The Clustered Multikernel: An Approach to
Formal Verification of Multiprocessor OS Kernels

Michael von Tessin
NICTA* and University of New South Wales
Sydney, Australia
michael.vontessin@nicta.com.au

ABSTRACT

Operating-system kernels are critical software components in com-
puter systems. Building secure, safe and reliable computer systems
is facilitated by having strong kernel correctness guarantees. Such
guarantees can be obtained by formally verifying a kernel down to
the implementation level. Kernel verification has attracted much re-
search interest. For example, the L4.verified project has proved that
the implementation of the selL.4 microkernel adheres to its formal
specification. Nonetheless, due to verification complexity, past re-
search focussed on uniprocessor kernels only. However, with mul-
tiprocessor/multicore systems gaining popularity, also in embedded
systems, the need for verified multiprocessor kernels arises.

To this end, we introduce the clustered multikernel, a point in the
design space of multiprocessor kernels. Based on this design, we
present a lifting framework, which adds multiprocessor support to
a verified uniprocessor kernel and reuses its proofs to obtain a ver-
ified multiprocessor kernel with relatively low effort. The lifting
framework supports total-store-order (TSO) multiprocessor archi-
tectures, which exhibit weak memory ordering. We report on our
experience with applying the lifting framework to seL4.

All formal specifications and proofs in this work are machine-
checked in the interactive theorem prover Isabelle/HOL.

1. INTRODUCTION

Operating-system (OS) kernels are critical software components
in computer systems. According to Hatton [[10]], “good” software
contains 6 bugs per thousand lines of code (LOC) on average and
with “our best techniques” we can achieve 0.5-1 bugs per kLOC.
This is not enough for kernels in high-assurance computer systems
used, for example, in defence, aviation and the like.

Strong correctness guarantees can be obtained by formally ver-
ifying a kernel down to the implementation level. The history of
kernel verification starts in the 70s and 80s [2,20], but none of these
early attempts “produced a realistic OS kernel with full implemen-

*NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digi-
tal Economy and the Australian Research Council through the ICT
Centre of Excellence program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SFMA ’12 April 10, 2012, Bern, Switzerland

tation proofs” [11]. In the first decade after 2000 the topic attracted
new interest. Verifying a kernel was part of several verification
projects [7,/8}/12,{17]. The largest verified kernel is seL.4 [12]], an
8700-LOC general-purpose microkernel, which was verified down
to C level. “Verified” means there is a functional-correctness proof
saying that the implementation adheres to a formal specification of
the desired functionality.

In order to bring verification complexity down to a manageable
level, the kernels mentioned above have two things in common:
First, they are relatively small, in the order of a few kLOC. Sec-
ond, their designs avoid concurrency within the kernel, which is
typically introduced by (1) switching between multiple threads of
execution (kernel threads, interrupt handlers) or (2) running mul-
tiple CPUs in parallel. The former can be overcome by making a
kernel non-preemptible or event-based with well-defined preemp-
tion points. In order to deal with the latter, the kernels mentioned
above are restricted to only support a single CPU (or corep_-b.

In summary, the current state of research restricts computer sys-
tems that require a verified OS kernel to running only on one CPU.
This is a problem because manufacturers increase computing power
of their systems by adding more CPUs and cores. The problem has
existed in the server and desktop space for years and finds its way
into the embedded world now.

Verifying an kernel down to implementation level requires a large
effort, which often includes the development of the verification
framework. For example, verifying the seL4 microkernel required
20 person years (py) of which 11 py were kernel-specific efforts
[12]. The rest went into developing the verification framework,
proof libraries etc. Therefore, it is desirable to leverage as much as
possible from an existing verification framework and kernel proof.

To this end, we introduce the clustered multikernel, a point in the
design space of multiprocessor kernels. Based on this design, we
present a lifting framework which adds multiprocessor support to a
verified uniprocessor kernel and reuses its proofs to obtain a veri-
fied multiprocessor kernel with relatively low effort. The ability to
handle the concurrency introduced with multiple CPUs is added to
the existing verification framework in a modular and non-intrusive
way. The lifting framework supports total-store-order (TSO) multi-
processor architectures, which exhibit weak memory ordering. For
this purpose, the formal TSO model which it builds on explic-
itly models CPUs starting other CPUs (also nested) in presence of
memory reordering.

