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This paper proposes a definition of what it means for one system description language to encode
another one, thereby enabling an ordering of system description languages with respect to expressive
power. I compare the proposed definition with other definitions of encoding and expressiveness found
in the literature, and illustrate it on a case study: comparing the expressive power of CCS and CSP.

1 Introduction

This paper aims at answering the question what it means for one language to encode another one, and
make this definition applicable to order system descriptionlanguages like CCS, CSP and theπ-calculus
with respect to their expressive power.

To this end it proposes a unifying concept of correct translation between two languages, and adapts it
to translationsup toa semantic equivalence, for languages with a denotational semantics that interprets
the operators and recursion constructs as operations on a set of values, called adomain. Languages can
be partially ordered by their expressiveness up to the chosen equivalence according to the existence of
correct translations between them.

The concept of a [correct] translation between system description languages (orprocess calculi) was
first formally defined by Boudol [7]. There, and in most other related work in this area, the domain in
which a system description language is interpreted consists of the closed expressions from the language
itself. In [18] I have reformulated Boudol’s definition, while dropping the requirement that the domain
of interpretation is the set of closed terms. This allows (but does not enforce) a clear separation of
syntax and semantics, in the tradition of universal algebra. Nevertheless, the definition employed in [18]
only deals with the case that all (relevant) elements in the domain are denotable as the interpretations of
closed terms. Examples 1 and 2 herein will present situations where such a restriction is undesirable. In
addition, both [7] and [18] require the semantic equivalence∼ under which two languages are compared
to be a congruence for both of them. This is too severe a restriction to capture some recent encodings.

The current paper aims to generalise the concept of a correcttranslation as much as possible, so
that it is uniformly applicable in many situations, and not just in the world of process calculi. Also, it
needs to be equally applicable to encodability and separation results, the latter saying that an encoding
of one language in another does not exists. At the same time, it tries to derive this concept from a
unifying principle, rather than collecting a set of criteria that justify a number of known encodability and
separation results that are intuitively justified.

In Sections 5 and 9 I propose in fact two notions of encoding:correctandvalid translations up to∼.
The former drops the restriction on denotability and∼ being a congruence for the whole target language,
but it requires∼ to be a congruence for the source language, as well as the source’s image within the
target. The latter drops both congruence requirements, butat the expense of requiring denotability by
closed terms. In situations where∼ is a congruence for the source language’s image within the target
languageandall semantic values are denotable, the two notions agree.
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2 Correct translations and expressiveness

A language consists ofsyntaxandsemantics. The syntax determines the valid expressions in the lan-
guage. The semantics is given by a mapping[ ℄ that associates with each valid expression its meaning,
which can for instance be an object, concept or statement. This mapping determines the setD of all
objects, concepts or statements that can be denoted in the language, namely as its image.

A correct translation of one language into another is a mapping from the valid expressions in the first
language to those in the second, that preserves their meaning, i.e. such that the meaning of the translation
of an expression is the same as the meaning of the expression being translated. In order to formalise this,
I represent a languageL as a pair(TL ,[ ℄

L
) of a setTL of valid expressions inL and a surjective

mapping[ ℄
L

:TL → DL fromTL in some set of meaningsDL .

Definition 1 A translationfrom a languageL into a languageL ′ is a mappingT : TL →TL ′ . It is
correctwhen[T (E)℄

L ′ = [E℄
L

for all E ∈TL . LanguageL ′ is at least asexpressiveasL if a correct
translation exists.
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Figure 1: The essence of a correct translation

This fundamental notion is illustrated in Figure 1. It is nothard to see that a correct translation from
L to L ′ exists if and only if anything that can be expressed inL can also be expressed inL ′, i.e. iff
DL ⊆ DL ′ .

In this paper I will argue that this simple notion of a correcttranslation, when instantiated with
appropriate proposals for[ ℄ andD , is a suitable definition of an encoding from one system description
language into another, and thereby a suitable basis for classifying such languages w.r.t. expressiveness.

3 Dividing out a semantic equivalence

Definition 2 A process graphover an alphabetAct is a triple(S, I ,→) with S a set ofstates, I ∈ S the
initial state, and→⊆ S×Act×Sthe transition relation.

In other words, a process graph is a labelled transition system equipped with an initial state.
One way to apply the above definition of a translation to system description languages like CCS and

CSP would be to take variable-free (and hence recursion-free) versions of those languages, and to define
the meaning[P℄ of a CCS or CSP expressionP to be the process graphGP := (S,P,→) with as set of
statesS the set of all CCS/CSP expressions, as initial state the expressionP, and→ being the transition
relation generated by the standard structural operationalsemantics of these languages. A variant of this
idea is to reduceS to the states that arereachablefrom P by following transitions.

Now it happens to be case that the reachable part of each process graph that can be denoted by a CSP
expression isisomorphic, but in general notequal, to one that can be denoted by a CCS expression. As
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an example consider the CCS and CSP constants forinaction. In CCS this constant is called 0 whereas
in CSP it is calledSTOP. The operational semantics generates no outgoing transitions of either process.
It is therefore tempting to translate the CSP constantSTOP into the CCS constant 0. Yet, this is not a
correct translation in the current set-up, as the process graph with initial state 0 and no other states or
transitions is different from the one with initial stateSTOP.

One way to deal with this anomaly is to relax Definition 1 by defining an appropriate semantic
equivalence∼ onDL ∪DL ′ and merely requiring that the meanings of an expression and its translation
areequivalent.

Definition 3 A translationT : TL → TL ′ from a languageL into a languageL ′ is correct up toa
semantic equivalence∼ onDL ∪DL ′ when[T (E)℄

L ′ ∼ [E℄
L

for all E ∈TL .

In the example above, an appropriate candidate for∼ could be isomorphism of reachable parts.
In some sense, introducing an appropriate semantic equivalence∼, or maybe a preorder, appears to

be the only reasonable way to allow intuitively correct translations, such as of 0 bySTOP. Nevertheless, it
need not be seen as a relaxation—and hence abandonment—of Definition 1, but rather as an appropriate
instantiation. Namely the meaning of a CCS or CSP expressionP is no longer a process graphG, but
instead the equivalence class[G]∼ of all process graphs inDCCS∪DCSP that are equivalent toG.

Observation 1 Let L = (TL ,[ ℄
L
) andL ′ = (TL ′ ,[ ℄

L ′) be two languages, andT :TL →TL ′ a
correct translation between them up to an equivalence∼ on DL ∪DL ′ . ThenT is a correct translation
between the languages(TL ,[ ℄∼

L
) and(TL ′ ,[ ℄∼

L ′), where[E℄∼
L

is defined to be[[E℄
L
]∼.

Hence, correct translations up to some equivalence can be seen as special cases of correct translations. In
doing so, it may appear problematic that the meaning[E℄∼

L
of an expressionE∈TL becomes dependent

on the semantic domainDL ′ of the other language, namely by[E℄∼
L

being the class of all processes in
DL ∪DL ′ that are equivalent with[E℄

L
. This worry can be alleviated by using, instead ofDL ∪DL ′ ,

a natural class of which bothDL andDL ′ are subsets. In the example above this could for instance be
the class of all process graphs (over a suitable alphabet).

