
Improved Device Driver Reliability
Through Hardware Verification Reuse

Leonid Ryzhyk12 John Keys3 Balachandra Mirla12 Arun Raghunath3

Mona Vij3 Gernot Heiser12

1 NICTA ∗ 2 University of New South Wales 3 Intel Corporation

leonid.ryzhyk@nicta.com.au john.keys@intel.com balachandra.mirla@nicta.com.au
arun.raghunath@intel.com mona.vij@intel.com gernot.heiser@nicta.com.au

Abstract

Faulty device drivers are a major source of operating system fail-
ures. We argue that the underlying cause of many driver faults is
the separation of two highly-related tasks: device verification and
driver development. These two tasks have a lot in common, and
result in software that is conceptually and functionally similar, yet
kept totally separate. The result is a particularly bad case of du-
plication of effort: the verification code is correct, but is discarded
after the device has been manufactured; the driver code is inferior,
but used in actual device operation. We claim that the two tasks,
and the software they produce, can and should be unified, and this
will result in drastic improvement of device-driver quality and re-
duction in the development cost and time to market.

In this paper we propose a device driver design and verification
workflow that achieves such unification. We apply this workflow to
develop and test drivers for four different I/O devices and demon-
strate that it improves the driver test coverage and allows detecting
driver defects that are extremely hard to find using conventional
testing techniques.

Categories and Subject Descriptors D.4.4 [Operating Systems]:
Input/Output; B.4.2 [Input/Output and Data Communications]:
Input/Output Devices

General Terms Reliability, Verification

Keywords Device Drivers, Reliability, RTL Testbenches, Auto-
mated Testing, Co-verification.

1. Introduction

Device drivers are critical components of an operating system (OS),
as they are the software that controls peripheral hardware, such
as disks, network interfaces or graphics displays. They make up
a large fraction of OS code, e.g., around 70% in Linux.

∗NICTA is funded by the Australian Government’s Department of Communications,
Information Technology, and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of Excellence programs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

Drivers are also important for another reason: they are the lead-
ing reliability hazard in modern OSes. Drivers are known to be re-
sponsible for the majority of OS failures[9], and have been shown
to have 3–7 times the defect density of other OS code [5].

Our recent study [21] has shown that the leading class of driver
defects, comprising about 40% of all driver bugs, are device proto-
col violations, i.e., situations where the driver incorrectly handles
the software interface of the device. Common examples of such de-
fects include incorrect use of device registers, sending commands
to the device in the wrong order, incorrectly interpreting device re-
sponses, etc.

Device protocol violations are easy to introduce but hard to de-
tect and eliminate. They are easy to introduce because driver devel-
opers often lack adequate documentation describing how the device
should be controlled from software. Available documentation pro-
vided by hardware designers in the form of a device datasheet is
usually incomplete and inaccurate, leading to numerous driver de-
fects.

Device protocol violations are hard to detect due to limitations
of the conventional quality assurance process based on testing. In
order to thoroughly test the interaction between the driver and the
device, the test harness must exercise the driver under various com-
binations of inputs from the OS and the device. Existing device
driver testing kits [16, 25] do a good job of exercising the OS inter-
face of the driver by generating various sequences of I/O requests
that model real application scenarios. Testing different hardware
operating conditions is a much harder task. For instance, the be-
haviour of a network controller device depends on the Ethernet line
speed, data throughput, collision rate, inter-packet gap, hardware
flow control, and numerous other parameters. The device driver
must be able to correctly handle the device under any combination
of these parameters.

The problem is that controlling the values of these parameters
requires special hardware, firmware, and software support on the
remote host. While such support can be provided in principle [25],
this is rarely done in practice due to the high complexity of this
approach. As a result, many driver defects escape even seemingly
thorough testing that does not model different environments that
the device can be placed into.

Other components of the system that affect the device behaviour
include the CPU, the I/O bus, and the OS scheduler. All of these
components influence the timing of communication between the
driver and the device in ways that are beyond the control of the
testing software, which further limits the achievable test coverage.
For example, I/O bus contention in a system with multiple active
I/O devices can reduce the device-to-memory data transfer speed
and lead to internal device buffer overflow, which must be carefully

handled by the driver. Since such uncommon scenarios cannot be
easily triggered in a directed fashion, they often remain untested.

In addition to the lack of control over the driver’s execution en-
vironment, the conventional driver testing methodology also suf-
fers from the lack of observability of the device behaviour. Every
I/O request sent to the driver must result in certain events occur-
ring at the external interface of the device. For instance, a request
to send a network packet must result in the correct data, with valid
CRC and padding fields being sent through the Ethernet interface
of the device. Since the testing code cannot directly monitor this
external device interface, it must rely on indirect evidence to make
sure that the driver completed the operation correctly. This is not
always sufficient, since an incorrect behaviour is often concealed
by timing delays or by hardware reliability mechanisms.

In summary, conventional driver testing suffers from serious
limitations that reduce its effectiveness in detecting driver defects.
The problem is exacerbated by the inadequate device documenta-
tion, leading to the overall poor quality of driver code.

We argue that the underlying cause of these difficulties is
the separation of two highly-related tasks: device verification and
driver development. As explained in more detail in the following
sections, these two tasks have a lot in common, and result in soft-
ware that is conceptually and functionally similar. The main differ-
ence is that the hardware verification code is built around a sim-
ulated model of the device and thus has complete control over all
components of the simulated environment, including the I/O bus,
the external physical medium, and the thread scheduler, which en-
ables thorough testing of the device as well as device control logic.
In contrast, the driver is developed in the OS environment running
on top of the real hardware, which does not allow tight control over
the testing process.

The result is a particularly bad case of useless duplication of
effort: the verification code is correct, but is discarded after the
device has been manufactured; the driver code is inferior, but used
in actual device operation.

Our central claim is that the two tasks, and the software they
produce, can and should be unified, and this will result in a dras-
tic improvement of device-driver quality. To support this claim, we
have developed a workflow in which the driver developer imple-
ments and tests the driver in the context of the device verification
environment. The resulting driver is then transferred without modi-
fications to the OS environment. The workflow guarantees that code
that works correctly in the verification environment results in a cor-
rect driver.

In the proposed workflow, driver testing is performed in parallel
with hardware verification, months before the actual hardware is
manufactured. As a result, driver testing is no longer in the critical
path to product delivery, which enables shorter product develop-
ment times and encourages more thorough testing.

We evaluate this workflow by applying it to develop and test
drivers for 4 different I/O devices. The results are encouraging: we
were able to find 9 driver defects, all of which would have been
extremely hard to find using conventional driver testing techniques.
Furthermore, we demonstrate that this approach allows improving
the quality of hardware verification by finding two hardware design
defects in one of the devices.

The rest of the paper is structured as follows. Section 2 gives an
overview of the hardware verification workflow. We introduce the
main ideas behind our approach to verification reuse in Section 3.
Section 4 discusses potential advantages and limitations of this
approach. Section 5 presents design and implementation details.
We evaluate the proposed approach in Section 6, survey related
work in Section 7 and draw conclusions in Section 8.

scenario

DUT

PHY

agent

BFM

monitor

scoreboard

checker

Figure 1. The RTL testbench architecture.

2. Hardware verification

This section provides an overview of the hardware verification
process used in the majority of modern hardware designs.

In current industrial practice, design and testing of a device are
tightly integrated. Starting from a formal or informal description
of the desired device functionality, the hardware engineer develops
a register transfer level (RTL) design of the device. As mistakes
are expensive and time-consuming to fix once the design has been
fabricated in silicon, much effort is put into verifying the design in
a simulated environment prior to producing hardware. The software
infrastructure for such verification, called the RTL testbench, is
developed in parallel with the design of the device.

