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Abstract. The TPTP World is a well established infrastructure sup-
porting research, development, and deployment of Automated Theorem
Proving systems. Recently, the TPTP World has been extended to in-
clude a typed first-order logic, which in turn has enabled the integration
of arithmetic. This paper describes these developments.

1 DMotivation and History

The TPTP World [32] is a well established infrastructure that supports research,
development, and deployment of Automated Theorem Proving (ATP) systems.
The TPTP World is based on the Thousands of Problems for Theorem Provers
(TPTP) problem library [30], and includes the TPTP language, the SZS ontolo-
gies, the Thousands of Solutions from Theorem Provers (TSTP) solution library,
various tools associated with the libraries, and the CADE ATP System Competi-
tion (CASC). This infrastructure has been central to the progress that has been
made in the development of high performance first-order ATP systems — most
state of the art systems natively read the TPTP language, many produce proofs
or models in the TSTP format, much testing and development is done using the
TPTP problem library, and CASC is an annual focal point where developers
meet to discuss new ideas and advances in ATP techniques.

Originally the TPTP supported only first-order problems in clause normal
form (CNF). Over the years support for the full first-order form (FOF) and
typed higher-order form (THF) have been added. Recently the simply typed
first-order form (TFF) has been added. TFF has in turn been used as the basis
for supporting arithmetic. Problems that use these new features have been added
to the TPTP problem library, and ATP systems that can solve these problems
have been developed. This paper describes the key steps of these developments.

While the development of the TPTP World for typed first-order logic is new,
several similar logics have been described previously, e.g., [36, 26, 13]. However,
there are no contemporary ATP systems that implement those logics. There is
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active related research in the SMT community, which started in 2003 [24]. There
are high performance systems for the various logics of the SMT-LIB!, e.g., those
that performed well in the SMT-COMP competitions.? While the TFF language
was designed independently, there are inevitable parallels between the TFF and
SMT languages. The TPTP and SMT languages both fully support a typed first-
order logic, and both have specific features for arithmetic theories. Some features
of the TPTP TFF language were adopted from SMT, and some differences were
motivated by differences between the two communities’ idioms (e.g., the TPTP
arithmetic includes the Euclidean quotient used in the SMT-LIB Ints theory,
but also other quotients requested by TPTP users). Salient commonalities and
differences between the two languages are evident in this paper. At the level of
the TPTP and SMT-LIB problem collections, the problems in SMT-LIB are cat-
egorized with respect to their underlying logics and theories (e.g., the admissible
quantifier prefixes and the kind of arithmetic used). Those categories and the
problems in them typically reflect the capabilities of the available SMT solvers.
The TPTP library uses its “specialist problem class” categorization (e.g., the use
of equality and the SZS status of problems [29]) only for the analysis of results,
and in this way encourages the submission of problems and the development of
tools without a specific reasoner or language fragment in mind. There is a grow-
ing linkage between the SMT and TPTP worlds, stimulated and made possible
by the developments described in this paper. One example was the entry of the
SMT-based systems CVC3 and Z3 in the TFA division of CASC-23 [34]. Tools
for translating between the TPTP and SMT formats have (or should be by the
time this paper is published) been developed — the TPTP2X utility distributed
as part of the TPTP is used to translate TPTP TFF problems to SMT2 format
for input by CVC3 (see Section 4).

2 The TPTP Typed First-order Form Language

The design of the TPTP’s TFF language was based on consideration of various
features of type systems. These fall into four broad categories — the sorts (atomic
types) that are available, the possibilities for the types of terms, the syntaz of
expressions, and the semantics of the logic. The decisions made for the first
two categories, and the effects of the decisions on ATP systems, are discussed
in Section 2.1. The syntax is described in Section 2.2, and semantic issues are
discussed in Section 2.3. There were many possibilities for each issue, and the
decisions aimed to impose a low initial entry barrier for ATP system developers
and users, and to allow for future additions to the language. The initial language
is thus known as “TFF0” (much like THFO [8]).

2.1 Decisions about Types and Terms

The decisions made for TFFO0 provide a useful and simple extension of the ex-
isting untyped FOF logic. The decisions are:

! See the SMT-LIB web page http://combination.cs.uiowa.edu/smtlib/

2 http://www.smtcomp. org/



— TFFO is a simple many-sorted logic. Sorts are interpreted by non-empty,
pairwise disjoint, domains.