4 Translating operators

Up to isomorphism of reachable parts, so certainly up to coarser equivalences such as strong bisimilarity,
the variable-free fragments of CSP and CCS with finitary choice are equally expressive. Namely each
of them can express exactly the (equivalence classes of) finite process graphs. Here a process graph is
finite if it has finitely many states and transitions, and no loops. In fact, these languages do not lose
any expressiveness when omitting their parallel compositions, for parallel composition is not needed to
denote any finite process graph.

Hence the treatment above does not address the question whether one of theoperatorsof one lan-
guage, such as parallel composition, can be mimicked by an operator or combination of operators in the
other. This is to be blamed on the absence of variables. Once we admit variables in the language, the
CCS parallel composition corresponds to the CCS expressionX|Y, whereX andY are process variables,
and a correct translation to CSP ought to translate this expression to a valid CSP expression—a CSP
context built from CSP operators and the variablesX andY.

Henceforth, I consider single-sorted languagesL in which expressionsor termsare built from vari-
ables (taken from a setX ) by means of operators (including constants) and possibly recursion con-
structs.1 The semantics of such a language is given by a domain of valuesD, and an interpretation of

1In Section 7 two postulates will be presented that restrict the class of languages considered in this paper.
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eachn-ary operatorf of L as ann-ary operationf D : Dn → D onD. Using the equations[X℄
L
(ρ) = ρ(X) and [ f (E1, . . . ,En)℄L (ρ) = f D([E1℄L (ρ), . . . ,[En℄L (ρ))

this allows an inductive definition of the meaning[E℄
L

of an L -expressionE as a function of type
(X →D)→D, associating a value[E℄

L
(ρ)∈D toE that depends on the choice of avaluationρ : X→D.

The valuation associates a value fromD with each variable. Moreover,[E℄
L
(ρ) only depends on the

restriction ofρ to those variables that occur free inE. In this setting, the classDL of possible meanings
of L -expressions is a subclass of(X → D) → D. Hence, a translationT : TL → TL ′ between two
such languagesL andL ′ that employ the same setX of variables and are interpreted in the same
domainD is correct when[T (E)℄

L ′(ρ) = [E℄
L
(ρ) for all E ∈TL and all valuationsρ : X → D.

Since normally the names of variables are irrelevant and thecardinality of the set of variables satisfies
only the requirement that it is “sufficiently large”, no generality is lost by insisting that two (system de-
scription) languages whose expressiveness is being compared employ the same set of (process) variables.
On the other hand, two languagesL andL ′ may be interpreted in different domains of valuesD andD′.
Without dividing out a semantic equivalence, one must insist thatD ⊆ D′; otherwise no correct transla-
tion fromL into L ′ exists. WhenD⊆D′ also(X →D)⊆ (X →D′), so any function(X →D′)→D′

restricts to a function(X →D)→D′. For the purpose of comparing the expressive power ofL andL ′,
the semantics ofL ′ can be taken to be the mapping[ ℄

L ′ :TL ′ → ((X → D)→ D′), where[E℄
L ′(ρ)

with E ∈TL ′ is considered for valuationsρ : X → D only. This restriction entails that when translating
L into L ′ I compare the meaning ofL -expressions and their translations only under valuationswithin
the domainD in which L is interpreted. A translationT :TL →TL ′ from L to L ′ remains correct
when[T (E)℄

L ′(ρ) = [E℄
L
(ρ) for all E ∈TL and all valuationsρ : X → D.

Example 1 Let L be the language whose syntax consists of a binary operator+, interpreted as addition
in the domainN of the natural numbers. SoTL contains expressions such asX +(Y+Z). L ′ is the
language with unary operatorsex and ln(x), interpreted as exponentiation and the natural logarithm on the
realsR, as well as the binary operator× of multiplication. If you do not like partial functions, thedomainR can be extended with a special value⊥ to capture undefined outcomes. Note thatN⊂R. Using that
ln(ex) = x, theL -expressionX+Y can be translated into theL ′-expression ln(eX ×eY). Using this, a
translationT :TL →TL ′ is defined inductively byT (X) := X andT (E+F) := ln(eT (E)×eT (E)).

5 Correct translations up to a congruence

This section aims at integrating the instantiations of the notion of a correct translation proposed in Sec-
tions 3 and 4. LetL and L ′ be two languages of the type considered in Section 4, with semantic
mappings[ ℄

L
: TL → ((X → V)→ V) and[ ℄

L ′ : TL ′ → ((X → V′)→ V′). HereV andV′ are
domains of interpretation prior to quotienting by an appropriate semantic equivalence; they might be sets
of process graphs with as states closed CCS expressions and closed CSP expressions, respectively. In
order to compare these languages w.r.t. their expressive power I need a semantic equivalence∼ that is
defined on a unifying domain of interpretationZ, with V,V′ ⊆ Z. Let U := {v∈ V′ | ∃v∈ V. v′ ∼ v}.

Definition 4 Two valuationsη ,ρ : X → Z are∼-equivalent, η ∼ ρ , if η(X)∼ ρ(X) for eachX ∈ X .

In case there exists av ∈ V for which there is no∼-equivalentv′ ∈ V′, there is no correct translation
from L into L ′ up to∼. Namely, the semantics ofL describes, among others, how anyL -operator
evaluates the argument valuev, and this aspect of the language has no counterpart inL ′. Therefore, I
will require

∀v∈ V. ∃v′ ∈ V′. v′ ∼ v. (1)

This implies that for any valuationρ : X → V there is a valuationη : X → V′ with η ∼ ρ .
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Definition 5 A translationT from L into L ′ is correct up to∼ iff (1) holds and[T (E)℄
L ′(η)∼ [E℄

L
(ρ) for all E ∈TL and all valuationsη : X → V′ andρ : X → V with η ∼ ρ .

Note that a correct translation as defined in Section 4 is exactly a correct translation up to the identity
relation. If a correct translation up to∼ from L into L ′ exists, then∼ must be a congruence forL .

Definition 6 An equivalence relation∼ is a congruencefor a languageL interpreted in a semantic
domainV if [E℄

L
(ν)∼ [E℄

L
(ρ) for anyL -expressionE and any valuationsν ,ρ : X →V with ν ∼ ρ .

Proposition 1 If a correct translation up to∼ from L into L ′ exists, then∼ is a congruence forL .

Proof: Let T be a correct translation up to∼ from L into L ′. Let E ∈TL and letν ,ρ : X → V with
ν∼ρ . By (1) there is a valuationη :X →V′ with η ∼ν . Hence[E℄

L
(ν)∼ [T (E)℄

L ′(η)∼ [E℄
L
(ρ).2

The existence of a correct translation up to∼ from L into L ′ does not imply that∼ is a congruence for
L ′. However,∼ has the properties of a congruence for those expressions ofL ′ that arise as translations
of expressions ofL , when restricting attention to valuations intoU. I call this acongruence forT (L ).