The testbench is designed to exercise the RTL design and val-
idate its behaviour under a wide range of operating conditions.
Most modern testbenches follow the layered architecture shown in
Figure 1, which models the hardware and software structure of a
real computer system. It is built around a simulated model of the
device, called the design under test (DUT). The DUT is connected
to a bus functional model (BFM), which simulates the I/O bus the
device is connected to. It accepts bus-read and -write commands
from higher layers and translates them into bus transactions at the
device interface. The agent module consists of functions and asso-
ciated state that implement high-level device transactions such as
sending network packets, changing device configuration, handling
interrupts, etc.

The scenario layer consists of test scenarios designed to thor-
oughly test the device in various modes. Finally, the bottom layer
of the testbench simulates the physical medium that the device
controls. For instance, if the DUT is an Ethernet Medium Access
Control (MAC) controller, this layer simulates an Ethernet physical
transceiver (PHY) chip.

In addition to the above modules that model components of
a computer system, a complete testbench contains modules re-
sponsible for monitoring and validating the device operation. The
scoreboard module keeps track of requests sent by the agent to
the DUT and predicts the results of these requests. The monitor
module records input and output signals at the physical interface
of the device and groups them into high-level transactions. The
checker compares transactions observed by the monitor against pre-
dicted ones recorded in the scoreboard. Finally, coverage points
(not shown in the figure) are used to measure the progress of the
testbench in fulfilling the verification plan requirements.

The testbench is usually designed to operate in the directed and
randomised modes. In the directed mode, the testbench validates
device responses to pre-defined sequences of input stimuli. In the
randomised mode, the testbench generates random sequences of
stimuli subject to a set of constraints. Randomisation applies to
the ordering, timing, and content of messages sent to the DUT via

OS

device

medium

device
driver

bus
transport

Figure 2. The operating system I/O stack architecture.

the bus and the PHY interfaces. Since the testbench has complete
control over device interfaces, the test coverage is only limited by
the duration of the testing run.

Constructing such a testbench involves substantial engineering
effort. It is not uncommon for an RTL testbench to be larger and
more complicated than the design that it is intended to test. This
complexity can be somewhat reduced by using domain-specific
languages such as SystemC and SystemVerilog that provide sup-
port for common tasks arising in testbench design, such as gen-
eration of constrained-random stimuli and interfacing with RTL.
In order to further reduce the effort involved in testbench devel-
opment, electronic design automation (EDA) tool vendors provide
verification class libraries that facilitate the construction of layered
designs similar to the one shown in Figure 1. Examples of such li-
braries include the Verification Methodology Manual (VMM) [2]
library from Synopsys and the Open Verification Methodology
(OVM) [17] library from Mentor and Cadence.

3. A co-verification approach to driver reliability

This section presents our proposed approach to driver quality assur-
ance. In particular, we argue that the hardware verification ecosys-
tem described in the previous section can be reused for driver de-
velopment and testing.

We observe that the agent component of the testbench (Figure 1)
provides similar functionality to a device driver and could in prin-
ciple use the same implementation.

The agent accepts high-level I/O and configuration requests
from the scenario layer and turns these requests into sequences
of device-register read and write operations. Examples of requests
handled by the agent include sending a network packet, performing
a USB bus transaction, or writing a block of data to the disk.
The agent also receives interrupt notifications from the DUT, reads
device status registers, and informs the scenario layer about the
completion status of requested operations.

For comparison, consider the operating system I/O stack archi-
tecture shown in Figure 2. It consists of the hardware device con-
nected to the physical medium, the I/O bus transport comprised of
the physical I/O bus and the OS bus framework, and the device
driver providing services to the rest of the OS.

Similarly to the agent component of the testbench, the driver
converts high-level requests from the OS into low-level interactions
with the device over the bus transport. Yet, the agent is developed in
a more supportive environment than the driver. Firstly, verification
engineers have complete access to all device specifications and
design internals. As such, they are in a good position to implement
device control logic correctly. In contrast, driver developers only
have access to the (frequently incorrect) datasheet.

Secondly, the device-control logic can be tested in the context
of the RTL testbench more exhaustively than in the context of a
driver. The testbench is specifically designed to expose various cor-
ner cases in the device behaviour. It has complete control over all
components of the simulated environment and can model unusual
situations like bus contention, network collisions, etc. As a side
effect, such testing also exposes defects in other testbench compo-
nents, including the agent, since such defects are likely to cause
failures in verification scenarios.

Given the conceptual similarity between testbench and driver
code, it seems promising to reuse the former for developing the lat-
ter. However, achieving this in practice faces significant challenges.

While the agent and the device driver serve a similar purpose in
their respective environments, the exact interface they implement
can be different. Adapting the agent implementation to the driver
interface enforced by a particular OS may involve significant refac-
toring, e.g., splitting one operation into several or adding calls to
OS-specific services. In addition, such adaptation requires writing
device-specific glue code to translate OS requests into calls to agent
functions. The need for these time-consuming and error-prone steps
compromises the purpose of code reuse.

Instead of trying to adapt existing testbench code to work in the
OS environment, we propose unifying the device driver interface
across the OS and the testbench. A correct implementation of this
interface is guaranteed to work correctly in both environments. We
call such a reusable implementation an environment-independent
device driver.

One way to achieve driver interface unification is to simulate
the existing device driver API defined by the OS in the testbench
environment. This way, a driver developed and tested in the context
of a testbench can be reused directly in the OS kernel without
the need for any modifications or wrapper code. Moreover, it is
also possible to incorporate an existing OS driver in the testbench
environment. This is useful for testing drivers developed using the
conventional methodology.

The downside of this approach is that the resulting driver is only
compatible with one OS. This is often acceptable, in particular for
embedded devices that are designed for use with a specific system.

An alternative approach that allows producing reliable drivers
for multiple OSes is to define a single, unified driver interface to
be supported by the testbench as well as by each target OS. The
resulting testbench and OS architectures are shown in Figure 3.
In both environments, the device is managed by the environment-
independent device driver, which implements two standardised in-
terfaces: the generic device-class interface shared by all similar de-
vices (e.g. all Ethernet controllers or all SCSI adapters) and the
generic bus interface that provides generic methods for access to
a specific bus type (PCI, USB, etc). The environment-independent
driver is developed and tested in the context of the testbench and is
reused without modifications inside the OS.

In the testbench environment, the driver interacts directly with
the scenario layer and the BFM, which are designed to be compati-
ble with the generic device-class and bus interfaces. In the OS envi-
ronment, additional wrappers are required to translate between OS-
specific driver interfaces and the corresponding generic interfaces.
These wrappers only need to be implemented once for each OS
and each generic interface. This way the environment-independent
driver can be reused not only between the testbench and the OS
environment but also across different OSes.

This architecture enables driver verification reuse across mul-
tiple operating systems at the cost of having to provide interface
wrappers for each supported OS. In addition, it is not compatible
with existing OS-specific device drivers.

In this paper we experiment with both OS-specific and OS-
independent driver interfaces and demonstrate that both approaches

OS

bus
transport

device

medium

generic device-class iface

generic bus iface

wrapper

wrapper

environment-
independent

driver

scenario

BFM

DUT

PHY

generic device-class iface

generic bus iface

(a) testbench (b) OS

environment-
independent

driver

Figure 3. The testbench and OS architecture using a common
implementation of the environment-independent device driver.

work in practice. The choice of the optimal solution is left to the
user and depends on whether they require support for multiple OSes
as well as how much effort they are prepared to invest in the driver
verification infrastructure.