To demonstrate the practicability of the lifting framework, we
report on our experience with applying it to seL4.

All formal specifications and proofs in this work are machine-
checked in the interactive theorem prover Isabelle/HOL [14].

!The term CPU is used as synonym for core hereafter. The same is
true for the terms multiprocessor and multicore.


mailto:michael.vontessin@nicta.com.au

The paper continues as follows: summarizes back-
ground information and introduces terminology related to formal
verification. Our main results—the multikernel design, the lifting

framework and its application—are described in[Section 3|and[Sec-

respectively. We relate this paper to other work in[Section 5
and conclude in

2. BACKGROUND AND TERMINOLOGY

Formal verification of concurrent systems is hard and becomes
intractable very quickly. In case of a model-checking approach
where all possible states are enumerated and checked, the complex-
ity grows exponentially with regards to program size and number
of execution units (CPUs on kernel level). This scalability problem
can be overcome with a theorem-proving approach where proofs
only have to cover all possible conceptual “scenarios” which can
arise from concurrent execution. The number of such scenarios is
a fraction of the number of states in model checking and can be
lowered even further with intelligent proof design. Nevertheless,
the nature of theorem proving requires considerable human input
to prove each of these scenarios.

Functional correctness is proved by refinement, i.e. we prove that
an implementation refines a specification. A refinement proof is
based on a refinement automaton. This is a non-deterministic finite
state automaton with transitions from one state to another. It de-
scribes how the software component in question reacts to specific
events, for example, how a kernel reacts to system calls, faults or
interrupts depending on the state it is in (e.g. kernel/userlevel/idle).
Initialisation of the automaton is done by an initialisation function,
which, in the case of a kernel, models that kernel’s bootstrapping
phase. “Running” the automaton models the runtime phase of the
kernel.

Proving refinement consists of mainly two efforts: One is prov-
ing correspondence between the concrete and abstract counterparts
of each transition and of the initialisation function. These proofs
normally require certain invariants to hold. Hence, the other effort
is to prove that all these invariants hold.

A refinement proof transfers safety theorems proved on the ab-
stract level down to the concrete level. We leverage that fact by
proving the necessary theorems on the abstract level only and let
the refinement transfer them to lower levels where proving them
would be much harder.

Verification frameworks used to verify uniprocessor kernels are
normally designed for sequential reasoning only as the need to rea-
son about concurrency can be avoided by making a kernel non-
preemptible or event-based with well-defined preemption points.

There are many different ways how a verification framework can
support concurrency. Mostly, they are based on an interleaving
model. However, such models are problematic in a refinement con-
text because of the atomicity mismatch of abstract and concrete op-
erations. Furthermore, concurrent abstract specifications are hard
to reason about, which conflicts with the goal of an abstract speci-
fication: to make reasoning about a program simpler.

As a consequence, the main design goal of the lifting framework
is to reduce the amount of concurrency we have to reason about to
a minimum.

3. THE CLUSTERED MULTIKERNEL

There are two fundamental ways to avoid reasoning about con-
currency: (1) to avoid parallelism (i.e. running things in parallel),
or (2) to avoid sharing (of data structures).

We can avoid parallelism in a kernel by having a big lock around
the whole kernel, which only allows one CPU to perform a kernel

transition at any given time. As userlevel code is allowed to run in
parallel on multiple CPUs, kernel calls can become a bottleneck.

On the other side of the spectrum, we can avoid sharing with a
restricted multikernel [1]] design in which each CPU boots up its
own node. A node is an isolated instance of a uniprocessor kernel
including userlevel running on top. As a consequence of the isola-
tion, no communication between the node’s kernels can exist and
no kernel data structures can be shared or moved between nodes.
Nevertheless, a multikernel can be bootstrapped with provision for
a designated region of shared userlevel memory between nodes.

While the multikernel does not have the scalability problem of
the big-lock design, it lacks the latter’s ability to make the step to
multiple CPUs transparent to userlevel. A multikernel application
has to deal with the consequences of multiple nodes, such as ex-
plicit userlevel memory sharing and kernel resources being bound
to nodes. Furthermore, as inter-process communication (IPC) only
works within a node, communication across nodes has to be imple-
mented via shared userlevel memory.