Definition 7 Let T : TL → TL ′ be a translation fromL into L ′. An equivalence∼ on TL ′ is a
congruence forT (L ) if [T (E)℄

L ′(ν)∼ [T (E)℄
L ′(η) for anyE∈TL andν ,η :X→U with ν ∼η .

Proposition 2 If a correct translation up to∼ from L into L ′ exists, then∼ is a congruence forT (L ).

Proof: Let T be correct up to∼ from L into L ′. Let E ∈TL and letν ,η : X → U with ν ∼ η . By
definition ofU there is aρ : X → V with ρ ∼ ν . Hence[T (E)℄

L ′(ν)∼ [E℄
L
(ρ)∼ [T (E)℄

L ′(η). 2

In the rest of this section I will show how the concept of a correct transition up to∼ can be seen as an
instantiation of the notion of correct translation, analogously to the situation in Section 3. To this end I
need to unify the types of the semantic mappings[ ℄

L
and[ ℄

L ′ , say as[ ℄
L

:TL → ((X → E)→ D)
and [ ℄

L ′ : TL ′ → ((X → E) → D).2 This unification process involves dividing out the semantic
equivalence∼, as well as changing the type of a semantic mapping without tampering with the essence of
its meaning. Below I propose two methods for doing so. The first method applies when∼ is a congruence
for both L andL ′, whereas the second merely requires that it is a congruence for L . In both cases,
the semantic mappings[ ℄

L
and [ ℄

L ′ can be understood to be of typesTL → ((X → V) → Z)
andTL ′ → ((X → V′) → Z), respectively. Dividing out∼ yields the quotient domainD := Z/∼:=
{[z]∼ | z∈ Z}, consisting of the∼-equivalence classes of elements ofZ, together with the mappings[ ℄∼

L
:TL → ((X → V)→ D) and[ ℄∼

L
:TL ′ → ((X → V′)→ D), where[E℄∼

L
(ρ) := [[E℄

L
(ρ)]∼.

5.1 Translations up to a congruence for both languages

Let ∼ be a congruence for bothL andL ′. TakeW := {v′′ ∈ Z | ∃v∈ V. v∼ v′′} and likewiseW′ :=
{v′′ ∈ Z | ∃v′ ∈V′. v′ ∼ v′′}. Furthermore,C := W/∼ andC′ := W′/∼. By (1),W ⊆ W′ andC ⊆ C′ ⊆D.

Now [ ℄∼
L

can be recast as a function of typeTL → ((X →C)→D); namely by defining[E℄∼
L
(θ)

with θ : X → C to be[E℄∼
L
(ρ), for any valuationρ : X → V such thatθ(X) = [ρ(X)]∼ for all X ∈ X .

The congruence property of∼ ensures that the value[E℄∼
L
(θ) ∈ D is independent of the choice of the

representativesρ(X) in the equivalence classesθ(X).
Likewise,[ ℄∼

L ′ can be recast as a function of typeTL ′ → ((X → C′)→ D), which, as in Section 4,
can be restricted to a function of typeTL ′ → ((X → C) → D). A translationT : TL → TL ′ from
L into L ′ can be defined to becorrect up to∼ when (1) holds and[T (E)℄∼

L ′(θ) = [E℄∼
L
(θ) for all

E ∈TL and all valuationsθ : X →C. It is not hard to check that this definition agrees with Definition 5.

2In fact, it suffices to obtain mappings[ ℄
L

:TL → ((X → E)→ D) and[ ℄
L ′ :TL ′ → ((X → E′)→ D′) satisfying

((X →E)→D)⊆ ((X →E′)→D′), and henceE′ =E andD⊆D′. However, any mapping[ ℄
L

:TL → ((X →E)→D)

is also a mapping[ ℄
L

:TL → ((X → E)→ D′), so one can just as well useD′ for D.
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5.2 Translations up to a congruence for the source language

Let ∼ be a congruence forL . Recast[ ℄∼
L

as a function of typeTL → ((X → U)→ D) by defining[E℄∼
L
(η) with η : X → U to be[E℄∼

L
(ρ), for any valuationρ : X → V with ρ ∼ η . The congruence

property of∼ ensures that the value[E℄∼
L
(η) ∈ D is independent of the choice of the representative

valuationρ .
SinceU ⊆ V also(X → U) ⊆ (X → V), and therefore any function(X → V)→ D restricts to a

function (X → U)→ D. This way,[ ℄∼
L ′ can be recast as a function of typeTL ′ → ((X → U)→ D)

as well, and unification is achieved. Now a translationT :TL →TL ′ from L into L ′ can be defined
to becorrect up to∼ when (1) holds and[T (E)℄∼

L ′(η) = [E℄∼
L
(η) for all E ∈TL and all valuations

η : X → U. It is straightforward that this definition agrees with Definition 5.

6 A hierarchy of expressiveness preorders

An equivalence∼ on a classZ is said to befiner, stronger, or more discriminatingthan another equiva-
lence≈ on Z if p∼ q⇒ p≈ q for all p,q∈ Z.

Theorem 1 Let T : TL → TL ′ be a translation fromL into L ′, and let∼,≈ be congruences for
T (L ), with ∼ finer than≈. If T is correct up to∼, then it is also correct up to≈.

Proof: Let U≈ := {v′ ∈ V′ | ∃v∈V. v≈ v′′}. LetT be correct up to∼. Then[T (E)℄
L ′(η)∼ [E℄

L
(ρ)

for all E ∈TL and allη : X → V′ andρ : X → V with η ∼ ρ . To establish thatT also is correct up to
≈, let E ∈TL , ν : X → V′ andρ : X → V with ν ≈ ρ . Takeη : X → V′ with η ∼ ρ—it exists by (1).
Then[T (E)℄

L ′(η)∼ [E℄
L
(ρ) and hence[T (E)℄

L ′(η)≈ [E℄
L
(ρ). By (1) bothη andν are of type

X→ U≈. Since≈ is a congruence forT (L ) andν ≈η , [T (E)℄
L ′(ν)≈ [T (E)℄

L
(η)≈ [E℄

L ′(ρ).2

When it is necessary to divide out a semantic equivalence, the quality of a translation depends on the
choice of this equivalence. In no way would I want to suggest that a languageL ′ is at least as expressive
asL when there is a correct translation ofL up tosomeequivalence—the equivalence doesnot appear
in the scope of an existential quantifier. In fact, this wouldmake any two languages equally expressive,
namely by using the universal equivalence, relating any twoprocesses. Instead, the equivalence needs to
be chosen carefully to match the intended applications of the languages under comparison. In general, as
show by Theorem 1, using a finer equivalence yields a strongerclaim that one language can be encoded
in another. On the other hand, when separating two languagesL andL ′ by showing thatL cannotbe
encoded inL ′, a coarser equivalence generally yields a stronger claim.