Interface compatibility is not sufficient to ensure that a driver
developed in the testbench environment will work correctly in the
OS environment. In particular, some of the implicit assumptions
about the environment incorporated in the driver code may not
hold inside the OS. The OS may perform various operations in
a different order than the testbench, or issue concurrent calls to
operations that the testbench executes sequentially. As a result, the
driver based on this code may contain defects even though the code
was thoroughly tested in the testbench environment.

In order to avoid such defects, we associate a detailed be-
havioural contract with the device-class interface. The contract de-
fines constraints on the ordering of driver requests and responses
as well as operations that the device must complete to satisfy each
request. A correct driver must handle any sequence of requests per-
mitted by the contract. Any valid environment must use the driver
in a way that satisfies all constraints of the contract.

In case the driver implements an OS-specific interface, the con-
tract must capture constraints imposed by the OS on driver be-
haviour. Such a contract can be derived from OS documentation
and source code. Alternatively, if an OS-independent interface is
used, the contract must be defined together with the interface.
Section 5.2 discusses contracts in more detail.

In order to test the environment-independent driver against con-
straints of the contract, we implement a contract conformance
tester as an extension of the testbench environment. The tester con-
sists of two parts. The first part is a testing scenario that randomly
generates valid sequences of requests to the driver. The second part
consists of monitoring and checking components that keep track of
outstanding requests, driver responses, and operations performed
by the device and validate them against constraints of the contract.

In summary, our proposed driver development and testing work-
flow consists of the following steps.

1. The driver developer implements an environment-independent
driver for the device in question. The driver must comply with
the appropriate device-class and bus interface specifications.
These interfaces can be OS-specific or OS-independent.

2. The verification engineer constructs a co-verification environ-
ment for the driver. To this end they either modify an existing
device testbench or, if one does not exist, build a new testbench

for use as a co-verification environment from the ground up.
Refactoring an existing testbench that has not been designed for
co-verification involves replacing the agent component of the
testbench with the environment-independent driver. It also re-
quires modifying the scenario layer and the BFM to support ap-
propriate driver interfaces. The rest of the testbench infrastruc-
ture, including PHY, DUT, monitor, checker, and scoreboard
modules, are reused with minimal or no changes.

3. The verification engineer extends the resulting testbench with
the contract conformance tester, which provides additional test-
ing scenarios to check that the driver correctly implements the
device-class contract. The contract conformance tester needs to
be implemented once for a class of devices.

4. Once the driver has been tested in the co-verification environ-
ment, it undergoes final testing in the target OS environment.

Note that this workflow does not attempt to shift the task of
driver development from system programmers to hardware verifi-
cation engineers, but rather enables them to work together in order
to improve the quality of both the driver and the device.

4. Analysis

The hardware/software co-verification technique introduced in the
previous section has the potential to significantly improve driver
reliability by performing driver testing earlier in the product life
cycle and by achieving better test coverage. On the other hand,
the need to change current hardware verification practices may
impede the practical application of this technique. In this section
we analyse potential advantages and limitations of the proposed
approach.

4.1 Improved driver test coverage

We start with analysing how hardware/software co-verification im-
proves the likelihood of detecting various types of driver defects.
To this end, we adopt the taxonomy of driver defects developed in
our earlier work [21]. We distinguish four categories of defects:

1. Device protocol violations occur when the driver incorrectly
handles the device interface by issuing an invalid sequence of
requests to the device or incorrectly interpreting data received
from the device.

2. OS protocol violations occur when the driver violates the order-
ing, content, or timing of interactions with the OS.

3. Concurrency defects occur when a driver incorrectly synchro-
nises multiple threads of control executing within it, causing a
race condition or a deadlock.

4. Generic programming faults include common coding errors,
such as memory allocation errors and typos.

Device protocol violations account for about 40% of all driver
defects, with the remaining defects distributed evenly across the
other three groups [21].

4.1.1 Device protocol violations

As discussed in Section 1, the conventional driver testing environ-
ment has insufficient control and visibility of the device behaviour,
which limits its ability to detect situations where the driver incor-
rectly uses the device interface.

In contrast, the device testbench built around the simulated
model of the device can control device inputs and observe its
outputs and its internal state at the clock-cycle granularity. In order
to exhaustively test the device under a wide range of operating
conditions, the testbench is equipped with stimuli generators that

feed various patterns of input signals to the device, monitors that
interpret device outputs, and checkers that validate these outputs.

Importantly, testing the driver requires the same generators and
monitors as testing the device. This allows leveraging the signifi-
cant effort invested in the hardware-verification infrastructure for
driver testing. For example, the Ethernet PHY model used in test-
ing the Ethernet MAC controller device (Figure 1) should be able
to simulate network traffic to the device with a broad range of pa-
rameters. On the one hand, this is necessary for testing the con-
troller operation under various network traffic conditions. At the
same time, this also allows thoroughly testing how the driver han-
dles data exchange with the device.

The fine-grained visibility of the device behaviour enables end-
to-end validation of driver-device interactions. This validation is
carried out by the contract conformance tester, which checks that
every I/O request issued to the driver is successfully completed by
the device. For example, it monitors the network interface of the
device to make sure that packets sent to the driver appear at the
network interface in the right order and that none of the packets are
dropped or delayed. Note that such validation cannot be achieved
during conventional driver testing, where the test harness can only
observe driver’s responses to I/O requests but not the matching
device behaviours.

4.1.2 OS protocol violations

Device-class contracts are also the main means of testing OS proto-
col compliance of a device driver. The contract conformance tester
is designed to randomly simulate all possible sequences of requests
that the driver can get from the OS and to validate driver responses
against contract requirements.

4.1.3 Concurrency defects and generic programming errors

The co-verification methodology that we present here does not
provide special means to detect generic programming errors and
concurrency defects. However, generic programming errors, such
as bugs in bit-level arithmetic, often lead to device or OS protocol
violations, in which case they can be detected using mechanisms
described above.

In contrast, concurrency defects are unlikely to be detected in
the co-verification environment. In order to achieve deterministic
execution, device testbenches are usually designed around the co-
operative threading model. As a result, most thread interleavings
that may cause race conditions in the OS kernel environment do
not occur in the testbench environment.

Concurrency defects and generic programming errors can be
mitigated using complementary techniques, including static anal-
ysis [12] and software fault isolation [26].

4.1.4 Hardware defects

While the co-verification approach is primarily intended to detect
device-driver defects, it also has the potential to improve the quality
of hardware testing.

Most device testbenches derive their testing scenarios from the
specification of the device being tested. These scenarios represent
the hardware designer’s idea of how the device is going to be used,
rather than the actual usage patterns that occur in a real system.

Contract-based testing closes this gap. By testing the device
driver for adherence to the contract, we simultaneously test the de-
vice under a wide range of scenarios that model how the device will
be used in a real OS. This helps uncover hardware-design defects
missed by other testing scenarios before the device is implemented
in silicon.

4.2 Impact on the testbench architecture

The proposed co-verification methodology relies on hardware ver-
ification engineers to incorporate environment-independent device
drivers and device-class contracts in their testbenches. The need to
change well-established verification practices may complicate the
industrial adoption of this methodology.

For the approach to be practical, such changes must be kept
to a minimum. In particular, modifications required to the existing
verification infrastructure to make it compatible with environment-
independent driver interfaces only affect the BFM and the scenario
layer, which comprise a small fraction of the testbench code. We
argue that such modifications are not only acceptable, but that
they improve the testbench architecture: interface unification helps
avoid reinventing the same interface for every device and facilitates
code reuse across testbenches.

4.3 Impact on driver development and maintenance

In current OSes, driver development follows one of two dominat-
ing models. In the first model the driver is created and maintained
by the hardware-device vendor. This approach is standard for Win-
dows drivers. The co-verification methodology fits well into this
model, as both the initial version of the driver and all subsequent
releases can be tested by the hardware vendor in the co-verification
environment.