— All uninterpreted functions and predicates are monomorphic. Although ad-
hoc polymorphism over sorts is conceptually simple, allowing it would require
extending the TPTP syntax to provide sort annotations on symbols (as
supported in the SMT language version 2).

— Equality is ad-hoc polymorphic over the sorts. An equation between terms
that have different sorts is ill-typed.

— Subtyping is not employed. (Subtyping may be added in the future.)

This simple many-sorted type system is an extension of untyped first-order
logic. As all symbols are monomorphic, all terms except for variables are au-
tomatically typed. For problems without equality, satisfiability of well-typed
formulae is not affected by ignoring types. For problems with equality, variables
need to carry explicit type information because context does not provide the
type information, e.g., the variables in an equation = = y.

Many proof calculi generalize directly to the typed case, so that existing
techniques and implementations can be carried over without prohibitive effort.
In particular, unique most general unifiers and matches still exist, and can be
computed by straightforward generalizations of existing algorithms. Standard
inferences and simplifications remain correct as long as variable instantiations
are type-preserving. Systems based on direct instantiation need to check every
variable instantiation. Systems based on unification need to check variable in-
stantiations in equational inferences, e.g., paramodulation and superposition,
when paramodulating from (or into, but that is not required in most calculi) a
variable term. These checks reject inferences that are allowed when using sort
predicates (see Section 2.3), and proof search can be simpler. For finite model
finders type information is valuable because it restricts the space of possible mod-
els that need to be explored. The domains of some of the sorts can be smaller
than the domains of other sorts, leading to possibly more efficient algorithms.
While some systems, e.g., Paradox [11], try to derive type information to exploit
this, user specified type information can be more precise.

For ATP users, typing leads to much simpler encodings than using type pred-
icates, and the requirement of well-typedness helps to correctly encode problems.
A typed language is also necessary for correct encoding of problems with arith-
metic.

2.2 Syntax

The TFFO syntax implements the decisions described in Section 2.1. A new
TPTP language variant has been introduced, using tff as the language symbol
of annotated formulae.3
— The sorts $i (individuals) and $o (booleans) are defined. (Note, as is ex-
plained below, $o is used only as the result sort in predicate type declara-
tions, i.e., there is no built-in theory of boolean terms.) Other defined sorts

3 The BNF is available at http://wuw.tptp.org/TPTP/SyntaxBNF.html



are associated with specific theories. In particular, $int, $rat, and $real
are defined for interpreted arithmetic — see Section 3.

— $tType is used to introduce users’ sorts, by declaring them to be of the
psuedo-sort $tType. For example

tff (fruit_type,type, tff (list_type,type,
fruit: $tType ). list: $tType ).

This is the only use of $tType. Declaration of users’ sorts is not required,
i.e., sorts can be introduced on the fly. TFF problems in the TPTP problem
library have all sorts declared, so as to provide a typo check (pun intended).

— Every function and predicate symbol has at most one declared type that
specifies the argument and result sorts. For example

tff (cons_type,type, tff (is_empty_type,type,
cons: (fruit * list) > list ). isEmpty: list > $o ).

The argument sorts cannot be $o. The result sort of a function cannot be
$o, and the result sort of a predicate must be $o. Note that symbols of arity
greater than one use the * for a cross-product type — currying is not possible.
If a symbol’s type is declared more than once, and the types are not the same,
that is an error. Multiple identical type declarations for a symbol are allowed
(to support, e.g., the merging of specifications from multiple different input
files).
— Defined functions and predicates have preassigned types.
e $true is of type $o
e $false is of type $o
e = is ad-hoc polymorphic over the sorts except $o. The two arguments
must be of the same sort, and the result sort is $o. The equality symbol
thus represents distinct predicate symbols for each sort.
e The types of numbers and the arithmetic functions and predicates are
defined in Section 3.
— Every variable can be given a sort at quantification time. For example

tff(list_not_empty,axiom,
! [X: fruit,Xs: list] : “isEmpty(cons(X,Xs)) ).

— If a symbol is used and its type has not been declared, then default types
are assumed:
e All untyped predicates get the type ($i * ... * $i) > $o.
e All untyped functions get the type ($i * ... * $i) > $i.
e All untyped variables are of the sort $i.
If a symbol’s type is declared later to be different from an assumed type,
that is an error.

TPTP file names for TFF problems use a _ separator (in the way that ~ is
used for THF, + is used for FOF, and - is used for CNF). Use of the TFFO0
language is demonstrated in the following example. The formulae are given in
Figure 1.



