
The OKL4 Microvisor:
Convergence Point of Microkernels and Hypervisors

Gernot Heiser
Open Kernel Labs and NICTA and

University of New South Wales
Sydney, Australia

gernot@ok-labs.com

Ben Leslie
Open Kernel Labs

Sydney, Australia
benno@ok-labs.com

ABSTRACT
We argue that recent hypervisor-vs-microkernel discussions com-
pletely miss the point. Fundamentally, the two classes of systems
have much in common, and provide similar abstractions. We assert
that the requirements for both types of systems can be met with a
single set of abstractions, a single design, and a single implementa-
tion. We present partial proof of the existence of this convergence
point, in the guise of the OKL4 microvisor, an industrial-strength
system designed as a highly-efficient hypervisor for use in embed-
ded systems. It is also a third-generation microkernel that aims
to support the construction of similarly componentised systems as
classical microkernels. Benchmarks show that the microvisor’s vir-
tualization performance is highly competitive.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

General Terms
Design, Performance

Keywords
Microkernels, hypervisors, virtual machines, real-time systems and
embedded systems

1. INTRODUCTION
The merits of microkernels have been debated for a long time.

Popular in the 1980s, they fell into disrepute in the early ’90s as
systems built on top failed to perform. Arguments that the perfor-
mance problems were inherent in the microkernel approach [CB93]
were refuted by Liedtke [Lie95] identifying design and imple-
mentation shortcomings of these first-generation kernels, and it
was demonstrated that the second-generation (2G) L4 microkernel
could be used as a hypervisor to virtualize Linux with an over-
head of about 5–7% [HHL+97]. Commercial microkernels are
now deployed at a large scale, including QNX [LG09] for high-
availability, Green Hills Integrity [GHS] for high security, and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0195-4/10/08 ...$10.00.

high-performance OKL4 microkernel for mobile devices [OKL4]
(with more than 750 million instances shipped to date).

Curiously, this did not stop a new debate starting a number
of years back, this time pitting microkernels against hypervisors,
as if they were disjoint classes of systems. Some of these ar-
guments [HWF+05] we have earlier shown to be based on false
premises [HUL06], others [AG09] are based on an outdated, 1980’s
view of microkernels, oblivious to the last 15+ years of microkernel
research.

We assert that these arguments completely miss the point. Mi-
crokernels and hypervisors are both designed as low-level founda-
tions for larger systems, although with different objectives. This
does not mean that these objectives are irreconcilably at odds. In
fact, we argue that we can construct a type of kernel that satisfies
the combined objectives of microkernels and hypervisors. We call
such a kernel a microvisor, and present the OKL4 microvisor as a
representative.

In the next section we revisit the motivations for microkernels
and hypervisors, and the resulting objectives and designs. In Sec-
tion 3 we explore the intersection of these objectives and present
the OKL4 microvisor as a representative. Section 4 presents initial
performance data and Section 5 discusses related work.

2. MICROKERNELS AND HYPERVISORS

2.1 Microkernels
While the term microkernel was not coined until a decade and a

half later, the basic concept goes back to Brinch Hansen’s nucleus
[BH70]. The basic idea is to reduce the kernel code to fundamental
mechanisms, and implement actual system services (and policies)
in user-level servers. The microkernel is supposed to be general
enough to support the construction of arbitrary systems on top.

The modern microkernel concept is captured in Liedtke’s Mini-
mality Principle: A concept is tolerated inside the microkernel only
if moving it outside the kernel, i.e. permitting competing imple-
mentations, would prevent implementation of the system’s required
functionality [Lie95].

The original driver behind microkernels is generality and flexi-
bility, based on a separation of policy and mechanisms [LCC+75].
A more modern motivation is the design of systems with a minimal
trusted computing base, in order to aid assurance of safety- and
security-critical systems [HPHS04]. The formal verification of the
seL4 microkernel [KEH+09] shows that microkernels can be small
enough make a formal proof of functional correctness feasible.

Moving services out of the kernel into servers makes client-
server communication performance-critical, and as such a micro-
kernel needs a very fast inter-process communication (IPC) mech-

mailto:gernot@ok-labs.com
mailto:benno@ok-labs.com

anism. Consequently, IPC performance used to be the focus of
microkernel research [Lie93].

2.2 Hypervisors
Hypervisors are even older, they go back to the 1960s. The orig-

inal motivation was an early form of legacy re-use: With the ad-
vent of more powerful computers, the original single-user single-
task model of operating systems was no longer sufficient. Virtual-
ization supported the concurrent execution of programs by putting
each into a separate virtual machine (VM), together with its single-
tasking executive. Virtualization went out of fashion in the ’70s
with the widespread availability of multitasking and multi-user
OSes, until its renaissance in the last decade, mostly driven by the
resource-management deficiencies of most modern OSes.

According to the classic definition, a VM is an efficient, isolated
duplicate of a real machine [PG74]. The VM is implemented by
a hypervisor (or virtual-machine monitor, VMM) which provides
virtual resources either by (temporarily) mapping them to physical
resources, or emulating them. The former is efficient, the latter
results in overhead, and so is avoided where possible.

While originally virtualization was understood to be pure (vir-
tual resources are essentially indistinguishable from real ones),
hardware limitations and efficiency reasons led to widespread use
of para-virtualization, which presents a modified hardware ABI
to which the guest OS is ported. A hypervisor supporting para-
virtualization provides extra APIs, called hypercalls, which gener-
ally are more high-level than the hardware ABI.

2.3 Comparison
In summary, microkernels aim to provide a minimal layer of

privileged software, while hypervisors aim to replicate and mul-
tiplex hardware resources. Both have an inherent need to abstract
the hardware, although with different emphasis.