In the second model, used for the majority of Linux drivers,
driver maintenance is the responsibility of OS developers. The ini-
tial version of the driver is often provided by the hardware vendor.
However, subsequent support, including bug fixing and adaptation
to kernel API changes is performed by one of the kernel develop-
ers. In this model the driver maintainer does not have access to the
device testbench; hence co-verification can only be performed by
the device vendor on the initial version of the driver.

In the worst-case scenario, the device vendor does not provide
even the initial driver implementation. The driver is written by OS
developers based on the device datasheet or by reverse engineering
an existing driver for another OS. In this scenario, the driver de-
veloper does not have access to the device RTL and its testbench;
hence co-verification is not applicable to such drivers.

The use of OS-independent driver interfaces allows improving
this process. Instead of implementing drivers for multiple OSes,
the device vendor can publish the co-verified OS-independent im-
plementation of the driver. OS developers only need to build and
maintain interface wrappers for relevant interfaces.

4.4 Simulation speed

The quality of testing is related to its duration: longer test runs de-
tect more defects and result in more reliable drivers. One limitation
of testing in the simulated testbench environment is that simulated
devices typically run three to four orders of magnitude slower than
real hardware. As a result, fewer tests can be run in the given time
frame.

Low simulation speed is compensated for by higher testing
precision: while conventional driver testing ends up hitting the
same common-case execution paths most of the time, the testbench
uses its fine-grained control over device interfaces to drive the
device into various corner-case situations. To this end, it relies on
randomisation and careful choice of testing scenarios.

The problem can be further mitigated using techniques for
improving simulation speed. These include FPGA-based test-
ing [3] and replacing low-level RTL device models with more ab-
stract models that simulate faster [27]. Finally, testing in the co-
verification environment can be complemented by faster, but less
accurate, conventional OS-based testing.

4.5 Unified driver-OS interface

Generic device-class and bus interfaces enable the reuse of verifi-
cation results across multiple OSes: a driver tested in the testbench
environment should work correctly in the context of any OS that
provides wrappers for the appropriate generic interfaces.

Unfortunately, previous attempts to introduce a unified driver
interface [20] were not successful, because major OS vendors were
reluctant to give up the competitive advantage of having better
hardware support than less popular systems. In addition, open-
source systems like Linux continuously evolve their driver inter-
faces, so that drivers are not even portable across Linux kernel re-
leases. Cross-OS interface unification looks problematic in these
settings. Therefore, in the short term the use of OS-specific inter-
faces in co-verification is likely to be a more practical approach.

4.6 Handling non-standard device features

The co-verification methodology described so far assumes that
all devices of the same type provide equivalent functionality and
can be accessed via a common interface. This allows the reuse
of the entire co-verification infrastructure, including the contract
conformance tester and OS wrappers, for all devices of the same
class.

In practice, many I/O devices support non-standard features
that are not covered by the existing device-class interface. Often
these features distinguish the product among competitors; therefore
reliable software support for them is important.

In order to support such non-standard devices, a custom version
of the device-class interface and the associated contract confor-
mance tester must be produced for the device. In addition, the OS
wrappers also need to be modified to support the new behaviours.
We expect such modifications to be strictly incremental in most
cases, since non-standard devices are usually compatible with all
features of the standard ones.

Thus, the reuse of the verification environment can be extended
even to non-standard devices, although additional per-device effort
is required in such cases.

Note that the problem is not unique to the co-verification
methodology. Inherently, devices with non-standard features re-
quire special testing code. However, with our approach, existing
device-class contract testers can be immediately reused to test the
generic functionality of non-standard devices, since such devices
must still support all the features present in simpler devices.

5. Design and implementation

5.1 Interface specifications

Before starting on the implemention of the driver and its co-
verification environment, one must obtain specifications of the
driver interfaces. In case OS-specific interfaces are used, their spec-
ifications can be extracted from OS header files. Alternatively, if
the co-verification environment is constructed around generic OS-
independent interfaces, these interfaces need to be defined first.

Ideally, generic driver interfaces should be standardised across
the industry, which will facilitate the reuse of the associated test-
bench components. In practice, however, different vendors are
likely to define their own generic interfaces and develop the entire
co-verification infrastructure in-house. In either case, these inter-
faces must be designed by system programmers, who have in-depth
understanding of how the OS interacts with hardware.

Generic interfaces resemble analogous driver interfaces defined
by an OS. Unlike OS-specific interfaces, however, generic driver
interfaces must allow implementation in any OS, i.e., it should be
possible to build an efficient wrapper to translate between the OS-
specific and the generic interface.

1 v i r t u a l c l a s s e t h e r n e t m a c ;
2 v i r t u a l task mac enab le (. . .) ;
3 v i r t u a l task mac d i s a b l e (. . .) ;
4 v i r t u a l task t x q u eu e p a c k e t (. . .) ;
5 . . .
6 endc la s s : e t h e r n e t m a c
7

8 v i r t u a l c l a s s e t h e r n e t m a c cb ;
9 v i r t u a l task t x p a c k e t s e n t (. . .) ;

10 . . .
11 endc la s s : e t h e r n e t m a c cb

Figure 4. A fragment of the Ethernet controller device-class inter-
face specification in SystemVerilog.

We start defining a generic device-class interface by identifying
the set of I/O operations that this particular device class must sup-
port. These include data transfer requests (e.g., sending and receiv-
ing packets), configuration requests, power management requests,
etc. We analyse how each of these operations is implemented in
several existing OSes in order to come up with a design that is effi-
cient, e.g., avoids unnecessary data copying and blocking, and that
can be mapped onto existing OS interfaces. Based on this analysis,
we determine whether the given operation should be implemented
as a single, potentially blocking, method or as a request-completion
chain and define the list of its arguments and their types.

A generic interface specification can be written in either a sys-
tem programming language, e.g., C or C++, or in a hardware-
verification language, e.g., SystemVerilog or SystemC. It can then
be automatically translated into any other supported language. To
this end, language subsets that allow mapping to other languages
must be used.

Figure 4 shows a fragment of the generic interface specification
for the Ethernet MAC controller device class, written in SystemVer-
ilog. This interface must be implemented by any environment-
independent Ethernet device driver. The first part of the specifica-
tion (lines 1 through 6) lists methods that an Ethernet driver must
provide to the OS, including methods to enable and disable the
controller, add a new packet to the device transmit queue, etc. The
second part (lines 8–11) defines the callback interface that the OS
must provide to the driver. The driver uses this interface to report
device status changes and I/O request completions to the OS. For
instance, the tx packet sent callback notifies the OS about suc-
cessful transmission of a packet.

In addition to generic device-class interfaces, one must also
specify generic bus interfaces (see Figure 3) for various types of
I/O buses as well as generic interfaces to common OS services such
as timers, synchronisation, and DMA buffer management.

In particular, design of the DMA buffer management interface
raises some interesting issues due to the different ways in which the
testbench and the OS manage devices’ access to physical memory.
In the OS environment, access to memory is mediated by address-
translation hardware, including the MMU and the IOMMU. In
contrast, in the testbench environment the driver and the device
both have direct access to a simulated RAM.

In order to abstract away the differences between the two mod-
els, we designed a generic DMA buffer management API that al-
lows efficient implementation in the testbench environment as well
as in any OS kernel. The API exports two simple abstractions: the
iospace abstraction that represents the device’s view of the physi-
cal RAM, and the iobuffer abstraction that represents a data buffer.
All mapping, translation, and coherency issues are handled trans-
parently by the internal implementation of the API.

