Kleene Modules for Routing Procedures

Peter Höfner
NICTA
Sydney, Australia
Computer Science and Engineering
University of New South Wales
Sydney, Australia

In the past, algebraic techniques based on semirings have been used describe shortest path algorithms
and routing procedures, e.g. [2, 1, 8, 3, 5]. These approaches often use matrices over semirings/Kleene
algebra, which form again a semiring/Kleene algebra.

While these approaches work well for shortest paths algorithms, they fail when modelling timing
aspects of routing algorithms. A major shortcoming is that at least one distributivity law has to be
dropped on the level of semiring. This implies the loss of associativity on the matrix-level.

In this talk I will present the shortcoming with the help of the Ad hoc On-Demand Distance Vector
(AODV) routing protocol [7]. AODV is a widely used and standardised routing protocol designed for
wireless mesh networks (WMNs); AODV also forms the basis of new WMN routing protocols, such as
the upcoming IEEE 802.11s wireless mesh network standard [4].

I will argue that Kleene module, as defined in [6], can help in this regard. I will show how crucial
aspects of routing protocols in general, and AODV in particular, can be modelled using modules. The
talk will be concluded with some discussion on on-going developments and future work.

(Joint work with Annabelle McIver)

of Mathematics and Applications.
University Press.
3561 (Experimental). Available at http://www.ietf.org/rfc/rfc3561.txt