 6∈ FV(t) ⇒ t[u 7→ VAR(v)] = swap u v t (6)

This means that α-equivalence can be expressed using swap:

v 6∈ FV(t) ⇒ LAM u t = LAM v (swap u v t)

This much confirms that the Gordon-Melham λ-calculus terms can be equipped with a
permutation action that behaves as the Gabbay-Pitts theory requires.

5 A new recursion principle

The aim of this work is the proof of a recursion principle with a LAM clause that looks,
as much as possible, like

∀vt. hom(LAM v t) = lam′ (hom(t)) v t (7)

How does one start with (3), that is:

∀v t. hom(LAM v t) =
let z = NEW(FV(LAM v t)∪X) in

lam′ (hom(t[v 7→ VAR(z)])) z (t[v 7→ VAR(z)])

and derive (7)? And what extra side-conditions need to be added to make the transfor-
mation valid?

A simple examination of the two formulas suggests that the desired strategy would
be to pull out the substitutions so that there was just one, at the top-level underneath
the let, and to then have that substitution “evaporate” somehow. The essence of the
principle-to-come is the side-condition that allows this.

The first observation is that permutations move around terms much more readily
than substitutions. Secondly, the freshness of z (it is the result of a call to NEW) and (6)
mean that the substitutions in (3) can be replaced by permutations, giving

∀v t. hom(LAM v t) =
let z = NEW(FV(LAM v t)∪X) in

lam′ (hom(swap z v t)) (swapstr z v v) (swap z v t)

To move the swap terms upwards, one would clearly need that

hom(swap x y t) = swap x y (hom(t)) (8)

and that

lam′ (swap x y t1) (swapstr x y s) (swap x y t2) = swap x y (lam′ t1 s t2)

The final stage is getting the swap x y to “evaporate”. The obvious property to appeal
to is

x 6∈ FV(t)∧ y 6∈ FV(t)⇒ swap x y t = t (9)

Note the abuse of notation in this discussion of strategy: the two swap functions
in (8) have different types. On the left, swap swaps strings in a λ-calculus term; on the
right, swap is swapping strings in the result type. There are also two different swaps
in the formula stating the desired commutativity of lam′. Finally, the swap in (9) is also
over the result type. The final theorem has a side-condition requiring that the result type
has swap and FV functions that behave appropriately. This notion of appropriateness is
encoded in the swapping predicate, which specifies the properties that a permutation
action and an accompanying free-variable function must satisfy:

swapping sw fv ≡
(∀x z. sw x x z = z) ∧
(∀x y z. sw x y (sw x y z) = z) ∧
(∀x y z. x 6∈ fv(z)∧ y 6∈ fv(z)⇒ sw x y z = z) ∧
(∀x y z s. s ∈ fv(sw x y z)≡ (swapstr x y s) ∈ fv(z))

(10)

The final recursion principle is presented in Figure 1. The rest of this section ex-
plains some of its details, and comments on its proof.

5.1 Parameters

In the presence of additional parameters, satisfying (8) becomes more difficult. This is
clear with the example function sub’ (and normal substitution as well). If hom is taken
to be sub’ M v, then (8) is not true. The action of the permutations must be allowed
to affect the parameters. In the case of sub’, the appropriate theorem is actually

x 6= "f"∧ y 6= "f" ⇒
swap x y (sub’ M v t) = sub’ (swap x y M) (swapstr x y v) (swap x y t)

swapping rswap rFV ∧ swapping pswap pFV ∧
FINITE X ∧ (∀p. FINITE (pFV p)) ∧

(∀k p. rFV (con k p) ⊆ X ∪ pFV p) ∧
(∀s p. rFV (var s p) ⊆ {s} ∪ pFV p ∪ X) ∧
(∀t ′ u′ t u p.

(∀p. rFV (t ′ p) ⊆ FV t ∪ pFV p ∪ X) ∧
(∀p. rFV (u′ p) ⊆ FV u ∪ pFV p ∪ X) ⇒
rFV (app t ′ u′ t u p) ⊆ FV (APP t u) ∪ pFV p ∪ X) ∧

(∀t ′ v t p.
(∀p. rFV (t ′ p) ⊆ FV t ∪ pFV p ∪ X) ⇒
rFV (lam t ′ v t p) ⊆ FV (LAM v t) ∪ pFV p ∪ X) ∧