The following corollary of Theorem 1 is a powerful tool for proving the nonexistence of translations.

Corollary 1 If there is a correct translation up to∼ from L into L ′, and≈ is a congruence forL ′ that
is coarser than∼, then≈ is a congruence forL .

Proof: By combining Theorem 1 and Proposition 1. 2

Proposition 3 If ∼ is a congruence for a languageL , then the identity is a correct translation up to∼
from L into itself.

Proof: Immediately from Definitions 5 and 6. 2

Theorem 2 If correct translations up to∼ exists fromL1 into L2 and fromL2 into L3, then there is a
correct translation up to∼ from L1 into L3.
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Proof: For i = 1,2,3 let [ ℄
Li

: TLi → ((X → V i) → V i), and fork = 1,2 let Tk : TLk →TLk+1 be
correct translations up to∼ from Lk to Lk+1. I will show that the translationT2◦T1 :TL1 →TL3 from
L1 to L3, given byT2◦T1(E) = T2(T1(E)), is a correct up to∼.

By assumption,[T1(E)℄L2
(η) ∼ [E℄

L1
(ρ) for all E ∈TL1 and allη : X → V2 andρ : X → V1

with η ∼ ρ , and likewise[T2(F)℄L3
(ν) ∼ [F℄

L2
(η) for all F ∈ TL2 and all ν : X → V3 and η :

X → V2 with ν ∼ η . Let E ∈ TL1, ν : X → V3 and ρ : X → V with ν ∼ ρ ; I need to show that[T2◦T1(E)℄L3
(ν)∼ [E℄

L1
(ρ).

Let η : X → V2 be a valuation withη ∼ ρ—it exists by (1). Thenν ∼ η . TakingF := T1(E) one
obtains[T2(T1(E))℄L3

(ν)∼ [T1(E)℄L2
(η)∼ [E℄

L1
(ρ). 2

Definition 8 A languageL ′ can expressor is at least as expressive asa languageL up to∼, if there
exists a correct translation up to∼ from L into L ′.

Theorem 2 shows that this relation is transitive. Restricted to languages for which∼ is a congruence, it
is even a preorder.

7 Compositionality

A substitution inL is a partial functionσ : X ⇀TL from the variables to theL -expressions. For a
givenL -expressionE ∈ TL , E[σ ] ∈TL denotes theL -expressionE in which each free occurrence
of a variableX ∈ dom(σ) is replaced byσ(X), while renaming bound variables inE so as to avoid a
free variableY occurring in an expressionσ(X) ending up being bound inE[σ ]. In general, a given
expressionE ∈TL can be written in several ways asF[σ ]. For instance, ifL features a binary operator
f , a unary operatorg and a constantc, then the termf (c,g(c)) ∈TL can be written asF [σ ] with

• F = f (X,Y), σ(X) = c andσ(Y) = g(c), or

• F = f (X,g(Y)), σ(X) = c andσ(Y) = c, or

• F = f (c,g(X)) andσ(X) = c.

Likewise, in caseL contains a recursion constructfixXS, whereS is a set of recursion equationsY = EY,
then the expressionfixX{X = f (g(c),g(g(X)))}, in which the variableX is bound, can be written asF[σ ]
with F = fixX{X = f (Y,g(g(X)))} andσ(Y) = g(c).

Definition 9 A term E∈TL is aprefixof a termF, writtenE≤F, if F
α
=E[σ ] for some substitutionσ .

Here
α
= denotesα-recursion, renaming of bound variables while avoiding capture of freevariables.

SinceE[id] =E, whereid : X →TL is the identity, andE[σ ][ξ ] α
=E[ξ •σ ], where the substitutionξ •σ

is given by(ξ •σ)(X)=σ(X)[ξ ], it follows that≤ is reflexive and transitive, and hence a preorder. Write
≡ for the kernel of≤, i.e.E ≡ F iff E ≤ F ∧F ≤ E. If E ≡ F thenE can be converted intoF by means
of an injective renaming of its variables.

Definition 10 An termH ∈TL is aheadif H is not a single variable andE ≤ H implies thatE is single
variable orE ≡ H. It is ahead ofanother termF if it is a head, as well as a prefix ofF.

f (X,Y) is a head off (c,g(c)), andfixX{X = f (Y,g(g(X)))} is a head offixX{X = f (g(c),g(g(X)))}.

Postulate 1 Each expressionE, if not a variable, has a head, which is unique up to≡.

This is easy to show for each common type of system description language, and I am not aware of any
counterexamples. However, while striving for maximal generality, I consider languages with (recursion-
like) constructs that are yet to be invented, and in view of those, this principle has to be postulated rather
than derived. This means that here I consider only languagesthat satisfy this postulate. I also limit
attention to languages where the meaning of an expression isinvariant underα-recursion.
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Postulate 2 If E
α
= F then[E℄

L
= [F℄

L
.

The semantic mapping[ ℄
L

:TL → ((X →V)→V) extends to substitutionsσ by [σ℄
L
(ρ)(X) :=[σ(X)℄

L
(ρ) for all X∈X andρ : X → V—hereσ is extended to a total function byσ(Y) :=Y for all

Y 6∈ dom(σ). Thus[σ℄
L

is of type(X → V) → (X → V), i.e. a map from valuations to valuations.
The inductive nature of the semantic mapping[ ℄

L
ensures that[E[σ ]℄

L
(ρ) = [E℄

L
([σ℄

L
(ρ)) (2)

for all expressionsE ∈ TL , substitutionsσ : X ⇀ TL and valuationsρ : X → V. In caseE is
f (X1, . . . ,Xn) this amounts to[ f (E1, . . . ,En)℄L (ρ) = f D([E1℄L (ρ), . . . ,[En℄L (ρ)), but (2) is more gen-
eral and anticipates language constructs other than functions, such as recursion.

Definition 11 A translationT from L to L ′ is compositionalif T (E[σ ])
α
= T (E)[T ◦σ ] for each

E ∈TL andσ : X ⇀TL , and moreoverT (X) = X for eachX ∈ X .

In caseE = f (t1, . . . , tn) for certainti ∈ TL this amounts toT ( f (t1, . . . , tn))
α
= Ef (T (t1), . . . ,T (tn)),

whereEf := T ( f (X1, . . . ,Xn)) andEf (u1, . . . ,un) denotes the result of the simultaneous substitution in
this expression of the termsui ∈TL ′ for the free variablesXi, for i = 1, . . . ,n. Again, Definition 11 is
more general and anticipates language constructs other than functions, such as recursion.

Theorem 3 If any correct translation fromL to L ′ up to∼ exists, then there exists a compositional
translation that is correct up to∼.

Proof: Pick a representative from each≡-equivalence class of terms. Withthe head of an expression E
I mean the chosen representative out of the≡-equivalence class of heads ofE. Now each termE /∈ X

can uniquely be written asH[σ ], with H the head ofE anddom(σ) the set of free variables ofH.
Given a correct translationT0, define the translationT inductively by

T (X) := X for X ∈ X

T (E) := T0(H)[T ◦σ ] whenE
α
= H[σ ] as stipulated above.