In summary, the big-lock design has low scalability but high flex-
ibility while the opposite is true for the multikernel design. Of
course, we want the best of both, which means we want the trade-
offs to be configurable according to the type of userlevel applica-
tion. This is possible with a clustered multikernel, which is a con-
figurable combination of the two designs (Figure T). It starts out
as a multikernel but instead of running one node per CPU, multiple
CPUs can be clustered into (assigned to) a node. Within each node,
we apply the big-lock design to synchronise its CPUs.

shared memory

userland

userland

|
:\@

1

1

1

1

:\@
T
1

T

"t

—

\@
(o)

5@

-—_

\@
=r

g’@

kernel IP1 kernel

untyped untyped

node memory node memory

Figure 1: The Clustered Multikernel

The flexibility in clustering allows a kernel to be configured with
the underlying hardware in mind. For example, multiple cores
within a CPU package can be clustered into a node because scal-
ability problems are mitigated by their tight coupling. Similarly,
nodes of a clustered multikernel can be aligned with NUMA nodes,
which allows NUMA-aware memory assignment to nodes. Cluster-
ing also suits architectures with “islands of cache coherence”.

The isolation between nodes also allows clustering to be used to
draw performance-isolation boundaries for real-time systems. In-
side the performance-isolated domains, we can leverage the flexi-
bility of a big-lock kernel.



The clustered multikernel resembles the clustered kernels of Hur-
ricane [[18]] and Hive [5]] which are discussed in

4. LIFTING FRAMEWORK

The lifting framework turns a verified uniprocessor kernel into a
clustered multikernel and formally lifts the uniprocessor refinement
proof into the clustered-multikernel context. Lifting a proof means
reusing the proved theorem in a more generic context. For example,
a theorem about a kernel-internal function can be directly reused if
the lifting framework ensures that no concurrency is introduced for
that particular function.

The main challenges for the lifting framework are: (1) how to
correctly handle the concurrency that cannot be avoided in the clus-
tered multikernel; (2) how to non-intrusively extend a given unipro-
cessor verification framework; and (3) how to reuse as much as
possible from the uniprocessor proof.

To this end, the lifting framework prescribes: (1) a recipe to turn
a uniprocessor kernel into a clustered multikernel and (2) a list of
theorems which have to be proved for the kernel in question. To
assist with proving these theorems the framework provides a col-
lection of proved kernel-agnostic theorems.

In this work, we apply the lifting framework to the sel.4 micro-
kernel only. Nonetheless, we claim that it can be applied to an
arbitrary uniprocessor kernel under the following assumptions: (1)
The kernel and its refinement proof need to be structured as out-
lined in [Section 2] (distinct bootstrapping and runtime phases); and
(2) the kernel needs to be event-based (no kernel-thread blocking
allowed).

4.1 The seL4 Microkernel

As high-performance microkernel in the L4 family, seL4’s secu-
rity model supports fine-grained dissemination of authority via ca-
pabilities, which allows controlled communication between other-
wise isolated components. In order to deal with concurrency, seL4
only supports uniprocessors, is event-based and non-preemptible
with the exception of two well-defined preemption points.

The original sel.4 verification project, L4.verified, has formally
verified that the C implementation refines an intermediate executable
specification written in Haskell, and that this specification in turn
refines an abstract specification written in Isabelle/HOL. This tran-
sitively proves refinement between the implementation and the ab-
stract specification. The verification framework is implemented in
Isabelle/HOL and tailored to facilitate reasoning about sequential
programs.

The initial implementation of seL4 was done for ARMv6, which
is the version that is formally verified. The x86 version was initially
ported from ARM directly on C level with its intermediate Haskell
specification added later. There are plans to write an abstract spec-
ification and prove that it is refined by the implementation.

The clustered-multikernel implementation of sel.4, seL4::CMK,
is based on the x86 version of uniprocessor sel.4. The main reason
for this is the abundant availability of x86 multiprocessor/multicore
systems compared to ARM, especially with a scalability evaluation
in mind requiring NUMA and a high number of cores.

4.2 Turning selL4 into sel.4::CMK

Applying the aforementioned recipe to seL4 resulted in the fol-
lowing changes to the implementation and the specification.