5.2 Device-class contracts

A device-class contract extends the device testbench with a specifi-
cation of how the OS interacts with the device. It defines constraints
on the ordering of requests and responses exchanged by the driver
and the OS. It also defines the semantics of each request in terms
of its effect on the device behaviour.

The following is a simplified example of a rule defined by the
Ethernet controller device-class contract:

1. When the controller is enabled, the OS can call the
tx queue packet method of the driver to transmit a
network packet.

2. The driver must transmit packets received from the OS
over the network in FIFO order.

3. Once a packet has been transmitted, the driver must
notify the OS via the tx packet sent callback.

The second clause of the rule is the most interesting one, as it
relates OS requests to the expected device behaviour. By enforcing
this rule at run time, the co-verification environment makes sure
that the driver correctly completes all transmit requests. This is
in contrast to conventional driver testing where the test program
cannot directly observe whether the device has really performed
the requested operation.

A device class contract must be sufficiently restrictive to rule
out any illegal behaviours, yet sufficiently liberal to allow a range
of possible valid behaviours. For example, the network controller
is not allowed to drop an incoming packet when its receive buffer
is empty and the packet is received without an error. A failure to
deliver such a packet to the OS indicates a defect in either the device
or the driver. On the other hand, the controller may or may not drop
the packet if the inter-packet gap is too short, the receive buffer is
full, or the packet is longer than the currently configured threshold.
To complicate things further, if several such packets arrive in a row,
the controller can accept any subset of them.

Error handling is another source of complexity in contract spec-
ifications. The driver must correctly report the status of completed
I/O requests to the OS. For example, if hardware CRC checking is
enabled and the device receives a packet with invalid CRC field,
the driver must report a CRC error.

Finally, a contract must capture various interleavings of hard-
ware and software events. For example, when the network con-
troller is disabled, it must drop all incoming packets. After the OS
enables the controller, it must deliver incoming packet to the OS.
However, depending on the implementation of the driver and the
device, they can keep receiving packets while the disable or enable
request in in progress.

At the moment, device-class contracts are written as informal
documents. Based on this document, the verification engineer im-
plements a contract conformance tester that is integrated into the
device testbench and checks the driver’s contract compliance. The
tester consists of three modules shown in Figure 5. The contract
scenariomodule simulates the most general contract-compliant en-
vironment that the driver can be placed into by randomly issuing
requests to the driver according to the constraints of the contract. It
is designed in such a way that any valid sequence of requests will
be generated eventually with probability one.

The contract scoreboard module keeps track of outstanding re-
quests issued to the driver and the driver’s responses to these re-
quests. It operates at a higher level of abstraction than conventional
scoreboards used in hardware verification (see Figure 1). While the
hardware scoreboard records individual bus transactions, the con-
tract scoreboard records high-level I/O requests to the driver.

Finally, the contract checker module observes the device be-
haviour and validates it against requests recorded in the scoreboard.

scenario

environment-
independent

driver

BFM

DUT

PHY

monitor

contract
scoreboard

contract
checker

contract
scenario

scoreboard

checker

tx_queue_packet
tx_packet_sent

frame transmitted...011010...

generic device-
class iface

generic bus
iface

Figure 5. Ethernet controller co-verification environment with the
contract conformance tester.

As a concrete example, consider how the rule cited above is
enforced by the Ethernet device-class contract conformance tester.
The contract scenario module implements the first clause of the
rule by randomly generating transmit requests to the driver (along
with other types of requests) whenever the controller is enabled.
The contract scoreboard records each packet sent to the driver
in its internal queue. The contract checker receives notifications
about transactions that occur at the PHY interface of the device
from the monitor module. In particular, it is notified whenever
the device transmits a complete Ethernet frame on the wire. It
checks that packets are transferred in FIFO order by comparing
the payload of this frame with the packet at the head of the internal
queue maintained in the scoreboard (clause 2). The checker also
gets notified by the contract scoreboard when the driver invokes
the tx packet sent callback and verifies that this only happens
after the successful transmission of the packet (clause 3). Finally,
it makes sure that the driver does not lose packets by checking that
every packet recorded in the scoreboard is sent on the network and
acknowledged by the driver within a certain time period.

The contract scoreboard and checker modules are incorporated
in the device testbench alongside the conventional scoreboard and
checker used in device verification (Figure 5). Likewise, the con-
tract scenario module is used along with potentially many other sce-
narios developed by verification engineers to test the device func-
tionality.

Implementing a contract conformance tester is a complex task;
therefore it is desirable to reuse the same implementation with
multiple testbenches for different devices of the same type. To this
end, all interfaces between the tester modules and the rest of the
testbench must be standardised. Inputs to the contract scoreboard
module are already standardised as part of the the device-class
interface specification. The only remaining interface that needs
to be defined is the one between the monitor and the contract
checker. For Ethernet devices, for example, this interface consists
of methods that notify the checker about frames sent and received
by the controller, network collisions, aborted transfers, etc.

5.3 Environment-independent drivers

The task of implementing an environment-independent device
driver is similar to that of writing a normal driver. One compli-
cation involved in sharing the driver implementation between the
testbench and the OS environment is that testbenches are writ-
ten in hardware verification languages such as SystemC and Sys-
temVerilog, whereas OS kernels can only host code written in C
or C++. One possible solution is to implement the environment-
independent driver in C or C++ and incorporate it into a SystemVer-

ilog or SystemC testbench using inter-language bindings. Alterna-
tively, the driver can be written in the same language as the rest
of the testbench and automatically translated into C. We expect
the former approach to be the more common one, as C and C++
are currently languages of choice for driver developers. If the latter
approach is taken, the use of the verification language must be re-
stricted to a subset that allows automatic translation to C. In case of
SystemVerilog, this mainly implies avoiding features that require
automatic garbage collection.

Detailed investigation of automatic SystemVerilog-to-C trans-
lation is beyond the scope of this research. Only one of the case
studies presented in Section 6 uses a SystemVerilog implementa-
tion of the driver. For this driver, the translation to C was performed
manually.

5.4 OS wrappers

OS wrappers implement the translation between OS-specific and
generic driver interfaces. This translation must be implemented ef-
ficiently to avoid performance degradation. In particular, operations
that involve data copying and synchronisation should be avoided in
the performance-critical data path.

Avoiding copying means that data buffers passed by the OS to
the driver should be converted from the OS-specific representation
into the generic iobuffer representation in place, i.e., without copy-
ing their data payload. To this end, we provide several implementa-
tions of the iobuffer interface on top of different data buffer primi-
tives supported by the OS. For example, Linux has separate primi-
tives for simple buffers, scatter-gather buffers, and network buffers;
hence three different iobuffer implementations are required.

6. Evaluation

In this section we evaluate the proposed co-verification methodol-
ogy with respect to the following criteria:

• Feasibility. We demonstrate that this methodology enables the
creation of device drivers that can be used without modifica-
tions in both the OS and the testbench environment. Further-
more, implementing a device driver using this methodology is
comparable in terms of required time and effort to conventional
driver development.

• Reliability. We show that hardware/software co-verification
helps improve driver reliability by detecting driver defects that
are extemely hard to find during conventional driver testing.

• Performance. We provide evidence that the improved driver re-
liability does not come at the cost of performance degradation.

6.1 Case studies

Our evaluation was performed as a series of case studies where
we implemented and tested drivers for four different devices. The
choice of devices was limited to open-source designs for which
RTL specifications are publicly available, and a limited selection
of designs used inside Intel.

In one of the case studies we built a co-verification environ-
ment around an existing Linux driver. In the three other case studies
we defined OS-independent driver interfaces for respective device
classes and implemented drivers and their co-verification environ-
ments around these interfaces.

Three of the case studies were accomplished by refactoring
existing device testbenches, whereas in the fourth case study we
implemented a testbench from scratch.