First I show thatT is compositional, using induction onE. So letE ∈TL andξ : X →TL . I have to
show thatT (E[ξ ]) α

= T (E)[T ◦ξ ]. The caseE ∈ X is trivial, so letE
α
= H[σ ]. For each free variable

X of H, σ(X) is a proper subterm ofE, so by the induction hypothesisT (σ(X)[ξ ]) α
=T (σ(X))[T ◦ξ ].

Thus(T ◦ (ξ •σ))(X) = T ((ξ •σ)(X)) by definition of functional composition◦
= T (σ(X)[ξ ]) by definition of the relation• between substitutions
α
= T (σ(X))[T ◦ξ ] by induction, derived above; trivial ifX 6∈ dom(σ)
= ((T ◦ξ )• (T ◦σ))(X) by definition of the relations◦ and•.

This shows that the substitutionsT ◦ (ξ •σ) and(T ◦ ξ ) • (T ◦σ) are equal up toα-recursion, from
which it follows that thatF[T ◦ (ξ •σ)]

α
= (F [T ◦σ ])[T ◦ξ ] for all termsF ∈TL ′ .

HenceT (E[ξ ]) α
= T (H[σ ][ξ ]) sinceE

α
= H[σ ].

α
= T (H[ξ •σ ]) by the identity used already in proving transitivity of≤
= T0(H)[T ◦ (ξ •σ)] by definition ofT
α
= (T0(H)[T ◦σ ])[T ◦ξ ] derived above
= T (H[σ ])[T ◦ξ ] by definition ofT
α
= T (E)[T ◦ξ ] sinceE

α
= H[σ ].

It remains to be shown thatT is correct up to∼, i.e. that[T (E)℄
L ′(η) ∼ [E℄

L
(ρ) for all terms

E ∈TL and all valuationsη : X → V′ andρ : X → V with η ∼ ρ . Let η andρ be such valuations.
I proceed with structural induction onE. When handling a termE

α
= H[σ ], σ(X) is a proper subterm

of E for each free variableX of H. So by the induction hypothesis[T (σ(X)℄
L ′(η) ∼ [σ(X)℄

L
(ρ).

The valuation[σ℄
L
(ρ) is defined such that[σ℄

L
(ρ)(X) = [σ(X)℄

L
(ρ) for eachX ∈ X . Likewise,[T ◦σ℄

L ′(η)(X) = [T (σ(X)℄
L ′(η) for eachX ∈ X . Hence[T ◦σ℄

L ′(η)∼ [σ℄
L
(ρ). (*)
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• [T (X)℄
L ′(η) = [X℄

L ′(η) = η(X) by definitions ofT and[ ℄
L ′

∼ ρ(X) sinceη ∼ ρ
= [X℄

L
(ρ) by definition of[ ℄

L
.

• [T (H[σ ])℄
L ′(η) = [T0(H)[T ◦σ ]℄

L ′(η) by definition ofT
= [T0(H)℄

L ′([T ◦σ℄
L ′(η)) by (2)

∼ [H℄
L
([σ℄

L
(ρ)) by (*) above, asT0 is a correct translation

= [H[σ ]℄
L
(ρ) by (2). 2

Hence, for the purpose of comparing the expressive power of languages, correct translations between
them can be assumed to be compositional.

8 Comparing the expressive power of CCS and CSP

As an application of my approach, in this section I quantify the degree to which the parallel composition
of CSP can be expressed in CCS. It turns out that there exists acorrect translation up to trace equivalence,
but not up to the version of weak bisimilarity equivalence that takes divergence into account. This com-
bination of an encoding and a separation result is typical when comparing system description languages.
Here we see that for applications where divergence and branching time are a concern, the CSP parallel
composition cannot be encoded in CCS; however, when linear time reasoning is all that matters, it can.

8.1 CCS

CCS [25] is parametrised with a setA of names. The set ¯A of co-namesis ¯A := {ā | a∈A }, andL :=
A ∪ ¯A is the set oflabels. The function ¯· is extended toL by declaring¯̄a= a. Finally, Act := L

.
∪ {τ}

is the set ofactions. Below, a, b, c, . . . range overL andα , β over Act. A relabelling functionis a
function f : L → L satisfying f (ā) = f (a); it extends toAct by f (τ) := τ . Let X be a setX, Y, . . . of
process variables. The setE of CCS terms orprocess expressionsis the smallest set including:

α .E for α ∈ Act andE ∈ E prefixing
∑i∈I Ei for I an index set andEi ∈ E choice
E|F for E,F ∈ E parallel composition
E\L for L ⊆ L andE ∈ E restriction
E[ f ] for f a relabelling function andE ∈ E relabelling
X for X ∈ X aprocess variable
fixXS for S: X ⇀ E andX ∈ dom(S) recursion.

One writesE1 +E2 for ∑i∈I Ei with I = {1,2}, and 0 for∑i∈ /0 Ei. A partial functionS : X ⇀ E is
called arecursive specification. The variables in its domaindom(S) are calledrecursion variablesand
the equationsY = S(Y) for Y ∈ dom(S) recursion equations. A recursive specificationS : X ⇀ E is
traditionally written as{Y = S(Y) |Y ∈ dom(S)}.

CCS is traditionally interpreted in the domain TCCS of closed CCS expressions up toα-recursion.
Hence a valuationρ : X → TCCS, valuating each variable as a closed CCS expression, is justa closed
substitution. The semantic mapping[ ℄CCS is given by[E℄CCS(ρ) := E[ρ ]—a CCS expressionE eval-
uates, under the valuationρ : X → TCCS, to the result of performing the substitutionρ on E. In fact,
this is a common way to provide many system description languages with a semantics. Consequently,
the distinction between syntax and semantics can, to a largeextent, be dropped. It is for this reason that
the semantic interpretation function[ ℄ rarely occurs in papers on CCS-like languages.

The “real” semantics of CCS is given by the labelled transition relation→ ⊆ TCCS×Act×TCCS

between closed CCS expressions. The transitionsp α−→ q with p,q∈ TCCSandα ∈ Act are derived from
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α .E α−→ E
E j

α−→ E′
j

∑i∈I Ei
α−→ E′

j

( j ∈ I )

E α−→ E′

E|F α−→ E′|F

E a−→ E′, F ā−→ F ′

E|F τ−→ E′|F ′

F α−→ F ′

E|F α−→ E|F ′

E α−→ E′, α 6∈ L∪ L̄

E\L α−→ E′\L

E α−→ E′

E[ f ]
f (α)
−→ E′[ f ]

S(X)[fixYS/Y]Y∈dom(S)
α−→ E

fixXS α−→ E

Table 1: Structural operational semantics of CCS

the rules of Table 1. Formally a transitionp α−→ q is part of the transition relation of CCS if there exists
a well-founded, upwards branching tree (aproof of the transition) of which the nodes are labelled by
transitions, such that

• the root is labelled byp α−→ q, and

• if ϕ is the label of a noden andK is the set of labels of the nodes directly aboven, thenK
ϕ is a rule

from Table 1, with closed CCS expressions substituted for the variablesE,F, . . ..