We prepended a first part of bootstrapping which handles start-
ing CPUs: The very first CPU discovers devices, configures the
platform, allocates memory to nodes, writes the configuration to a
specific region of memory and starts the first CPU of each node.
Within each node, the original uniprocessor bootstrapping version

takes over, reads the configuration data and initialises the node’s
kernel data. It was modified to start the remaining CPUs of the
node at the end. Further minor modifications were necessary to
make access to static kernel data node-local and to change the way
the configuration data is read at the beginning.

For the runtime phase, we modified the code around syscall en-
try/exit in order to implement the big lock. Furthermore, we had
to split the static kernel data into two parts: (1) CPU-local and (2)
shared between CPUs of the same node. Most of the state ended
up in the shared part, with the exception of the x86 Task State Seg-
ment (TSS). It contains the pointer to the currently running thread
and therefore needs to be CPU-local.

The new first part of bootstrapping comprises 350 LOC. The sec-
ond part of bootstrapping is the original uniprocessor bootstrapping
with a few dozen LOC of modifications. For the runtime phase,
only 40 LOC of assembly code had to be modified in order to im-
plement a big-lock design. No changes on the C level were nec-
essary. The splitting into shared and CPU-local state needed to be
implemented completely on the assembly level.

Compared to the overall size of seL.4 (8700 LOC), these modifi-
cations are relatively small.

4.3 Lifting the Bootstrapping Phase

4.3.1 Kernel Isolation Theorem

First, we prove that after bootstrapping, the nodes’ kernels are
and stay isolated from each other. We do this because for the run-
time phase (Section 4.4), we want to be able to reason about each
node in isolation.

The kernel isolation theorem ensures isolation between the nodes’
kernel memory and consists of two parts. The first part talks about
the bootstrapping phase. Translated to prose, it says: “After having
bootstrapped, any memory designated to create kernel data struc-
tures in is partitioned between nodes”. The second part talks about
the runtime phase: “Kernel data structures are never created outside
the designated memory region.”

4.3.2 Kernel-Memory-Access Theorem

The kernel-memory-access theorem shows that kernel bootstrap-
ping behaves correctly with regards to concurrency by stating that
every CPU observes sequential semantics locally, which is what the
abstract specification relies on. The theorem is formulated on the
level of memory-access histories: “For each CPU and memory lo-
cation, between any read or write followed by a read any time later,
no write by another CPU occurs.”

As you remember, correspondence of the initialisation function
(which covers both bootstrapping parts) is proved with the origi-
nal verification framework. Previous work [19] presented how to
augment that framework to support reasoning about concurrency.
It involves generating a sequence of high-level instructions (mem-
ory read/write, memory fence, remote CPU start) from the abstract
specification which is fed into an operational model of a multipro-
cessor architecture. This model computes all possible interleav-
ings of memory accesses, taking into account the resulting start
sequence of the CPUs. We have since extended this model to also
cover TSO multiprocessor architectures, with exhibit weak mem-
ory ordering (Section 4.3.3).

This is necessary because the first part of bootstrapping is inher-
ently concurrent. The first CPU needs to store some global config-
uration in a memory location where it will be read concurrently by
the CPUs of the other nodes which it had just started.

Proving the kernel-memory-access theorem on the abstract level
is permissible because memory accesses are overapproximated. This



means that instead of directly modelling every assembly instruction
that accesses memory (which is impossible on the abstract level),
we specify that one or more accesses to a set of memory locations
are performed for a specific abstract operation. The model then
non-deterministically assumes all memory access patterns the im-
plementation could possibly perform.

4.3.3 Formal Model of Weak Memory Ordering

The weak-memory model developed for this work is based on
the Cambridge x86-TSO operational model [16] which it extends
with support for CPUs starting other CPUs (also nested). Unlike
the Cambridge model, it is a generic TSO (total store order) model
and not specific to x86.

The main feature of a TSO architecture is the store buffer, which
is also the sole source of memory reordering on such an architec-
ture. Whenever an instruction executed by the CPU retires and trig-
gers a memory write, the value is first stored in a FIFO buffer—the
store buffer—which delays writing it to the memory subsystenﬂ by
an unspecified amount of time. On the other hand, reading is per-
formed directly from the memory subsystem. Most TSO architec-
tures support store-buffer forwarding, which enables a read directly
from the store buffer in case the same memory address had been
written to shortly before and the value is still in the store buffer.
The TSO model presented here (and depicted in[Figure 2) includes
store-buffer forwarding and memory fences.

a— CPU
z Read memory
el sub-
S Write system
n i
-3
CPU Read

Figure 2: TSO Multiprocessor Architecture Model

Its formal specification in Isabelle/HOL requires 100 LOC. The
proof of the kernel-agnostic sequential-semantics theorem (which
is needed to prove the kernel-specific kernel-memory-access theo-
rem presented above) encompasses 1000 LOC in Isabelle/HOL.