Every student is enrolled in at least one course. Every professor teaches
at least one course. Every course has at least one student enrolled. Every
course has at least one professor teaching. The coordinator of a course
teaches the course. If a student is enrolled in a course then the student
is taught by every professor who teaches the course. Michael is enrolled
in CSC410. Victor is the coordinator of CSC410. Therefore, Michael is
taught by Victor.

% _______ . ———————

tff (student_type,type, student: $tType ).

tff (professor_type,type, professor: $tType ).

tff (course_type,type, course: $tType ).
tff(michael_type,type, michael: student ).

tff (victor_type,type, victor: professor ).

tff (csc410_type,type, csc410: course ).
tff(enrolled_type,type, enrolled: ( student * course ) > $o ).
tff(teaches_type,type, teaches: ( professor * course ) > $o ).

tff (taught_by_type,type, taughtby: ( student * professor ) > $o ).
tff (coordinator_of_type,type, coordinatorof: course > professor ).

tff (student_enrolled_axiom,axiom,

! [X: student] : ? [Y: course] : enrolled(X,Y) ).
tff (professor_teaches,axiom,

! [X: professor] : 7 [Y: course] : teaches(X,Y) ).
tff (course_enrolled,axiom,

! [X: course] : ? [Y: student] : enrolled(Y,X) ).
tff (course_teaches,axiom,

! [X: course] : ? [Y: professor] : teaches(Y,X) ).
tff (coordinator_teaches,axiom,

! [X: course] : teaches(coordinatorof (X),X) ).
tff (student_enrolled_taught,axiom,

! [X: student,Y: course]

( enrolled(X,Y)

=> | [Z: professor] : ( teaches(Z,Y) => taughtby(X,Z) ) ) ).
tff (michael_enrolled_csc410_axiom,axiom,

enrolled(michael,csc410) ).
tff (victor_coordinator_csc410_axiom,axiom,

coordinatorof (csc410) = victor ).

tff (teaching_conjecture,conjecture,
taughtby (michael,victor) ).

Fig. 1. Example TFF problem

2.3 Type Checking and Semantics

A formula is well-typed iff all the atoms in the formula are well-typed. A non-
equality atom is well-typed iff all the terms in the atom are well-typed, and the
sorts of the arguments of the atom conform to the predicate symbol’s type. An
equality atom is well-typed iff both the terms of the equation are well-typed and
are of the same sort. A term is well-typed iff all the subterms in the term are



well-typed, and the sorts of the arguments of the term conform to the function
symbol’s type.

The semantics of TFFO (without arithmetic) is a standard and straightfor-
ward generalization of the standard semantics of untyped first-order logic. A
semantics consistent with the one below has been given, e.g., in [15].

Assume a TFFO language with sorts s1,...,s, and variables V =V, W... &
Vs, , where variables from V, have the sort s;. Further, assume a formula (or set
of formulae) build over V', function symbols from F and predicate symbols from
P. An interpretation I consists of a domain D = Dy, W ... W D, with disjoint,
non-empty sub-domains for each sort, and a sort and arity-respecting mapping of
function symbols to functions and predicate symbols to relations (representing
the tuples of which the predicate holds true). In other words, if the function
symbol £ € F is declared as f : (s x ... s,) > s, then its interpretation is a
function I(f) : Dg, X...x Ds, — Ds. If the predicate symbol p € P is declared as
p: (s1%...xs,) > $o, then its interpretation is a relation I(p) C (Dy, X...x Dy ).
A typed valuation is a function ¢ : V' — D with the property that ¢(Vy) C Dy
for all sorts s. ¢, 4 denotes a valuation that is equal to ¢ for all variables but
X, and maps X to d.

The value of a term under an interpretation I and valuation ¢ is: evaly 4(X) =
d(X) for X € V, and evaly 4(£(t1, ..., tn) = I(£)(evalr ¢(t1), - .., evaly 4(t,)) for
f € F. Let {T, F} be the truth values. For atoms evalr 4(p(t1,...,t,)) = T iff
(evaly 4(t1), ..., evalr ¢(t,)) € I(p). Formulae with connectives are interpreted
as usual. Quantifiers, on the other hand, respect the type of the bound vari-
able: eval; 4(VX : s . G) = T iff evaly ¢, ,(G) = T for all d € D; and
eval; »(3X 1 s. G) =T iff evaly 4, ,(G) =T for at least one d € D,. Note that
for closed formulae the valuation of the variables is determined by the quantifiers,
and the value of a closed formula depends only on the interpretation.