8.2 CSP

CSP [8, 29, 9, 24] is parametrised with a setA of communications; Act := A
.
∪ {τ} is the set ofactions.

Below,a, b range overA andα , β overAct. The setE of CSP terms is the smallest set including:

STOP inaction
DIV divergence
(a→ E) for a∈ A andE ∈ E prefixing
E2F for E,F ∈ E external choice
E⊓F for E,F ∈ E internal choice
E‖AF for E,F ∈ E andA⊆ A parallel composition
E/b for b∈ A andE ∈ E concealment
f (E) for E ∈ E and f : Act→ Act with f (τ) = τ and f−1(a) finite renaming
X for X ∈ X aprocess variable
µX ·E for E ∈ E andX ∈ X recursion.

As in [29], I here leave out the guarded choice(x : B → P(x)) and the constantRUN of [8], and the
inverse image and sequential composition operator, with constantSKIP, of [8, 9]. The semantics of CSP
was originally given in quite a different way [8, 9], but [29]provided an operational semantics of CSP
in the same style as the one of CCS, and showed its consistencywith the original semantics. It is this
operational semantics I will use here; it is given by the rules in Table 2. LetL := A .

8.3 Trace semantics and convergent weak bisimilarity

I will compare the expressive power of CCS and CSP up two semantic equivalences: a linear time and a
branching time equivalence. For the former I taketrace equivalence[23] and for the latter a version of
weak bisimilarity that takes divergence into account [22, 40, 1, 44]—calledconvergent weak bisimilarity
in [17]. Unlike the standard weak bisimilarity of [25], thisrelation is finer than the failures-divergences
semantics of [8, 29, 9, 24].
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DIV
τ−→ DIV (a→ E) a−→ E E⊓F τ−→ E E⊓F τ−→ F

E a−→ E′

E2F a−→ E′

F a−→ F ′

E2F a−→ F ′

E τ−→ E′

E2F τ−→ E′2F

F τ−→ F ′

E2F τ−→ E2F ′

E α−→ E′ (α /∈A)

E‖AF α−→ E′‖AF

E a−→ E′ F a−→ F ′ (a∈A)

E‖AF a−→ E′‖AF ′

F α−→ F ′ (α /∈A)

E‖AF α−→ E‖AF ′

E b−→ E′

E/b τ−→ E′/b

E α−→ E′ (α 6=b)

E/b α−→ E′/b

E α−→ E′

f (E)
f (α)
−→ f (E′)

µX ·E τ−→ E[µX ·E/X]

Table 2: Structural operational semantics of CSP

The relation⇒ ⊆ TCCS×L ∗ × TCCS is the transitive closure of→ that abstracts fromτ-steps.
Formally, ==⇒ is the transitive closure of τ−→ and p

a1···an
==⇒ q for n≥ 0 holds iff there arep0, p1, . . . , pn

with p0= p, pi−1 ==⇒
ai−→ pi for i = 1, . . . ,n, andpn ==⇒ q. Below, T is a set that contains TCCSand TCSP.

Definition 12 The setT(p) ⊆ L ∗ of tracesof a processp∈T is given bys∈ T(p) iff ∃p′. p s
==⇒ p′.

Two processesp,q∈ T aretrace equivalentif T(p) = T(q).

Definition 13 A relationB ⊆ T×T is aweak bisimulation[25] if

• for any p, p′,q∈ T ands∈ L ∗ with pBq andp s
==⇒ p′, there is aq′ with q s

==⇒ q′ andp′Bq′,

• for any p,q,q′ ∈ T ands∈ L ∗ with pBq andq s
==⇒ q′, there is ap′ with p s

==⇒ p′ andp′Bq′.

Two processesp,q∈ T areweakly bisimilar, p ↔w q, if they are related by a weak bisimulation.

All we need to know about theconvergentweak bisimilarity (↔↓
w) is that a process that has a divergence

cannot be related to a divergence-free process, and that restricted to divergence-free processes it coincides
with weak bisimilarity. Here a processhas a divergenceif it can do an infinite sequence of transitions
that from some point onwards are all labelledτ .

Trace equivalence and (convergent) weak bisimilarity are congruences for CSP. The (convergent)
weak bisimilarity fails to be a congruence for the+ of CCS, a problem that is commonly solved by
taking its congruence closure. I do not need to do this when translating CSP into CCS, because correct
translations need not be a congruence for the whole target language.

Note that even when restricting CCS to just 0, action prefixing and+, there is no correct translation of
this language into CSP up to the congruence closure of↔↓

w—this is a direct consequence of Corollary 1.

8.4 A correct translation of CSP into CCS up to trace equivalence

For any choice of a CSP set of communicationsA , I create a CCS set of namesB and construct a
translation from CSP with communications fromA into CCS with names fromB.

Let B := {a,a′,a′′ | a ∈ A }, consisting of 3 disjoint copies ofA . For A ⊆ A , let SA be the re-
cursive specification given by the single CCS equation{X =∑

a∈A

ā.a′.a′′.a′.X + ∑
a∈A−A

ā.a′′.X} andS′A be

the recursive specification given by the single CCS equation{X =∑
a∈A

ā.ā′.ā′.X + ∑
a∈A−A

ā.a′′.X}. Now,

up to trace equivalence, and assuming thatP features names fromA only, (P|fixXSA)\A is a process
that differs fromP by the replacement of eacha-transition by a sequence of transitionsa′a′′a′ if a∈ A,
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and by the single transitiona′′ otherwise. Likewise,(P|fixXS′A)\A differs fromP by the replacement of
eacha-transition by a ¯a′ā′ if a∈ A, anda′′ otherwise. LetA ′ := {a′ | a ∈ A }, and let the relabelling
function f be such thatf (a′′) = a. Then the following is a correct translation of CSP into CCS up to
trace equivalence.

T (X) = X
T (µX ·E) = fixX{X = T (E)}
T (a→ E) = a.T (E)
T (STOP) = T (DIV ) = 0
T (E⊓F) = T (E2F) = T (E)+T (F)
T (E/b) = (T (E)|fixX{X = b̄.X})\{b}
T ( f (E)) = T (E)[ f ]
T (E‖AF) =

((

(T (E)|fixXSA)\A
∣

∣(T (F)|fixXS′A)\A
)

\A ′
)

[ f ]

8.5 The untranslatability of CSP into CCS up to convergent weak bisimilarity

In this section I show that there is no translation of CSP intoCCS up to convergent weak bisimilarity.
Suppose thatT is such a translation. Letρ : X → TCSP andη : X → TCCS satisfyρ(X) = ρ(Y) =
(b→ STOP)2 (b→ (c→ STOP)) andη(X) = η(Y) = b.0+b.c.0. Thenρ ↔↓

w η. So

T (X‖{b,c}Y)[η ] = [T (X‖{b,c}Y)℄CCS(η) ↔↓
w [X‖{b,c}Y℄CSP(ρ) ↔

↓
w b.0+b.c.0.