The novelty of this model is the combination of handling nested
starting of CPUs combined with memory reordering. For example,
it models the possibility of a memory write being reordered with the
signal to start another CPU. While this behaviour has never been
observed on x86 CPUs (and programmers often rely on it not to
happen), neither the Intel nor the AMD architecture manuals state
that this cannot happen. Notwithstanding, other TSO architectures
are free to explicitly allow it.

For the kernel bootstrapping this means that we have to prove
that an instruction starting another CPU is always preceded by a
memory fence. Otherwise it is possible that the started CPU reads
stale configuration data written by the CPU it has been started from.

4.3.4 Application to sel4

Verification of seL4’s bootstrapping code was not in the scope
of L4.verified. Hence, there was no existing abstract specification
so we wrote the clustered-multikernel bootstrapping specification
from scratch (1300 LOC). Proving the kernel isolation theorem and
the kernel-memory-access theorem required 6400 LOC.

>The memory subsystem includes the memory itself and all caches
layered on top of it. On TSO architectures, cache coherency proto-
cols ensure sequential consistency of the memory subsystem.

The primary sources of proof complexity turned out to come
from: (1) the fact that bootstrapping of a clustered multikernel re-
quires nested CPU starts. (2) The configuration data is provided to
the other CPUs via a specific region of memory. Because this re-
gion is written and then read concurrently, the proof needs to take
into account memory fences and a correct CPU starting sequence.
(3) During bootstrapping, seL4 uses dynamic memory allocation,
which had a major impact on the bootstrapping-part of the kernel
isolation theorem. Interestingly, its runtime counterpart happened
to be a specialisation of an invariant already proved by L4.verified
and could therefore be proved with a few dozen LOC.

In the meantime, an intermediate Haskell specification of the
bootstrapping has been written for the uniprocessor version of seL.4
and a correspondence proof is currently being worked on.

4.4 Lifting the Runtime Phase

For the runtime phase, the kernel isolation theorem allows us to
reason about each node in isolation.

In a refinement proof, the refinement automaton models the ac-
tions of an execution unit, i.e. a CPU. Within a node of a clustered
multikernel, we have multiple CPUs running in parallel, which
requires us to model each node as a parallel composition of the
uniprocessor refinement automaton.

As you remember from a node’s kernel state is di-
vided up into a shared and a CPU-local part with the latter contain-
ing the “currently running thread” variable. Hence, we cannot just
copy the uniprocessor refinement automaton and “run” the copies
in parallel. Whenever one of the parallel automata makes a transi-
tion, it potentially modifies its own CPU-local state and the shared
state but it cannot modify another CPU’s state. This may sound
harmless at first sight, but a closer look at it reveals that from an-
other CPU’s point of view, the shared state gets changed magically
under its feet, something that could not happen to the state in the
uniprocessor world.

To this end, this work includes a formal generic automaton lifting
operation with accompanying automaton lifting theorem. The for-
mer lifts an arbitrary refinement automaton into a parallel compo-
sition of itself with a parameterisable splitting of the original state
into shared and CPU-local parts. Each transition in the new parallel
automaton consists of merging the CPU-local and shared states into
the original state, executing the original transition and splitting the
resulting state back into the new shared and CPU-local states. The
transitions are interleaved non-deterministically. The interleaving
model is applicable because we assume that the implementation
puts a big lock around the entire kernel transition.

The automaton lifting theorem says: “When applying the lifting
operation to the refinement automata of both abstract and concrete
levels of an arbitrary refinement proof, the concrete parallel refine-
ment automaton refines the abstract parallel refinement automaton
if the original concrete refinement automaton refines the original
abstract refinement automaton.” The theorem can only be applied
if certain properties about the lifting parameters hold. Most of them
are trivial or obvious, e.g. that the splitting function splits the entire
state, not just parts of it. Nonetheless, there is one not so obvious
but all the more critical assumption: The original invariants need to
be splittable. What does this mean?