(∀k x y p.
x 6∈ X ∧ y 6∈ X ⇒
(rswap x y (con k p) = con k (pswap x y p))) ∧

(∀s x y p.
x 6∈ X ∧ y 6∈ X ⇒
(rswap x y (var s p) = var (swapstr x y s) (pswap x y p))) ∧

(∀t t ′ u u′ x y p.
x 6∈ X ∧ y 6∈ X ⇒
(rswap x y (app t ′ u′ t u p) =

app (swapfn pswap rswap x y t ′) (swapfn pswap rswap x y u′)
(swap x y t) (swap x y u) (pswap x y p))) ∧

(∀t ′ t x y v p.
x 6∈ X ∧ y 6∈ X ⇒
(rswap x y (lam t ′ v t p) =

lam (swapfn pswap rswap x y t ′) (swapstr x y v) (swap x y t)
(pswap x y p))) ⇒

∃hom.
(∀k p. hom (CON k) p = con k p) ∧
(∀s p. hom (VAR s) p = var s p) ∧
(∀t u p. hom (APP t u) p = app (hom t) (hom u) t u p) ∧
(∀v t p.

v 6∈ X ∪ pFV p ⇒
(hom (LAM v t) p = lam (hom t) v t p)) ∧

(∀t p x y.
x 6∈ X ∧ y 6∈ X ⇒
(hom (swap x y t) p = rswap x y (hom t (pswap x y p)))) ∧

(∀t p. rFV (hom t p) ⊆ FV t ∪ pFV p ∪ X)

Fig. 1. The recursion principle for λ-calculus terms. The second block of antecedents requires that
the function not create too many fresh names. The third block requires that the function respect
permutation. The second block of properties in the conclusion state that these properties do hold
for the resulting hom function. For the definition of swapping, see (10).

In general, not only does the result type of the desired function need swap and FV
functions, but so too do any parameters. The final recursion principle explicitly ac-
knowledges one unspecified parameter type, and both the final hom function, as well as
the con, var, app and lam values all now take an additional parameter.4

It is easy to specify a permutation action for a function type, if one has permutation
actions for its domain and range types. This is done below in the definition of swapfn.
Given this, one might wonder why the final recursion principle needs its explicit treat-
ment of parameters: is it possible instead to simply require that the range of the new
function support a permutation action, and expect the use of swapfn to specify this
when there are extra parameters? Unfortunately, this is not possible: the problem does
not arise in the requirement that the new function respect permutations, but rather in
the requirement that it not generate too many fresh names (see the second block of
antecedents in Figure 1).

Consider defining the substitution function, where the free names of the additional
parameters may appear in the result. Without using the parameter information, it is
impossible to provide a free variable function (rFV in Figure 1) for the result-type (a
function-space) that will satisfy the new principle’s antecedents. Such an rFV must
simultaneously return small enough sets of names to satisfy the second block of an-
tecedents, and also have an accompanying permutation action, rswap. This permuta-
tion action must satisfy the requirements embodied in swapping and the third block
of antecedents. For example, the “null” instantiation, taking rFV to always return the
empty set, in turn requires rswap to be the identity function (because of the third con-
junct of swapping’s definition (10)), and thus fails to satisfy

rswap x y (var s) = var (swapstr x y s)

where
var = λs v M. if s = v then M else (VAR s)

5.2 Proving the theorem

To begin the derivation of the final recursion principle, it is necessary to return to (1)
and instantiate lam with

λ f g p. let z = NEW(FV(ABS(g))∪pFV(p)∪X) in lam′ (f z) z (g z) p

As before, ABS(g) is equal to the original term, so that z is now fresh with respect to
it as well as the parameter. The set of strings to avoid for p’s sake is given by the pFV
function. The finite set X is used to avoid those free names that are somehow implicit
in the function itself. Such a name is the "f" present in the definition of the sub’
example.

4 One parameter is sufficient: additional curried parameters can be dealt with by first showing
the existence of an isomorphic uncurried, or tupled, version of the function. The no parameter
case is obtained by letting the parameter type be the singleton type one, also known as unit.

When the substitutions of (1) are replaced with permutations, the LAM-clause be-
comes

∀v t p. hom (LAM v t) p =
let z = NEW(FV(LAM v t)∪pFV(p)∪X) in

lam′ (hom(swap z v t)) (swapstr z v v) (swap z v t) p

The strategy sketched at the beginning of this section is still the right way to pro-
ceed, even after the complication of parameters has been introduced. Its first stage is
to move permutations upwards in the above clause, appealing to commutativity results.
The third block of antecedents in the final principle allow this to occur. This block
also features the use of swapfn, which defines permutation on a function space, given
permutation actions for the domain and range type. Its definition is

swapfn dsw rsw x y f = λz. rsw x y (f (dsw x y z))

Use of swapfn is required because the result type of hom is a function space, so that
in expressions such as app (hom(t)) (hom(u)) t u p, the first two arguments to app are
functions.