6.1.1 Case study 1: Ethernet controller

In the first case study we implemented and tested a driver
for the 100Mb/s Ethernet controller device from the OpenCores

project [18]. Our co-verification environment is based on an ex-
isting open-source testbench for this device developed using the
Synopsys VMM methodology [2].

This is the only case study where the environment-independent
driver was implemented in SystemVerilog and then manually trans-
lated into C. The translation was performed in a mechanical way
that mimicked the work of an automatic translator. In the other case
studies drivers were implemented in C from the beginning and in-
tegrated in the verification environment using SystemVerilog-to-C
bindings.

6.1.2 Case study 2: High-speed UART

The device used in this case study is a high-speed Intel UART
controller with an integrated DMA engine.

Our co-verification environment for this device is based on the
existing proprietary testbench, developed using the OVM method-
ology [17].

6.1.3 Case study 3: USB host controller

The third case study is based on an existing Linux driver for the
OpenCores USB 1.1 host controller device [19]. We implemented
the co-verification environment for this device on top of the existing
custom testbench that does not rely on any standard verification
methodology.

6.1.4 Case study 4: USB slave controller

Our final case study is based on an Intel USB slave controller device
. Since we did not have access to an existing device testbench, we
implemented our own testbench from scratch.

6.1.5 Summary of case studies

Table 1 summarises the four case studies. For each case study it
shows:

• The size of the native Linux driver for the given device.

• The size of the environment-independent driver used in co-
verification.

• The size of the co-verification infrastructure, excluding the
driver, the DUT, and the contract conformance tester (see
Figure 5).

• The size of the contract conformance tester.

The last two columns represent the reusable part of the co-
verification environment that can be applied to test multiple de-
vices of the same type and their drivers. As can be seen from the
table, this reusable part is an order of magnitude larger than the
driver that is being tested. The only exception is the last case study,
where we only implemented a minimal rudimentary testbench. An-
other observation that can be drawn from the table is that the size of
environment-independent device drivers is on par with equivalent
native Linux drivers.

6.2 Feasibility

We start with evaluating the feasibility of developing and testing
device drivers using the co-verification methodology.

Our case studies did not produce any surprises here: writing
an environment-independent driver was quite similar to writing
a regular OS-based driver, and involved a comparable amount of
labour.

Refactoring an existing testbench into a co-verification environ-
ment also proved a straightforward task. The main effort involved
in such refactoring is implementing various OS services required
by the driver, which took several days in our case studies. This is

Case study
Lines of code

Linux driver
Env-independent
driver

Co-verification
environment

Contract
conformance tester

1 Ethernet controller 1,189 957 10,032 1,794
2 High-speed UART 1,554 2,077 18,418 5,622
3 USB host controller 1,147 1,052 7,909 1,892
4 USB slave controller 3,333 2,705 427 1,230

Table 1. Summary of case studies.

a one-off effort, since the resulting implementation can be reused
when building a co-verifciation environment for a new device.

The next step is to introduce the contract conformance tester
into the testbench in order to thoroughly test the driver functional-
ity against OS requirements. Implementing this tester is the most
complicated and time consuming step in the co-verification work-
flow. Modelling and checking the outcomes of I/O requests under
various combinations of hardware and software inputs requires in-
volved logic. This logic is particularly difficult to get right given
that it must handle events from three concurrent sources: the driver,
the DUT, and the PHY module. In addition, it must reflect the non-
determinism in the driver and the device behaviour where the same
sequence of inputs can cause multiple valid outputs. The contract
conformance tester must be carefully implemented to allow all le-
gal outputs, while detecting any illegal ones.

The effort of developing a device-class contract conformance
tester could hardly be justified it it had to be done afresh for each
device. Fortunately, this work is amortised across many drivers of
the same class that can be tested using the common tester.

The effectiveness of the co-verification methodology can be fur-
ther improved by automating the task of writing contract confor-
mance testers. As mentioned in Section 5.2, device-class contracts
are currently written as informal documents. If contract constraints
are specified formally, one can in principle generate a contract con-
formance tester automatically from this specification. Our ongoing
work is focusing on languages and tools for automatic generation
of contract conformance testers.

In our case studies, we implemented co-verification environ-
ments on top of VMM and OVM testbenches, which represent the
two most popular hardware verification methodologies nowadays,
as well as on top of a custom testbench. This gives us confidence
that our approach to the reuse of the hardware verification infras-
tructure in driver testing applies to the majority of current device
testbenches.

Another encouraging observation is that the testbench provides
a better debugging environment for drivers than real hardware.
Driver developers are only too familiar with the frustrating situation
where a device simply refuses to behave as expected, a situation
which frequently requires a trial-and-error approach to resolve. It
is a consequence of the inability to inspect the internal state of the
device. In the testbench environment, the programmer has complete
access to the source code and the runtime state of the simulated
device, which helps tremendously in diagnosing difficult problems.

Driver debugging is further simplified due to the fact that the
testbench executes as a user-level program. This enables the use of
program debugging and analysis tools that are not available in the
kernel environment.

6.3 Reliability

For evaluating the impact of co-verification on driver reliability, we
set out to answer the following questions. Firstly, what types of
defects that are hard to find during conventional driver testing can
be detected using co-verification? Secondly, what types of defects
does co-verification fail to detect?

In order to answer the first question, we invert the normal co-
verification workflow: we start with developing and testing the
driver in the OS environment before moving to the co-verification
environment. Additional defects found during co-verification are
analysed to determine why they escaped detection during the ini-
tial testing. In some cases, the analysis showed that the defect could
have potentially been discovered in the OS environment by running
additional tests. In other cases, even extensive additional OS-based
testing would have been unlikely to find the defect. These defects
represent the classes of defects that can be eliminated or substan-
tially reduced using co-verification.

We followed this approach in case studies 2 and 4. Case study
3 takes a similar approach, but instead of implementing and testing
our own Linux driver we used an existing Linux driver for the de-
vice that had been used in several working designs. We ported this
driver to the co-verification environment with minimal changes.

Finally, case study 1 implemented the normal co-verification
workflow, i.e., it started with developing and testing the driver
in the co-verification environment before moving to the kernel
environment. As we discovered defects in our implementation of
the driver, we compared them against the existing Linux driver
for the same device. This way we found a potentially dangerous
runaway DMA defect in the Linux driver.

Case study 1 also revealed two hardware-design defects in the
Ethernet controller RTL. These defects were triggered in situations
which occur in a real OS, but which the original device testbench
failed to model, such as disabling the controller while there is a
packet transfer in progress. As a result, they had not been detected
during conventional hardware verification. This is a common prob-
lem in hardware verification: verification engineers do not have a
good understanding how the device under test must interact with
the OS and as a result fail to implement relevant test cases. These
defects also had not come up during conventional driver testing,
because their effect was masked by TCP/IP error recovery mecha-
nisms.

Table 2 summarises software and hardware defects that were
discovered during our case studies and that would have been diffi-
cult to detect using conventional testing techniques. These include
device and OS protocol violations, generic programming defects,
and hardware design errors.

These defects can be further partitioned into three groups. The
first group includes defects that depend on system parameters that
cannot be controlled by the testing software, such as I/O bus speed
or BIOS-defined device configuration (defects #4, 6). The second
group contains defects that escape detection during testing because
their effect cannot be directly observed by the test program (defects
#1, 2, 3, 5, 9, 10). The third group is comprised of defects triggered
by software request sequences that are difficult to generate in a
directed way in the OS environment (defects #7, 8, 11).