Remember that correspondence proofs generally require an addi-
tional proof that certain invariants hold throughout execution. The
problem now arises that splitting and independent modification of
the shared and CPU-local parts potentially violates the invariants.
In prose, the splittable invariants property is: “The original invari-
ants do not talk about the shared and the CPU-local state at the
same time”, or in other words, “relate them to each other in any



way”. This property needs to be true (and proved) before the au-
tomaton can be automatically lifted.

The automaton lifting operation and theorem presented here are—
to the best of our knowledge—the first ones to automatically lift
an arbitrary refinement automaton (and its proof) into a parallel
composition of itself with parameterisable splitting of the original
state into shared and local parts. Specification and proofs in Is-
abelle/HOL comprise 150 LOC.

4.4.1 Application to sel4

The lifting theorem requires certain properties about the lift-
ing parameters to hold. Most of them are trivial and could be
proved with a few LOC. In contrast, the splittable invariants prop-
erty turned out to be nasty to prove. More than that, it does not
even hold for seL4: There are a handful of invariants which re-
late the shared with the CPU-local part of the state. Specifically,
invariants talking about the currently running thread: The pointer
to the currently running thread is in the CPU-local state whereas
the thread-control block (TCB) is in the shared state. This means
that we had to derive a more generic version of the lifting theo-
rem which provides the possibility of dividing up the invariants
into splittable and unsplittable ones. The splittable ones are han-
dled automatically whereas the unsplittable ones have to be proved
manually in the context of the new parallel refinement automaton.

In sel4, the unsplittable invariants ensure the valid state of the
currently running thread. Trying to prove these invariants directly
over the new parallel refinement automaton revealed an unexpected
problem with the C implementation, even though no C code was
changed: The thread-deletion problem is seLL4-specific and a good
example in showing the bug-finding abilities of theorem proving
in general, and our lifting framework in particular. The seL.4 API
allows a thread A in possession of a capability to thread B to mod-
ify (e.g. suspend, resume) or delete that thread. On a uniprocessor,
thread A knows that any other thread it is modifying/deleting is
not currently running on a CPU. In seL4::CMK however, thread B
could be running on another CPU. Its TCB cannot be directly mod-
ified/deleted without coordination as this would result in corruption
as soon as thread B enters the kernel again. Formally, the state of
thread B is not valid when it is deleted by thread A while running
on another CPU because the current-thread pointer in that CPU’s
local state is now dangling.

Adding the necessary coordination to seL4::CMK to fix the prob-
lem required only 80 LOC of C code and a similar amount on the
abstract level. This sounds relatively harmless. Nevertheless, due
to the event-based structure of seL4 (specifically: no kernel-thread
blocking allowed), two thread states and 8 preemption points had
to be added. This increased proof complexity considerably. While
fixing up the invariant proofs over the abstract specification was
a moderate effort (100 LOC modified, 300 LOC added), adding a
newly required invariant required a 1000-LOC proof.

Left for future work are the necessary changes to the intermedi-
ate Haskell specification and fixing up the correspondence proofs
after those changes.

S. RELATED WORK

The clustered multikernel is an extension of the multikernel, which
is the design introduced with Barrelfish [1] and also chosen by
Corey [3]]. Barrelfish is an OS aimed to be highly scalable and suit-
able for heterogeneous multiprocessing. It follows a distributed-
system approach by keeping kernel data structures local to a CPU
or replicated on other CPUs. Synchronisation and coordination be-
tween CPUs is message-based and managed by the system software
running on top. The API of the underlying microkernel is inspired

by seL4. Corey is an OS with almost the same aims as Barrelfish.
Kernel data is CPU-local too, but system software is allowed to
choose which kernel data should be shared between CPUs.

Clustered OS kernels emerged in the early 90s. Hurricane [18]]
used clustering to improve data locality on large-scale NUMA mul-
tiprocessors while Hive [5]] aimed at fault isolation between clus-
ters. While performing well for certain kinds of applications, these
kernels suffered from high complexity and unpredictable perfor-
mance. In the late 90s, Disco [4] and Tornado [9] tried to overcome
these problems, albeit with very different approaches. Disco aimed
at reducing implementation cost and complexity by reviving the
idea of virtualisation, which would allow reusing general-purpose
OSes on large-scale NUMA multiprocessors. Tornado aimed at
better scalability by further improving data locality. The approach
was to construct the kernel in an object-oriented manner which en-
capsulates related kernel data. The novel idea of clustered objects
allowed kernel data locality to be fine-tuned.