Let ν : X → TCCS satisfyν(X) = ν(Y) = b.0. By the same reasoning as above

T (X‖{b,c}Y)[ν ] ↔↓
w b.0.

Sinceb.0 has no divergence, neither doesT (X‖{b,c}Y)[ν ], so there must be a statep ∈ TCCS with
T (X‖{b,c}Y)[ν ] ==⇒ p 6

τ
−→. By [5, Proposition 7.1 (or 8)], it follows from the operational semantics

of CCS that ifE[σ ] α−→ q for E∈TCCS, σ : X → TCCS andq∈ TCCS, thenq must have the formF[σ ′]
with F ∈TCCS and for each variableW that occurs free inF there is a variableZ that occurs free inE,
such that eitherσ(Z) = σ ′(W) or σ(Z) β

−→ σ ′(W) for someβ ∈ Act3—moreover,F depends onE and
on the existence of theβ -transitions, but not any other property ofσ . So, for somen≥ 0,

T (X‖{b,c}Y)[ν ]
τ−→ E1[ν1]

τ−→ E2[ν2]
τ−→ . . . τ−→ En[νn] 6

τ
−→

where, for any free variableZ of Ei, νi(Z) is either 0 orb.0. This execution path can be simulated by

T (X‖{b,c}Y)[η ] τ−→ E1[η1]
τ−→ E2[η2]

τ−→ . . . τ−→ En[ηn] 6
τ
−→

whereηi(Z) = b.0+b.c.0 iff νi(Z) = b.0 andηi(Z) = 0 iff νi(Z) = 0—i.e. always choosingη(Z) b−→ 0
over η(Z) b−→ c.0. By the properties of↔↓

w, En[ηn] ↔
↓
w b.0+b.c.0. So there is a processEn+1[ηn+1]

with En[ηn]
b−→ En+1[ηn+1] ==⇒

c−→. It must be thatEn+1[ηn+1] ↔
↓
w c.0.

The only rule in the structural operational semantics of CCSthat has multiple premises has a conclu-
sion with labelτ . Furthermore, any rule with aτ-labelled premise, has aτ-labelled conclusion. Hence,
since the transitionEn[ηn]

b−→ En+1[ηn+1] is not labelledτ , its proof has only one branch. This branch
could stem from a transition fromη(X) or from η(Y), but not both. W.l.o.g. I assume it does not stem
from η(X).

3In general multiple occurrences ofZ in E may give rise to different associated variablesW in F .
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Let ξ : X → TCCSsatisfyξ (X)= b.0 andξ (Y) = b.0+b.c.0. Since in the proofs of the transitions in
the above path fromT (X‖{b,c}Y)[η ] the transitionη(X) b−→ c.0 is never used, that path can be simulated
by

T (X‖{b,c}Y)[ξ ]
τ−→ E1[ξ1]

τ−→ E2[ξ2]
τ−→ . . . τ−→ En[ξn]

b−→ En+1[ξn+1].

Note thatT (X‖{b,c}Y)[ξ ] ↔
↓
w b.0. Due to the properties of↔↓

w the above derivation can be extended
with

En+1[ξn+1]
τ−→ En+2[ξn+2]

τ−→ . . . τ−→ En+k[ξn+k]

ending in adeadlockstate, where no further transitions are possible. This derivation, in turn, can be
simulated by

En+1[ηn+1]
τ−→ En+2[ηn+2]

τ−→ . . . τ−→ En+k[ηn+k],

still ending in a deadlock state. This contradictsEn+1[ηn+1] ↔
↓
w c.0. 2

9 Valid translations up to a preorder

LetL andL ′ be languages with[ ℄
L

:TL → ((X →V)→V) and[ ℄
L ′ :TL ′ → ((X →V′)→V′).

In this section I explore an alternative for the notion of a correct translation up to an equivalence∼. This
alternative doesn’t have a build-in requirement that∼ must be a congruence forL ;4 however it only
deals with semantic values denotable by closed terms.

Let TL be the set of closedL -expressions, i.e. having no free variables. The meaning[P℄
L
(ρ) of a

closed termP∈ TL is independent of the valuationρ : X → V, and hence denoted[P℄
L

.

Definition 14 A translationT from L into L ′ respects∼ if (1) holds and[T (P)℄
L ′(η) ∼ [P℄

L
for

all closedL -expressionsP∈ TL and all valuationsη : X → U, with U := {v∈ V′ | ∃v∈ V. v′ ∼ v}.

Observation 2 If T is a correct translation fromL into L ′ up to∼, then it respects∼.

Usually one employs translationsT with the property that for anyE ∈TL any free variable ofT (E) is
also a free variable ofE—I call thesefree-variable respecting translations, or fvr-translations. If there
is at least oneQ∈ TL ′ with [Q℄

L ′ ∈ U, then any translationT from L into L ′ can be modified to an
fvr-translationT ◦ from L into L ′, namely by substitutingQ for all free variables ofT (E) that are
not free inE. This modification preserves the properties of respecting∼ and of being correct up to∼.
An fvr-translationT from L into L ′ respects∼ iff [T (P)℄

L ′ ∼ [P℄
L

for all closedL -expressions
P∈ TL .

Observation 3 Let T :TL →TL ′ be an fvr-translation fromL into L ′, and let∼,≈ be equivalences
(or preorders) on a classZ ⊆ V ∪V′, with ∼ finer than≈. If T respects∼, then it also respects≈.

The identity is a∼-respecting fvr-translation from any language into itself.
If ∼-respecting fvr-translations exists fromL1 into L2 and fromL2 into L3, then there is a∼-

respecting fvr-translation fromL1 into L3.

Respecting an equivalence or preorder is a very weak correctness requirement for translations. In spite
of the separation result of Section 8.5, there trivially exists a translation from CSP to CCS that respects
↔↓

w, or even strong bisimilarity. This follows from the observation that—thanks to the arbitrary index
setsI anddom(S) that may be used for choice and recursion—up to↔↓

w every process graph is denotable
by a CCS expression. In particular, compositionality is in no way implied by respect for an equivalence.
It therefore makes sense to add compositionality as a separate requirement. The following shows that
also the notion of a compositional∼-respecting transition is a bit too weak.

4Moreover, it may be a preorder rather than an equivalence.
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Example 2 Let L ′ be the language CCS without the recursion construct, but interpreted in a domain of
arbitrary process graphs (similar to the graph model of ACP [2]). Let L be the same language, but with
an extra operator/L that relabels all transitions intoτ . The compositional translationT from L into
L ′ with T (X/L ) := 0 respects↔↓

w. This is because the interpretation of any closedL -expression is a
process graph without infinite paths, and after relabellingall transitions intoτ such a graph is equivalent
to 0. Yet, there are process graphsG—those with infinite paths—that cannot be denoted by closedL -
expressions, and for whichG/L 6↔↓

w 0, demonstrating thatT should not be seen as a valid translation.