As discussed in Section 1, the fundamental problem that pre-
vents these defects from being detected during conventional OS-
based testing is that the OS lacks means to directly control and ob-
serve the device behaviour. In contrast, the co-verification environ-
ment can generate arbitrary input signals to the device and observe

Description Type Comments

Case study 1: Ethernet

1 Runaway DMA: the device continued accessing DMA
buffers after they have been deallocated by the driver.
The defect was caused by an undocumented device
behaviour where the device, when disabled, did not
immediately stop its transmit and receive engines.

dev The defect was identified by the contract checker when it
received a packet transmission notification after the driver had
reported that the transmitter had been disabled. It was not
found during conventional testing, since runaway DMA cannot
be detected by the OS until it causes a memory corruption and
even then tracing down the root cause of the problem is
difficult.

2 Hardware race condition: disabling the device and later
re-enabling it causes the hardware to skip the first DMA
descriptor in the transmit queue.

h/w
These hardware design defects are triggered in situations
which occur in a real OS, but which the original device
testbench failed to model, such as disabling the controller
while there is a packet transfer in progress. As a result, they
were not detected during conventional hardware verification.

3 Hardware race condition: disabling only the receiver
part of the device caused corruption of the next
transmitted packets.

h/w

Case study 2: High-speed UART

4 The HS UART implements an extended register set that
is only available in the memory-mapped device
configuration. The driver, however, attempted to access
these extended registers in both the memory-mapped
and the I/O-space mapped mode.

dev The driver was tested on a platform that configured the device
in the memory-mapped mode. In contrast, the co-verification
environment simulated both modes, which allowed detection
of the error.

5 The driver did not disable software flow control
interrupts when running with hardware flow control
enabled. This did not affect its functional correctness,
but resulted in an increased CPU load due to excessive
flow control interrupts generated by the device.

dev The defect did not cause any functional errors and therefore
could not be easily detected during OS-based testing. In the
co-verification environment, the UART device-class contract
defines constraints on UART interrupt generation, which were
violated when the defect was triggered during co-verification.

Case study 3: USB host controller

6 The driver is required to wait for a few microseconds
after issuing a write to the device reset register and
before reading or writing any other device registers.
The Linux driver was missing this delay. As a result, the
device failed to initialise correctly.

dev This defect did not come up during conventional driver testing
due to the slow I/O bus on the development board, which
introduced sufficient delay between register accesses for the
device to complete the reset. It would, however, prevent the
device from working correctly in a system with a faster bus.

7 A typo in bit-vector arithmetic prevented the driver
from correctly setting the USB hub port speed during
port power-up.

gen This defect was not detected while testing the driver in Linux,
because Linux usually resets the hub port immediately after
powering it up. The reset routine set the port speed correctly,
thus undoing the effect of the power-up routine. The defect
was discovered in the co-verification environment by the
contract checker, which checks the connection status after port
power-up.

8 The driver incorrectly assumed that the OS never
submits more than one request to a USB control
endpoint at a time. When such a situation occurred, the
driver’s USB transfer abort function aborted the wrong
transfer.

os Multiple outstanding control transfers are uncommon in USB
devices, which is why this defect was not discovered during
driver testing. Our USB host-controller contract scenario
simulates such behaviour and therefore was able to detect this
error.

Case study 4: USB slave

9 Upon a USB disconnect, the driver generated numerous
bogus disconnect, suspend, and resume notifications for
300ms. The problem was caused by the USB suspend
signal in the device status register, which started
floating after a disconnect, causing fake interrupt
notifications.

dev The defect was not detected during conventional testing,
because the OS is unable to distinguish a bogus disconnect
notification from a real one.

10 When aborting a partially transferred packet, the driver
returned incorrect count of transferred bytes. The
problem was caused by the driver not properly updating
the transfer length field of the packet in the abort path.

gen This defect could not be detected during conventional testing,
because the OS does not know the actual number of bytes
transferred and is therefore unable to validate the value
returned by the driver.

11 The driver violated the USB endpoint abort protocol
expected by the OS by failing to mark the endpoint as
stopped before aborting the first transfer associated with
it. As a result, the OS could immediately requeue the
transfer, potentially entering an infinite loop.

os The infinite loop scenario is possible, but rarely occurs in
practice and was never encountered during conventional driver
testing.

Table 2. Driver defects discovered using co-verification that would have been difficult to detect using conventional testing techniques. The
third column describes the type of defect: dev – device protocol violation, os – OS protocol violation, gen – generic programming error,
h/w–hardware design error.

1 4 16 64 256 1024

Packet size (bytes)

1E+04

1E+05

1E+06

T
h
ro

u
g
h
p
u
t

(B
/s

)

Co-verified driver

Linux driver

Figure 6. OpenCores Ethernet controller UDP throughput bench-
mark results.

device output signals at the wire level, which makes the detection
of this kind of defects straightforward.

To answer the second question about faults missed by co-
verification, we place the Ethernet controller driver from case study
1, which has been tested in the co-verification environment, into
the Linux kernel environment and keep testing it there. As a re-
sult, we uncovered two additional defects that were missed in the
co-verification environment.

The first defect was a race condition between the packet
transmission function and the interrupt handler. As mentioned in
Section 4.1.3, our methodology is not effective against concurrency
errors; therefore the discovery of this kind of defect in a co-verified
driver did not come as a surprise.

The second defect was caused by the driver not initialising one
of its state variables to 0, which prevented it from correctly send-
ing network packets. The defect could have been detected during
co-verification if our environment had randomised the content of
dynamically allocated memory.

Overall, these results confirm our analysis presented in
Section 4: the co-verification methodology is effective in dealing
with most types of driver defects, including defects that are diffi-
cult to detect using conventional testing techniques.

6.4 Performance

For our performance evaluation, we use the Ethernet controller
driver from case study 1. The controller hardware runs on a 25MHz
FPGA board with an OpenRISC CPU. On such a slow platform,
driver performance can have critical impact on both I/O througput
and CPU utilisation, especially under heavy network traffic.

We compare the performance of the driver developed using
the co-verification methodology against the native Linux driver
for this device. To this end we measure network throughput and
CPU utitlisation when receiving streams of UDP packets of various
sizes.

In all experiments, both drivers generated CPU utilisation of
about 100%. Throughput results are shown in Figure 6. The two
drivers achieved similar throughput for all packet sizes. In fact,
the co-verified driver sustains up to 8% higher throughput than the
Linux driver. Our analysis showed that the additional overhead in
the Linux driver was caused by an extra data copy operation that it
performed in the receive path.

These results indicate that our approach to driver development
does not result in a noticeable performance overhead.

7. Related Work

Previous research on device driver reliability has mainly focused
on detecting [1, 6, 7], isolating [8, 10, 13, 14, 24, 28, 29], and
avoiding [21, 23] driver defects. Another approach, implemented in
tools like Devil [15] and Termite [22] reduces the number of defects
in drivers by generating a partial or complete implementation of a
driver from a formal specification of the device interface.

All of these techniques, however, suffer from serious limi-
tations. Existing static analysis tools are capable of detecting a
limited subset of errors, such as common OS API rule viola-
tions [1] and certain memory allocation and synchronisation er-
rors [7]. Stronger correctness properties, such as memory safety,
race-freedom, and correct use of device interfaces, are currently
beyond the reach of these tools. Runtime isolation architectures are
capable of detecting broader classes of errors; however many of
these systems incur intolerably high overhead. In addition, isola-
tion doesn’t remove the need for testing, as a bug in an isolated
driver can still lead to a complete of partial system failure. Finally,
automatic code generation tools are limited by the availability of
correct device specifications.

Due to these limitations, driver testing remains the most impor-
tant technique for ensuring driver correctness.