On the formal side, Microsoft’s VCC verification environment
allows to reason about concurrent system-level C code. Proofs
are guided by creating C annotations such that the generated proof
obligations can be discharged automatically. Thread-local data can
be reasoned about in a sequential context using an ownership dis-
cipline while concurrent data structures (e.g. locks) are handled
separately. The Verisoft XT project used VCC to formally verify
substantial parts of Microsoft’s Hyper-V multiprocessor hypervi-
sor [6]. The proved properties are mainly function contracts and
invariants on data types. Unfortunately, these results are not suf-
ficient to conclude an overall functional-correctness theorem from.
Moreover, the VCC specification language is very close to C, which
leads to low-level specifications that make it hard to prove higher-
level properties such as isolation or integrity.

6. CONCLUSION

The clustered multikernel fulfils its promise as a multiproces-
sor design capable of turning a uniprocessor kernel into a multi-
processor version with minor modifications while only introducing
a small amount of concurrency. The lifting framework is practi-
cal and can be applied to seL4, a uniprocessor kernel verified in a
large-scale project.

We are not aware of a successful refinement proof of a multi-
processor kernel. Given a verified uniprocessor kernel, the clus-
tered multikernel offers a way to achieve this with relatively low
effort. In case of seL4::CMK, the entire proof effort (including the
estimated LOC for the missing correspondence proofs) is around
12 kKLOC. Compared to L4.verified’s overall proof size of 200 kLOC
[[12], this is relatively small.

6.1 Future Work

6.1.1 Correspondence of C Code

The lifting framework concentrates on the abstract level and re-
lies refinement to transfer the necessary theorems down to C level,
which gives us the assurance that the implementation of the clus-
tered multikernel corresponds to its specification. Hence, corre-
spondence proofs need to be fixed if the code in question was mod-
ified. For seL.4::CMK, two correspondence proofs are missing.

The first one is the correspondence proof of kernel bootstrap-
ping. This proof was also missing in seL4’s uniprocessor version
but is now being worked on. After its completion, it can be ported
to seL4::CMK. This requires some fixes due to the slightly modi-
fied second part of bootstrapping. The first part requires an addi-
tional correspondence proof.



The second missing correspondence proof belongs to the solu-
tion of the thread-deletion problem from After its
completion, the final refinement theorem can be extended to reach
down to the C level.

The missing correspondence proofs can be carried out in the
same way and with the same verification framework they had been
carried out in seL4’s past. There is nothing concurrency-specific in
them.

6.1.2 Performance Evaluation

On the systems side, the impact of the clustered multikernel’s
limitations is still unclear. While there is already plenty of support-
ing work for the multikernel [1]], no conclusive evaluation exists
on how far and under which workloads exactly a big-lock kernel
scales/performs. Experience with early Linux lets us expect scala-
bility problems. However, this was before the advent of multicore
systems with their tight coupling between cores. Furthermore, if
the kernel is sufficiently small (e.g. a microkernel or hypervisor) it
is likely that the big lock scales up to a reasonable number of CPUs.
An example that supports this conjecture is the OKL4 Microvi-
sor [[15]], a small commercial microkernel/hypervisor implemented
in the big-lock design: It has been successfully deployed in over 1.5
billion multicore mobile phones to date. Preliminary benchmarks
of OKL4 on a NaviEngine platform (4 ARM11 MPCore CPUs) re-
vealed that scalability was degraded more by cache contention than
the big lock itself [13]]. In other words: Fine-grained locks would
not remove the scalability problem.

Looking at clustering, research from the early 90s does not look
very promising However, these performance evalua-
tions are based on large-scale NUMA machines of that time. To-
day’s machines with their tight coupling of cores and large, hier-
archical caches require different trade-offs. Furthermore, we con-
jecture that the high complexity and unpredictable performance of
these systems are introduced by trying to hide clustering from the
application and provide a single-system image. We suspect that
this is not necessary for most of the applications you would run on
a clustered multikernel today.