The final part of the strategy is to appeal to (9). The strategy is to have the swap
terms in

let z = NEW(FV(LAM v t)∪pFV(p)∪X) in
rswap z v (lam′ (hom(t)) v t (pswap z v p))

“evaporate”. The variable v is the original bound variable of the abstraction, and the
condition on the equation being derived requires it to not be present in the free vari-
ables of p. Variable z shares this property by construction, so (pswap z v p) can be
replaced by p. The rswap z v term can only be eliminated if the side-conditions in the
theorem ensure that hom, and thus all of the helper functions, do not generate too many
new names in the result. This is guaranteed by the second block of antecedents in the
recursion principle.

The proof consists of showing that the hom known to exist from the original prin-
ciple has the properties specified in the final recursion principle. It begins by showing
that the new function doesn’t produce too many free variables, i.e., that the theorem’s
conclusion’s very last conjunct holds. This proof is by induction, using the original
Gordon-Melham induction principle. Next, the commutativity result is shown (the sec-
ond to last conjunct). This is done by an induction on the size of the term. Finally, both
of these results are used according to the strategy described above, to prove the nice
form of the LAM-clause.

The course of the proof of the final recursion principle also reveals exactly what
properties are needed of the swap and FV functions in the theorem’s two other types
(parameter and range). These properties are defined by the predicate swapping (10)
that appears in the final recursion principle.

6 Application and implementation

The final recursion principle allows the definition of all of the functions given in Sec-
tion 2. Further, I have implemented a tool to automatically attempt those definitions

where there is just one parameter. This means that definitions for all the examples ex-
cept v posns and sub’ can be made entirely automatically. The tool does not cope
with parameterised definitions because I have yet to implement the (rather uninterest-
ing) logic that would translate something like f x t z into f t (x,z), and back again, as
required. Currently, my code also always instantiates the X parameter with the empty
set.

The implemented code includes a rudimentary database of types, which is used
to provide appropriate permutation and swapping information about result types. The
function definition tool can therefore instantiate all of the recursion principle without
user intervention. For the simple examples, such as size, and even enf, the result
type is one that doesn’t support a swapping action. It is easy to see that the null-swap,
(λx y z. z) and the everywhere-empty free variable function (λx. /0) satisfy the require-
ments of swapping in (10). Such an instantiation also leads to immediate simplifica-
tions in the final recursion principle itself. For example, the second block of antecedents
completely disappears.

After instantiation, the tool must try to discharge the side conditions. Clearly, arbi-
trary definition attempts might produce side-conditions that no automatic tool could be
expected to discharge. At the moment, however, all of the one-parameter cases (those
given above, and also all those that arose in my formalisation of the standardisation
theorem) are handled by the tool with little more than a call to the standard simplifier,
appropriately augmented with relevant rewrite theorems.

While the code can not yet cope with functions of more than one parameter, it is not
difficult to instantiate the final recursion principle by hand. For sub’, the instantiation
of the helper functions is as follows (where I have arbitrarily decided that the parameter
type pairs the string and the term in that order):

var 7→ λs (v,M). if s = v then M else VAR(s)
con 7→ λk p. CON(k)
app 7→ λrt ru t u p. APP (rt p) (ru p)
lam 7→ λrt u t (v,M). LAM u (rt (v, APP (VAR("f")) M))

These instantiations require no creative thought to calculate, and it is clear that an auto-
matic tool to do this work would be straightforward to implement.

Similarly, the existing database, mapping types to likely swapping and free variable
functions, makes it clear what the instantiations for the following variables should be:

rswap 7→ swap
rFV 7→ FV
pswap 7→ λx y. (swapstr x y ×swap x y)
pFV 7→ λ(v,M). {v}∪FV(M)

Finally, sub’ requires X to be {"f"}.5
The instantiation for sub’ above creates quite a complicated instance of the final

recursion principle. Nonetheless, the derived side-conditions are easy to eliminate.
5 A general rule for the calculation of X might be to include in X any names mentioned explic-

itly in a proposed definition. This question probably doesn’t warrant much investigation, as
functions like sub’, with their own free names, seem unlikely to arise in practice.