Recently, Kuznetsov et al. [11] proposed a symbolic execu-
tion technique for improving the test coverage of device drivers.
Their approach allows detecting generic programming errors, con-
currrency errors and, potentially, OS protocol violations; however it
is not effective against device protocol violations, which is the most
common type of driver defects. We believe that our techniques are
complementary: by using symbolic execution rather than randomi-
sation to steer drive testing in the co-verification environment, it
is possible to achieve better precision in detecting device protocol
violations.

In the hardware design world, virtual prototypes [27] are widely
used for software and hardware testing. A virtual prototype is a
fully functional model of a complete hardware platform, including
the CPU and I/O devices, capable of running the complete system
software stack. It enables testing of device drivers as part of the
OS before the actual device hardware is available. Virtual proto-
types are primarily intended for integration testing and do not pro-
vide mechanisms for fine-grained control and monitoring of the de-
vice behaviour, which are necessary for thorough testing of device
drivers.

Bombieri et al. [4] propose a method for generating a device
driver from an existing device testbench by converting the test-
bench to a state machine representation and manually identifying
sequences of commands that correspond to driver operations. One
problem with this approach is that the required manual step is error-
prone. More importantly, as discussed in Section 3, testbench code
that is not designed for reuse in the OS environment is unlikely to
be reusable without substantial modification.

8. Conclusions

We argue that the lack of cooperation between hardware and soft-
ware designers is a major source of driver reliability problems and
propose an architectural framework to enable such cooperation.
This framework allows most of the driver code to be developed
and tested at the hardware verification stage, before the device is
implemented in silicon.

The benefits are:

• significant improvement of driver reliability, since the driver is
identical to the code used to debug the hardware, and is more
thoroughly exercised than feasible in an OS environment;

• reduced development cost due to code reuse across the device
driver and the device testbench;

• reduced time to market as driver development and testing pro-
ceed in parallel with device verification.

Acknowledgments

We would like to thank Julius Baxter for his help in getting the
OpenCores development board up and running. We also thank An-
ton Burtsev, Thomas Sewell, Simon Winwood, and the anonymous
reviewers for helpful comments.

NICTA is funded by the Australian Government’s Department
of Communications, Information Technology, and the Arts and the
Australian Research Council through Backing Australia’s Ability
and the ICT Research Centre of Excellence programs.

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static
analysis of device drivers. In Proceedings of the 1st EuroSys Confer-

ence, pages 73–85, Leuven, Belgium, Apr. 2006.

[2] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale. Verification

Methodology Manual for SystemVerilog. Springer-Verlag, Inc., 2005.

[3] Bluespec, Inc. Emulation: enabling it on every desktop, 2008.

[4] N. Bombieri, F. Fummi, G. Pravadelli, and S. Vinco. Correct-by-
construction generation of device drivers based on RTL testbenches. In
Proceedings of the 45th ACM/IEEE Conference on Design, Automa-

tion and Test in Europe, pages 1500–1505, Apr. 2009.

[5] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An em-
pirical study of operating systems errors. In Proceedings of the 18th

ACM Symposium on Operating Systems Principles, pages 73–88, Lake
Louise, Alta, Canada, Oct. 2001.

[6] A. Chou, B. Fulton, and S. Hallem. Linux kernel security report, 2005.

[7] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler extensions.
In Proceedings of the 4th USENIX Symposium on Operating Systems

Design and Implementation, pages 1–16, San Diego, CA, Oct. 2000.

[8] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: software guards for system address spaces. In Proceedings

of the 7th USENIX Symposium on Operating Systems Design and

Implementation, pages 75–88, Seattle, Washington, Nov. 2006.

[9] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP kernel
crash analysis. In Proceedings of the 20th USENIX Large Installation

System Administration Conference, pages 101–111, Washington, DC,
USA, 2006.

[10] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
MINIX 3: A highly reliable, self-repairing operating system. ACM

Operating Systems Review, 40(3):80–89, July 2006.

[11] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source
binary device drivers with DDT. In Proceedings of the 2010 USENIX

Annual Technical Conference, Boston, MA, June 2010.

[12] S. K. Lahiri, S. Qadeer, and Z. Rakamari’c. Static and precise de-
tection of concurrency errors in systems code using SMT solvers. In
Proceedings of the 21st International Conference on Computer Aided

Verification, pages 509–524, June 2009.

[13] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray, L.Macpherson,
D. Potts, Y. R. Shen, K. Elphinstone, and G. Heiser. User-level device
drivers: Achieved performance. Journal of Computer Science and

Technology, 20(5):654–664, Sept. 2005.

[14] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ruland, and G. Sza-
lay. Two years of experience with a µ-kernel based OS. ACM Operat-

ing Systems Review, 25(2):51–62, Apr. 1991.

[15] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller.
Devil: An IDL for hardware programming. In Proceedings of the 4th

USENIX Symposium on Operating Systems Design and Implementa-

tion, pages 17–30, San Diego, CA, USA, Oct. 2000.

[16] Microsoft Corporation. Network Driver Interface Specification Test.
http://www.microsoft.com/whdc/DevTools/tools/NDIStest.mspx.

[17] OVM. OVM class reference. Version 2.1.1, Mar. 2010.

[18] Project OpenCores. 10/100 Mbps Ethernet MAC core.
http://www.opencores.org/project,ethmac, .

[19] Project OpenCores. USBHostSlave IP core.
http://www.opencores.org/project,usbhostslave, .

[20] Project UDI. UDI core specification. Version 1.01, Feb. 2001.

[21] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming device
drivers. In Proceedings of the 4th EuroSys Conference, Nuremberg,
Germany, Apr. 2009.

[22] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser. Automatic
device driver synthesis with Termite. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky, MT, USA, Oct.
2009.

[23] L. Ryzhyk, Y. Zhu, and G. Heiser. The case for active device drivers. In
Proceedings of the 1st Asia-Pacific Workshop on Systems, New Delhi,
India, Aug. 2010.

[24] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability
of commodity operating systems. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles, Bolton Landing (Lake
George), New York, USA, Oct. 2003.

[25] usbtest. USB testing on Linux. http://www.linux-usb.org/usbtest/ .

[26] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In Proceedings of the 14th ACM Sym-

posium on Operating Systems Principles, pages 203–216, Asheville,
NC, USA, Dec. 1993.

[27] M. Willems and F. Schirrmeister. Virtual prototypes for software-
dominated communication system designs. IEEE Communications

Magazine, 48:37–43, June 2010.

[28] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider.
Device driver safety through a reference validation mechanism. In
Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation, pages 241–254, San Diego, CA, USA,
Dec. 2008.

[29] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer. SafeDrive: Safe and recoverable extensions
using language-based techniques. In Proceedings of the 7th USENIX

Symposium on Operating Systems Design and Implementation, pages
45–60, Seattle, WA, USA, Nov. 2006.

http://www.microsoft.com/whdc/DevTools/tools/NDIStest.mspx
http://www.opencores.org/project,ethmac
http://www.opencores.org/project,usbhostslave
http://www.linux-usb.org/usbtest/

	Introduction
	Hardware verification
	A co-verification approach to driver reliability
	Analysis
	Improved driver test coverage
	Device protocol violations
	OS protocol violations
	Concurrency defects and generic programming errors
	Hardware defects

	Impact on the testbench architecture
	Impact on driver development and maintenance
	Simulation speed
	Unified driver-OS interface
	Handling non-standard device features

	Design and implementation
	Interface specifications
	Device-class contracts
	Environment-independent drivers
	OS wrappers

	Evaluation
	Case studies
	Case study 1: Ethernet controller
	Case study 2: High-speed UART
	Case study 3: USB host controller
	Case study 4: USB slave controller
	Summary of case studies

	Feasibility
	Reliability
	Performance

	Related Work
	Conclusions