Recall that the equality symbol represents distinct predicate symbols for
each sort, each written here as =; for a sort s. An interpretation I is an E-
interpretation, if I(=s,) is the equality relation on Dy, i.e., I(=5,) = {(d,d) |
d € Dy}, fori=1,...,n.* An E-interpretation I is a TFF model of a formula
F if eval;(F) = T. As usual, a formula is TFF satisfiable if it has at least one
TFF model, TFF unsatisfiable otherwise. A formula is a TFF tautology if every
E-interpretation is a TFF model.

The semantics is alternatively given by the following standard (e.g., [36])
translation into untyped first-order logic with equality. A well-typed formula F’
has a typed model iff its translated untyped counterpart F’ has an (untyped)
model. Each sort becomes a new unary predicate in the untyped world. Then

— A TFF sort declaration a_sort : $tType produces a FOF axiom 3X . a_sort(X).
This ensures that sorts are inhabited.

4 In refutational theorem proving it is customary to work with Herbrand interpreta-
tions and congruence relations on them to provide semantics for the equality symbol.
This approach can still be used in the context of (in particular) clause logic and the-
ory reasoning, see e.g., [19]. However, it cannot be used when arbitrary quantification
is allowed, as Herbrand’s theorem no longer holds, even without theories.



— Pairs of TFF sort declarations one_sort : $tType and two_sort : $tType
produce a FOF axiom VX,Y . one_sort(X) A two_sort(Y) = X # Y. This
ensures that sorts are pairwise disjoint. These axioms are not logically nec-
essary, because a model of the FOF formulae without these axioms can be
used to construct a model of the TFF formulae [12], i.e., a formula has a
model with disjoint domains iff it has a model with one domain. However,
for model generation these axioms are useful because they force terms with
different types to be interpreted as different domain elements, i.e., the do-
main of the FOF model can be divided into subdomains for the different
sorts.

— A TFF function type declaration f : (s1*...%s,) > s; produces a FOF axiom
VX1,...,Xp . s5(X1,...,X,). It is unnecessary to have an implication with
the antecedent checking the sorts of the arguments X1, . ..,Xn, because it is
impossible to use incorrectly sorted arguments in a well-typed formula.

— Predicate type declarations are ignored.

— A TFF universally quantified formula VX5 : s1,..., X, : s, . p(X1,..., X5)
produces a FOF formula VX1, ..., X, . s1(X1)A.. Asp(Xy) = p(Xq, ..., Xn).

— A TFF existentially quantified formula 3X; : s1,..., X, : sp . p(X1, ..., X0)
produces a FOF formula 3X7,..., X, . s1(X1)A. . . Asp (X)) AD(X1, ..., X5).

3 TPTP Arithmetic

The TFFO language has features that facilitate the addition of interpreted func-
tions and predicates for integer, rational, and real arithmetic. Arithmetic requires
a separate name space for numeric constants (i.e., numbers) and operators. Sep-
arate structures are assumed for integer, rational, and real arithmetic, each com-
prised of denumerably many numeric constants, and certain defined function and
predicate symbols.

3.1 Syntax

The TPTP syntax for numeric constants® and the defined function and predi-
cate symbols are given in Table 1. Each function and predicate symbol is ad-
hoc polymorphic over the numeric sorts (with one exception — $quotient is
not defined for $int). All arguments must have the same numeric sort. All
the functions, except for the coercion functions $to_int and $to_rat, have the
same result sort as their arguments. For example, $sum can be used with the
types ($int * $int) > $int, ($rat * $rat) > $rat, and ($real * $real)
> $real. The coercion functions $to_77?7 always have a $777 result. All the
predicates have a $o result. For example, $less can be used with the types
($int * $int) > $o, ($rat * $rat) > $o, and ($real * $real) > $o.

TPTP file names for TFF problems with arithmetic use a = separator. Use
of the TFFO0 language with integer arithmetic is demonstrated in the following
example. The formulae are given in Figure 2.

% See http://www.tptp.org/TPTP/SyntaxBNF.html for the precise syntax in BNF.