The definition of functions such as rator, where values for whole classes of argu-
ment are left unspecified, brings up one last wrinkle. The database storing information
about each type should record a value in each type that has no free names (if possible:
the type string has no such value). This value can then be provided as the result
value for the omitted constructors. If this can’t be done then the X parameter will need
to be instantiated to cover the extra free names present in whatever value was chosen to
be the value in the unspecified cases. This is something to avoid if possible, because it
results in the commutativity result in the conclusion of the recursion principle retaining
its annoying side-conditions.

7 Related work

There are three pieces of work closely similar to the topic of this paper. All explicitly
concern themselves with the specification of a recursion (or “iteration”) principle for
types with binders and α-equivalence, and all three apply the developed theory in a
mechanised setting. Two are the inspiration for my own work: Gordon and Melham [5],
and the Gabbay-Pitts theory of Fraenkel-Mostowski sets, particularly §10.3 of Gabbay’s
PhD thesis [3]. The third is work by Ambler, Crole and Momigliano in [1].

Clearly, this work would have been impossible without the underlying Gordon-
Melham characterisation of λ-calculus terms up to α-equivalence. My claim is that,
complicated side-conditions notwithstanding, the final recursion principle in Figure 1
is an improvement on the original Gordon-Melham principle (1). This is because the
new principle has a conclusion that allows functions to be defined in a way that much
more closely approximates familiar and traditional principles of primitive recursion.

Inasmuch as the new principle embodies restrictions imported from the theory of
FM-sets, it can not define all of those functions definable with the original principle.
For example, neither principle will support the definition of a function with clause

f (LAM v t) = t

because this is unsound. But it is not difficult to use (1) to define a function with clause

f (LAM v t) = t[v 7→ NEW(FV(LAM v t))]

This returns the body of the abstraction with an arbitrary, fresh name substituted through
for the bound variable. Appealing as it does to the Axiom of Choice, in a way that would
allow the enumeration of all names, this function is impossible to define in the Fraenkel-
Mostowski theory, and also impossible to define using Figure 1’s recursion principle.

My work has been greatly inspired by the theory of permutations developed by
Gabbay and Pitts. It might be characterised as an attempt to bring the nice features
of this FM-theory into the world of classical higher-order logic. In this “HOL world”,
one need not give up the Axiom of Choice. Nor need one assert that the set of names
is infinite, but that its subsets are all either finite or have finite complements. Instead
those axioms of the FM-theory that are absolutely necessary for function definition in
the primitive recursive style are imported as side-conditions. These side-conditions are
easily discharged for definitions that are well-behaved; seemingly the vast majority. For

those definitions that are not so well behaved, the HOL resident can always resort to (1);
in the world of FM-sets, these definitions remain inadmissible. The only significant loss
in the classical setting would appear to be the Nquantifier, or at least its nice properties,
such as (Nx.¬P)≡ ¬(Nx.P).

Another possible advantage of the approach described here is that the user is able
to choose the instantiations for pswap and rswap on a case-by-case basis. If, for
example, a function used strings in a way unconnected with their role as names, one
wouldn’t provide swapstr as the permutation function, but rather the null swapping
function (λx y z. z). This freedom may or may not be significant in practice. A re-
lated idea, though one that also loses this flexibility, might be to use Isabelle/HOL’s
axiomatic type classes to automatically associate types with appropriate permutation
and free-name functions, thereby allowing the swapping side conditions in the recur-
sion principle to disappear.

Finally, recent work by Ambler, Crole and Momigliano [1] presents a recursion
principle for a (weak) higher-order abstract syntax view of the untyped λ-calculus (in
classical Isabelle/HOL). This work gets around some of the typical problems associated
with higher-order abstract syntax by working with terms-in-infinite-contexts, thereby
providing a type of terms Λ where the function space (var→ Λ) is isomorphic to the
original type Λ. This is achieved by making Λ itself a function space: (var∞→ Λ0), for
an underlying algebraic type Λ0. Ambler et al. then define an inductive relation prop
that isolates the “proper” or non-exotic values of Λ. In order to retain the use of meta-
level functions in the object syntax, the proper terms are not used as the basis for the
definition of a new type. So, while Λ still includes exotic terms, prop allows them to be
identified.

The recursion combinator is a perfect instance of primitive recursion in its behaviour
under the abstraction binder, but the extra infinite context parameters add complexity.
When passing under a binder in the definition of substitution, for example, variable
indices need to be incremented in both the term being substituted and the body being
substituted into. This is rather reminiscent of the de Bruijn implementation of substitu-
tion.