Consequently, the next step in this work is a thorough perfor-
mance and scalability evaluation of the clustered-multikernel de-
sign based on benchmarks of seL4::CMK. The evaluation should
answer the following question.

From a system designer’s point of view, a multiprocessor kernel
using traditional synchronisation primitives (such as fine-grained
locks, lock-free) gives us (1) good scalability and (2) flexible kernel-
resource usage across CPUs at the same time. For verification rea-
sons, we restrict ourselves to a clustered multikernel where we need
to trade one for the other. So the question is: For “any interesting”
multiprocessor workload, can we cluster into nodes only the parts
requiring flexible kernel-resource usage and (re)write the rest of
the workload to run as a distributed system of nodes and still per-
form/scale?

7. REFERENCES

[1] A.Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schiipbach, and A. Singhania. The
multikernel: A new OS architecture for scalable multicore
systems. In 22nd SOSP, Big Sky, MT, USA, Oct 2009. ACM.

[2] W.R. Bevier. Kit: A study in operating system verification.
Trans. Softw. Engin., 15(11):1382-1396, 1989.

[3] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: an operating system for many cores. In
8th OSDI, San Diego, CA, USA, Dec 2008.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors.
In 16th SOSP, St. Malo, France, Oct 1997.

J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta. Hive: Fault containment for shared-memory
multiprocessors. In 15th SOSP, Copper Mountain, CO, USA,
Dec 1995.

E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,

M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
practical system for verifying concurrent C. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, 22nd
TPHOLSs, volume 5674 of LNCS, pages 23—42, Munich,
Germany, 2009. Springer-Verlag.

M. Daum, J. Dérrenbécher, and B. Wolff. Proving fairness
and implementation correctness of a microkernel scheduler.
JAR: Special Issue Operat. Syst. Verification,
42(2-4):349-388, 2009.

M. Daum, N. W. Schirmer, and M. Schmidt. Implementation
correctness of a real-time operating system. In Int. Conf.
Softw. Engin. & Formal Methods, pages 23-32, Hanoi,
Vietnam, 2009. Comp. Soc.

B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximising locality and concurrency in a shared memory
multiprocessor operating system. In 3rd OSDI, pages
87-100, New Orleans, LA, USA, Feb 1999.

L. Hatton. Re-examining the fault density - component size
connection. Softw., 14(2):89-97, 1997.

G. Klein. Operating system verification — an overview.
Sadhana, 34(1):27-69, Feb 2009.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel.4:
Formal verification of an OS kernel. In 22nd SOSP, pages
207-220, Big Sky, MT, USA, Oct 2009. ACM.

A. Lyons. Efficient concurrency control for
high-performance microkernels. BSc thesis, School Comp.
Sci. & Engin., University NSW, Sydney 2052, Australia, Jul
2011. Available from publications page at
http://ssrg.nicta.com.au/.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of
LNCS. Springer-Verlag, 2002.

OK Labs: OKL4 Microvisor.
http://www.ok-labs.com/products/okl4-microvisor.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen. x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors. CACM, 53(7):89-97, Jul
2010.

J. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and

M. Miller. Towards a verified, general-purpose operating
system kernel. In st NICTA WS Operat. Syst. Verification,
Sydney, Australia, Oct 2004.

R. Unrau, O. Krieger, B. Gamsa, and M. Stumm.
Hierarchical clustering: A structure for scalable
multiprocessor operating system design. J. Supercomp.,
9:105-134, 1993.

M. von Tessin. Towards high-assurance multiprocessor
virtualisation. In 6¢h VERIFY, Edinburgh, UK, Jul 2010.

B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification
and verification of the UCLA Unix security kernel. CACM,
23(2):118-131, 1980.


http://ssrg.nicta.com.au/
http://www.ok-labs.com/products/okl4-microvisor

	Introduction
	Background and Terminology
	The Clustered Multikernel
	Lifting Framework
	The seL4 Microkernel
	Turning seL4 into seL4::CMK
	Lifting the Bootstrapping Phase
	Kernel Isolation Theorem
	Kernel-Memory-Access Theorem
	Formal Model of Weak Memory Ordering
	Application to seL4

	Lifting the Runtime Phase
	Application to seL4


	Related Work
	Conclusion
	Future Work
	Correspondence of C Code
	Performance Evaluation


	References