Symbol

Usage, comments, examples

$int
$rat

$real

= (infix)
$less/2
$lesseq/2
$greater/2
$greatereq/2
$uminus/1
$sum/2
$difference/2
$product/2
$quotient/2

$quotient_?/2

The type of integers. Examples: 123, -123

The type of rationals. Examples: 123/456, -123/456, +123/456

The denominator must be unsigned and positive.

The type of reals. Examples: 123.456, -123.456, 123.456E789.

See Section 2.2

Less-than comparison of two numbers.

Less-than-or-equal-to comparison of two numbers.

Greater-than comparison of two numbers.

Greater-than-or-equal-to comparison of two numbers.

Unary minus of a number.

Sum of two numbers.

Difference between two numbers.

Product of two numbers.

Exact quotient of two $rat or $real numbers. For zero divisors the
result is not specified.

Integral quotient of two numbers, ? is one of e, t, or £.

$quotient_e is the Euclidean quotient. $quotient_t and $quotient_f
are respectively the truncation and floor of the real division of the
arguments. For zero divisors the result is not specified.

$remainder_7/2 Remainder after integral division of two numbers using $quotient_?.

$floor/1
$ceiling/1
$truncate/1
$round/1
$is_int/1
$is_rat/1
$to_int/1
$to_rat/1

$to_real/l

For zero divisors the result is not specified.
Floor of a number.

Ceiling of a number.

Truncation of a number.

Rounding of a number.

Test for coincidence with an integer.

Test for coincidence with a rational.
Coercion of a number to $int, using $floor.
Coercion of a number to $rat. For reals that are not (known to be)
rational the result is not specified.

Coercion of a number to $real.

Table 1. The TPTP arithmetic syntax

Lists of integers are constructed from a head element and a tail list, with
the empty tail being represented by nil. A list is Fibonacci sorted if it
is sorted, and every element is greater or equal to the sum of its two
predecessors (from the third element onwards). Therefore the list [1, 2, 4]
is Fibonacci sorted.

The TFF arithmetic language aims to provide a comprehensive basis for
automated reasoning with arithmetic. There are some minor differences between
the TFF arithmetic and SMT-LIB’s Ints, Reals, and Reals_Ints theories, e.g.,
rationals are not explicitly available in SMT, negative numbers are available
in TFF, and the available defined predicates and functions are different. Some
of the decisions regarding the TFF defined predicates and functions warrant



A o
tff (list_type,type, 1list: $tType ).

tff(nil_type,type, nil: list ).

tff (mycons_type,type, mycons: ( $int * list ) > list ).
tff(sorted_type,type, fib_sorted: list > $o ).

tff (empty_fib_sorted,axiom,
fib_sorted(nil) ).
tff(single_is_fib_sorted,axiom,
! [X: $int] : fib_sorted(mycons(X,nil)) ).
tff (double_is_fib_sorted_if_ordered,axiom,
! [X: $int,Y: $int]
( $less(X,Y)
=> fib_sorted(mycons(X,mycons(Y,nil))) ) ).
tff (recursive_fib_sort,axiom,
! [X: $int,Y: $int,Z: $int,R: list]
( ( $less(X,Y)
& $greatereq(Z,$sum(X,Y))
& fib_sorted(mycons(Y,mycons(Z,R))) )
=> fib_sorted(mycons (X,mycons(Y,mycons(Z,R)))) ) ).

tff (check_list,conjecture,

Fig. 2. Example TFF problem with arithmetic

justification: The decision to support the three integral quotients (and hence
the corresponding remainder functions) came from John Harrison’s observations
[17] that most programming languages and hardware uses the “t” definition,
most interactive theorem provers use the “f” definition, Boute’s [9] arguments
for the “e” definition are quite sound, and the “e” definition fits better with
the generalization to other Euclidean rings. The decision to separate the floor,
ceiling, and truncation functions from the $to_77? type coercion functions allows
the production of integral numbers from non-integral numbers without changing
their type. The type coercion functions can be used separately to change the
type of a number. The decision to overload the type coercion functions for all
three numeric types provides the flexibility to change the types of variables in
formulae without having to change the formula structure, e.g., ! [X:$reall
p($to_int (X)) can be changed to ! [X:$int] : p($to_int(X)). Feedback on
the TFF arithmetic language is welcome.