The work by Ambler et al. is the first to prove a recursion principle for function
definition over (weak) higher-order abstract syntax. Their paper provides pointers to a
number of other HOAS approaches to the problem. Work by Schürmann, Despeyroux,
and Pfenning [8], and by Washburn and Weirich [9], exemplifies one such approach.
In this work, sophisticated type systems (modal λ-calculus, and first-class parametric
polymorphism respectively) prevent the untrammeled use of function-spaces, thereby
avoiding exotic terms while allowing iteration over these structures. Meta-theoretic rea-
soning about such embedded systems (e.g., proving results akin to the standardisation
theorem for the untyped λ-calculus) remains a challenging area for future research.

8 Conclusion

I have presented a new recursion principle for the type of λ-terms that allows the
ready definition of recursive functions over these terms. It has been proved in HOL,
and motivates a definitional technique that looks as much as possible like primitive

recursion. The validity of recursions that pass under binders is ensured by appeal to
side-conditions that embody restrictions based on the ideas of Gabbay’s and Pitts’s
Fraenkel-Mostowski set theory.

I have further implemented a small HOL library that allows users to write definitions
in the obvious “pattern-matching” style, and which automatically discharges the FM-
related side conditions. This is done with the help of a small database mapping types to
information about how they support permutation and the notion of free names.

The theorem and the library have been tested on the definitions made in the course
of an earlier project mechanising a substantial piece of λ-calculus theory. A sample of
representative functions (all of which the theorem handles) is presented in Section 2
above.

Versions of the recursion principle for other types with binders are easy to state: in
the antecedents, they simply require that all the functions standing in for the construc-
tors of the new type (the equivalents of var, con, app and lam in Figure 1) not generate
too many fresh names, and that they and permutations commute. In the conclusion of
these theorems, the equations for constructors that are binders acquire side conditions
stating that the recursive characterisation is invalid for finitely many choices of bound
variable name. Automating the proof of such theorems is the key task in being able to
define new types with binders automatically.

Future work In the short term, I hope to soon extend the implementation of the library
to support the definition of functions with more than one parameter. This is not concep-
tually difficult: the work required is simply that of implementing transformations such
as moving from tupled to curried arguments, and switching parameter orders.

A recursion principle that supported the definition of well-founded functions would
also be very useful. This would allow definitions that recursed at arbitrary depths un-
der binders. HOL’s existing implementation of definition by well-founded recursion
requires that constructors be injective, something not true of binders.

A more significant project is the development of theory and code to support the
establishment of new types with binders. It is not difficult to establish new types by
hand, and it is also clear what the recursion principle for new types should be. The
challenge will be establishing types automatically, including the proof of their recursion
principles.

Availability All of the theory and code described in this paper will be available as part
of the next distribution of the HOL system.

References

1. Simon J. Ambler, Roy L. Crole, and Alberto Momigliano. A definitional approach to
primitive recursion over higher order abstract syntax. In Honsell et al. [6]. Available at
http://doi.acm.org/10.1145/976571.976572.

2. H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. Elsevier, Amsterdam, revised edition, 1984.

3. M. J. Gabbay. A Theory of Inductive Definitions with Alpha-Equivalence. PhD thesis, Uni-
versity of Cambridge, 2001.

4. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders. In 14th
Annual Symposium on Logic in Computer Science, pages 214–224. IEEE Computer Society
Press, Washington, 1999.

5. A. D. Gordon and T. Melham. Five axioms of alpha conversion. In J. von Wright, J. Grundy,
and J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th International Con-
ference, TPHOLs’96, volume 1125 of Lecture Notes in Computer Science, pages 173–190.
Springer-Verlag, 1996.

6. Furio Honsell, Marino Miculan, and Alberto Momigliano, editors. Merlin 2003, Proceedings
of the Second ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with
Variable Binding. ACM Digital Library, 2003.

7. Michael Norrish. Mechanising Hankin and Barendregt using the Gordon-Melham axioms. In
Honsell et al. [6]. Available at http://doi.acm.org/10.1145/976571.976577.

8. Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. Primitive recursion for higher-
order abstract syntax. Theoretical Computer Science, 266(1–2):1–57, September 2001.

9. Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encoding higher-order abstract
syntax with parametric polymophism. In ICFP’03: Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming, pages 249–262. ACM Press, 2003.