Based on this, I add the denotability of all semantic values as a requirement of a valid translation.

Definition 15 A translationT from L into L ′ is valid up to∼ if it is compositional and respects∼,
while L satisfies

∀v∈ V. ∃P∈ TL . [P℄
L

= v . (3)

The following theorem (in combination with Theorem 3 and Observation 2) shows that this notion of a
valid translation is consistent with the notion of a correcttranslation, and can be seen as extending that
notion to situations where∼ is not known to be a congruence.

Theorem 4 Let T : TL →TL ′ be a translation fromL into L ′, and∼ be a congruence forT (L ).
If T is valid up to∼, then it is correct up to∼.

Proof: SupposeT is valid up∼. Then[T (P)℄
L ′(η)∼ [P℄

L
for all all closedL -expressionsP∈ TL

and all valuationsη : X →U. To establish thatT is correct up to∼, letE ∈TL and letη : X →V′ and
ρ : X → V be valuations withη ∼ ρ . Soη : X → U. I need to show that[T (E)℄

L ′(η)∼ [E℄
L
(ρ).

Let σ : X → TL be a substitution with[σ(X)℄
L

= ρ(X) for all X ∈ X —such a substitution exists
by (3). Furthermore, defineν : X → V′ by ν(X) := [T (σ(X))℄

L ′(η) for all X ∈X . SinceT respects
∼ I haveν(X)∼ ρ(X) for all X ∈ X ; thusη ∼ ρ ∼ ν and alsoν : X → U.
Hence[T (E)℄

L ′(η) ∼ [T (E)℄
L ′(ν) since∼ is a congruence forT (L )

= [T (E)℄
L ′([T ◦σ℄

L ′(η)) expanding the definition ofν
= [T (E)[T ◦σ ]℄

L ′(η) by (2)
= [T (E[σ ])℄

L ′(η) by compositionality ofT
∼ [E[σ ]℄

L
sinceT respects∼

= [E℄
L
([σ℄

L
) by (2)

= [E℄
L
(ρ) by definition ofρ . 2

10 Related work

The greatest expressibility result presented so far is by DeSimone [39], who showed that a wide class of
languages, including CCS, SCCS, CSP and ACP, are expressible up to strong bisimulation equivalence in
MEIJE. Vaandrager [41] established that this result crucially depends on the use of unguarded recursion,
and its noncomputable consequences.Effectiveversions of CCS, SCCS, MEIJE and ACP, not using
unguarded recursion, are incapable of expressing all effective De Simone languages. Nevertheless, [18]
isolated aprimitive effectivedialect of ACP (featuring primitive recursive renaming operators) in which
a large class of primitive effective languages, including primitive effective versions of CCS, SCCS, CSP
and MEIJE, can be encoded. All these results fall within the scope of the notion of translation and
expressibility from [7] and [18], and use strong bisimulation as underlying equivalence.

In the last few years, a great number of encodability and separation results have appeared, comparing
CCS, Mobile Ambients, and several versions of theπ-calculus (with and without recursion; with mixed
choice, separated choice or asynchronous) [6, 26, 28, 33, 16, 15, 10, 11, 14, 30, 3, 4, 32, 27, 31, 37, 13,
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43, 12, 21, 34, 38, 42, 36, 35]; see [19, 20] for an overview. Many of these results employ different and
somewhat ad-hoc criteria on what constitutes a valid encoding, and thus are hard to compare with each
other. Gorla [20] collected some essential features of these approaches and integrated them in a proposal
for a valid encoding that justifies most encodings and some separation results from the literature.

Like Boudol [7] and the present paper, Gorla requires a compositionality condition for encodings.
However, his criterion is weaker than mine (cf. Definition 11) in that the expressionEf encoding an
operatorf may be dependent on the set ofnamesoccurring freely in the expressions given as arguments
of f . The reason for this weakening appears to be that it providesa method for freeing up names that
need to be fresh because of the special rôle they play in the translation, but might otherwise occur in the
expressions being translated.

To address the problem of freeing up names I advocate a slightly different approach, already illus-
trated in Section 8.4: Most languages with names are parametrised with the set of names that are allowed
in expressions. So instead of the single language CCS, thereis an incarnation CCS(A ) for each choice
of namesA . Likewise, there is an incarnation CSP(A ) of CSP for eachA . A priori, these parameters
need not be related. So rather than insisting that for everyA the language CCS(A ) encodes CSP(A ), I
merely require that for eachA there exists aB such that CCS(B) encodes CSP(A ). Now the transla-
tions obviously are also parametrised by the choice ofA , and they may use names inB−A as names
that are guaranteed to be fresh. It is an interesting topic for future research to see if there are any valid
encodability results à la [20] that suffer from my proposedstrengthening of compositionality.

The second criterion of [20] is a form of invariance under name-substitution. It serves to partially
undo the effect of making the compositionality requirementname-dependent. In my setting I have not
yet found the need for such a condition. This criterion as formalised in [20] is too restrictive. It for-
bids the translation of the input processa(x).E from value-passing CCS [25] into the CCS expression
∑v∈V av.E[v/x], whereV is a given (possibly infinite) set of data values. The problemis that a renaming
of the single namea occurring in an expressionE of value-passing CCS, say intob, would require renam-
ing infinitely many namesav occurring inT (E) into bv, which is forbidden in [20]. Yet this translation,
from [25], appears entirely justified intuitively.

The remaining three requirements of Gorla might be seen as singling our a particular preorder⊑ for
comparing terms and their translations. Since in [20], as in[7], the domain of interpretation consists of
the closed expressions, and⊑ is generally not a congruence for the source or target languages, one needs
to compare with the approach of Section 9, where∼ is allowed to be a preorder. The preorder presup-
poses a transition system withτ-transitions (reduction), and a notion of a success state; and compares
processes based on these attributes only.

Hence Gorla’s criteria are very close to an instantiation ofmine with a particular preorder. Further
work is needed to sort out to what extent the two approaches have relevant differences when evaluating
encoding and separation results from the literature. Another topic for future work is to sort out how
dependent known encoding and separation results are on the chosen equivalence or preorder.

As a concluding remark, many separation results in the literature[14, 30, 31, 37, 38, 21] are based
on the assumption that parallel composition translates homomorphically, i.e.T (E|F) = T (E)|T (F).5

This applies for instance to the proof in [21] that there is novalid encoding from the asynchronousπ-
calculus into CCS. In [20] this assumption is relaxed, but the separation proof of [20] hinges crucially on
the too restrictive form of Gorla’s second criterion. Whether the asynchronousπ-calculus is expressible
in CCS is therefore still wide open.

Acknowledgement My thanks to an EXPRESS/SOS referee for careful proofreading.

5This assumption is often defended by the theory that non-homomorphic translations reduce the degree of concurrency of
the source process—a theory I do not share. Note that my translation of CSP into CCS in Section 8.4 is not homomorphic.
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