3.2 Semantics

The semantics of TFF formulae with arithmetic is defined as a refinement of
the semantics of TFF0 formulae in Section 2.3. An E-interpretation I extends
arithmetic iff (i) the domains of the numeric sorts $int, $rat and $real are Z, Q
and R, respectively, and, (ii), the numeric constants and operators are interpreted
as described in Table 1. Note that in the case of $quotient, $quotient_? and
$remainder_7 the result is not specified for zero divisors. An interpretation may
assign any value to a quotient term whose divisor evaluates to zero. This way,



for instance, $quotient(5,0) = 4 is true in some interpretations and false in
others. With these provisions, the semantics of TFF in Section 2.3 carries over
to TFA in the expected way. A TFA model of a formula F' is a TFF model of
F' that extends arithmetics. A formula is TFA satisfiable if it has at least one
TFA model, TFA unsatisfiable otherwise. A formula is a TFA tautology if every
E-interpretation that extends arithmetic is a TFA model.

The above definitions are intended to encompass existing theorem proving
approaches, such as [3,19,6,25,2], in the sense that the TFA tautologies are
the same on the common logical languages and theories. For example, the ap-
proaches in [19,6,25,2] all assume a single arithmetic background theory and
linear arithmetic expressions. Restricting TFA correspondingly then is intended
to provide a reference semantics for these fragments.

The translation from typed to untyped logic (Section 2.3) can still be used
in presence of arithmetic, to “translate away” uninterpreted sorts. Variables of
a numeric sort lead to new sort predicates that recognize numeric constants.
Additionally, for the overloaded arithmetic functions, e.g., $sum, $difference,
etc., the translations need to have an implication with the antecedent check-
ing the sorts of the arguments. ATP systems must build in these numeric sort
predicates in order to completely and correctly process translated problems with
arithmetic.

3.3 Solvability and Decidability

The extent to which ATP systems are able to work with the arithmetic predi-
cates and functions is expected to vary, from a simple ability to do arithmetic
by evaluating ground numerical terms, e.g., $sum(2,3) might be evaluated to 5,
through an ability to instantiate variables in equations involving such functions,
e.g.,, 7 [X:$int] : $product(2,$uminus(X)) = $uminus($sum(X,2)) might
instantiate X to 2, to extensive algebraic manipulation capability and ability
to prove general arithmetic statements, e.g., ! [X: $int] : 7 [Y: $int]
$greater(Y,X).

The TFA language is rich enough to accommodate virtually any interesting
formula class, and asking whether a formula is TFA valid just requires stating
that formula as a conjecture. Unfortunately, decision procedures or even semi-
decision procedures for that validity problem can exist for only rather restricted
fragments of TFA. For example, it is well-known that linear arithmetic (over all
three numeric domains) is decidable.® However, as soon as free predicate symbols
are allowed, semi-decidability is lost. Just adding one unary predicate symbol
to linear integer arithmetic gives a validity problem that is IT{-hard [16], and
hence no complete calculus can exist. Whether function symbols with result sort
$int are allowed or not does not make a difference, as they can be encoded using
predicate symbols (recall that full quantification is available).

5 See [21] for a recent study of decision methods based on quantifier elimination, for
linear integer and for linear real arithmetic.



Most theorem proving calculi are based on clause logic. Without full quan-
tification, it makes a significant difference whether free function symbols with
result sort $int are allowed or not.” Without free function symbols, but with
free predicate symbols, (refutationally) complete calculi still exist (e.g., [3, 6, 25]).
Allowing free function symbols with result sort $int leads again to a I1{-hard
unsatisfiability problem, even for formulas without $int-sorted variables [19].
This applies to all three numeric domains, as the integers can be encoded in the
rationals (and the real numbers) [19, 18]. However, completeness can be achieved
under certain assumptions — see [3,19, 6] for (different) approaches.

4 TFF Problems, ATP Systems, TPTP Software

Prior to the development of the TFF part of the TPTP World, ATP users and
developers had long expressed support for extending the TPTP language to in-
clude the typed first-order form and arithmetic. However, there had not been
a corresponding production of TPTP problems that use typing or arithmetic,
or the development of ATP systems that could solve TPTP problems that use
typing or arithmetic. This was a chicken-and-egg situation — without such prob-
lems in the TPTP problem library there was little infrastructure support for
developing the systems, and without the systems there was little motivation for
ATP users to produce such problems. It is hoped that the TFF0 developments
have broken the cycle: TFFO problems have been added to the TPTP prob-
lem library, systems that can solve TFFO problems have been developed (with
great potential for further work!), and the TPTP World infrastructure has been
extended to process TFFO0 problems and solutions.

TFFO problems without and with arithmetic were added to the TPTP in
release v5.0.0. The problems came from various sources. Firstly, problems were
found in the many papers that describe type systems, e.g., [36,13]. Not all the
problems were suitable, mainly because they employ subtyping, but others were
translated to the TFFO syntax. Secondly, existing TPTP CNF problems were
analyzed for implicit type information. The CNF problems were converted in an
obvious way to FOF, and then combined with the type information to produce
TFFO problems. Thirdly, TPTP users were asked for such problems, and several
replied. Finally, a suite of purely arithmetic conjectures was produced, aimed at
testing the basic arithmetic capabilities of ATP systems (these are in the ARI
domain of the TPTP problem library). Since then some users have contributed
TFFO problems with and without arithmetic, and TPTP v5.3.0 contains 970
TFFO0 problems, of which 846 include arithmetic.

Twelve ATP systems have been written for or adapted to problems written
in TFFO, eleven of which have some arithmetic capability. They are CVC3 [5]
H2WO4 [33], leanCoP-{2 [31], Otter [20], MELIA [7], MetiTarski [1], SNARK
[28], SPASS+T [22], SPASS-XDB [35], ToFoF, Vampire, Z3 [14]. ToFoF is the
system that has no arithmetic capability — it is simply the TPTP2X implementa-
tion of the translation described in Section 2.3, combined with either the E prover

7 Free function symbols with the result type $i are less problematic.



[27] for theorem proving or Paradox [11] for model finding. For input, H2WO4,
leanCoP-£2, MELIA, SNARK, Vampire, and Z3 read TFFO0 natively. For CVC3,
TPTP2X is used to translate the formulae to SMT2 syntax [4]. For the other
five systems, TPTP2X is used to translate the formulae to FOF. SPASS-XDB
and the ToFoF backends read FOF natively. For leanCoP-{2, Otter, and Meti-
Tarski, TPTP2X is further used to export the formulae in their input syntaxes.
Six of the systems rely, to a greater or lesser extent, on external procedures for
dealing with the arithmetic aspects of problems. H2W0O4 and SPASS-XDB use
Mathematica, leanCoP-{2 uses the Omega test system [23], SPASS+T uses the
Yices or CVC3 SMT solver, and MetiTarski uses the QEPCAD-B decision pro-
cedure for the theory of real closed fields [10]. All the systems are available in
the SystemOnTPTP interface.® Seven of the systems entered the TFA division
of CASC-23, which was won by SPASS+T [34].

The TPTP World infrastructure includes various tools to support ATP users
and developers. This infrastructure has been extended to process TFF0 formulae.
The Prolog, Java, lex/yacc, and C parsers, which are available as part of the
TPTP World, have been updated to support TFF0. These developments make
it possible to extend other TPTP World tools, e.g., the GDV derivation verifier
and the IDV derivation viewer, to TFFO data. A utility for checking that all
symbols have declared types has been implemented, and a full type checker is
being developed. This is ongoing work.

5 Conclusion

This paper has described the TPTP World infrastructure for typed first-order
form logic, and its use for expressing arithmetic. The aim of developing the
infrastructure is to support research, development, and deployment of ATP for
the TFF logic, as a step towards satisfying a long-standing demand from ATP
users. Propagation of the TFF language is partially reliant on contributions
of TFF problems to the TPTP, and the automated reasoning community is
encouraged to make contributions.

Current work includes the addition of conditional terms and formulae, let-
binders, and a $distinct predicate to implement unique names. Other TPTP
users are extending TFF0 with polymorphic types.? Future work includes devel-
oping a general framework for specifying further theories, e.g., booleans, arrays,
bit-vectors, in a machine readable way, along the lines of the SMT-LIB theory
specifications.

Acknowledgments: Alexandre Riazanov did the analysis of TPTP CNF prob-
lems for implicit type information. Michael Schick and Peter Watson produced
many of the TFF and arithmetic problems. Mark Stickel provided a lot of use-
ful feedback on the arithmetic syntax, and the selection of defined arithmetic
functions and predicates. Uwe Waldmann provided valuable feedback on precise

8 http://www.tptp.org/cgi-bin/SystemOnTPTP
9 https://sites.google.com/site/polymorphictptptff/home



formulation of parts of the specification. John Harrison helped with insights on
computability issues. Andrei Voronkov made some helpful suggestions.
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