For a hypervisor it is fundamentally important that the abstract
(“virtual”) resources look as much like the concrete (“real”) ones
as possible, while implementation size is not a primary concern.
For a microkernel, similarity of real and abstract resources is not
a driver, but in reality the semantic gap cannot become very large
without violating the minimality requirement.

It should now not be overly surprising that the abstractions end
up being quite similar. Fundamentally, both types of kernels must
provide abstractions for:

Memory: The hardware managing memory is the MMU, and hy-
pervisors provide a virtual MMU, or virtualize the MMU’s
software interface, the page tables. Microkernels typically
abstract memory via the more OS-like concept of an address
space. However, in (2G) L4 microkernels, address spaces are
simply containers for mappings, and as such present a mini-
mal abstraction of page tables.

Execution: The CPU must be multiplexed between different VMs,
and therefore hypervisors provide the concept of virtual
CPUs, which are multiplexed on the real CPU (by schedul-
ing VMs). 2G microkernels typically abstract execution time
as threads (as in L4) or scheduler activations (as in K42
[KAR+06]). All are minimal abstractions that allow schedul-
ing of activities. Both views must associate similar attributes
with their CPU abstractions: priorities and time slices. The
main difference is that the hypervisor abstraction retains the
concept of multiple (virtual) privilege levels while a micro-
kernel treats all user-level activities as peers.

I/O Hypervisors traditionally virtualize devices by exporting a
(usually simplified) device interface to the guest OS, with

the actual device driver residing inside the hypervisor—this
approach supports multiplexing the device (like other re-
sources). Sometimes a device is made directly accessible to
the guest by mapping device registers into the guest’s mem-
ory and virtualizing interrupts (the hypervisor up-calls the
guest’s interrupt handler routine). This makes multiplexing
of stateful devices difficult or impossible and, in the case of
DMA-capable devices, can only be done securely with addi-
tional hardware support (I/O MMU).

Microkernels, in contrast, tend to run device drivers as sep-
arate user-level processes, which communicate with the rest
of the system using IPC. This is effectively a combination of
the approaches discussed for hypervisors, and supports de-
vice sharing without making drivers part of the microkernel,
but comes at the expense of additional context switches.

Communication Subsystems need to communicate. VMs com-
municate like real machines—via networks. Hence, hypervi-
sors traditionally provide virtual networks, which are based
on the existing virtual-device abstraction, running standard
networking stacks. Microkernels, in contrast, are designed
for systems decomposed at a much finer granularity, and
therefore offer highly-optimised message-based IPC primi-
tives. Following Liedtke [Lie93], 2G microkernels typically
minimise overheads by providing a synchronous (blocking
and unbuffered) IPC primitive.

In summary, there is not much difference in the first three points.
As far as I/O is concerned, hypervisors have in recent years moved
closer to microkernels. Xen [BDF+03], for example, runs its ad-
ministrative functions in a privileged VM called Domain0, which
hosts a Linux guest. Domain0 is also used as a source of de-
vice drivers, which therefore run in user mode, as with a micro-
kernel (although all the Domain0 drivers run in the same address
space, that of the Linux guest). The driver (excuse the pun) behind
this development is the cost of re-implementing or adapting device
drivers: Domain0 uses unmodified drivers from the Linux guest.

This in turn puts pressure on inter-VM communication costs.
Only a few years back, hypervisor proponents belittled the mi-
crokernel community [HWF+05] for their efforts in optimising
IPC. During the discussion following the presentation of that pa-
per, a prediction was made that within two years the hypervi-
sor community would be publishing papers on improving inter-
VM communication overheads. In fact, a string of papers have
since proposed such inter-VM communication primitives. Some of
these [ZMRG07, WWG08] showed performance that was well be-
low what had been achieved in comparable microkernel-based se-
tups [LCFD+05, LUSG04] while others sacrifice isolation for per-
formance [BSR09].

2.4 Trends
As the above discussion shows, microkernels and hypervisors are

fundamentally nowhere near as different as some of the literature
would make us believe. And in fact, the similarities are growing.

On the one hand, hypervisors are becoming more microkernel-
like. The tendency to move drivers into userland, as a way to
reuse legacy drivers, is one indication. Furthermore, the hyper-
visor community is becoming increasingly aware of the attack sur-
face offered by a big hypervisor, and the high rewards for cracking
it [Rut08, SK10].

On the other hand, microkernels are increasingly used to sup-
port virtualization. The reason is also legacy support: even highly
security- or safety-critical systems increasingly face the need to

support legacy OS environments—in order to support GUIs, pro-
vide familiar application environments, and run standard network-
ing and file system stacks. There is barely a commercial microker-
nel which does not double as a hypervisor.

3. ENTER THE MICROVISOR

3.1 Combining the models
Under the circumstances it makes sense to revisit the

microkernel-hypervisor issue. Specifically, we ask whether it is
possible to achieve the objective of both classes of kernels with a
single set of abstractions, a single design, and a single implemen-
tation. Specifically, can we build a single kernel which provides
platform virtualization with the efficiency of the best hypervisors,
while at the same time achieving the core microkernel goals of gen-
erality (ability to support the construction of arbitrary systems, es-
pecially highly-componentised systems) and minimality?

A partial answer has recently been given by NOVA [SK10], al-
though that system is foremost a hypervisor for x86 platforms and
requires hardware that is trap-and-emulate virtualizable [PG74].
NOVA also provides multiple abstractions for the same hardware
resources (e.g. threads as well as vCPUs).

We provide another data point in the form of the OKL4 microvi-
sor, a system explicitly designed to serve as a hypervisor as well as
replacing our microkernel, and is aimed at performance-sensitive,
memory-constrained embedded systems. The OKL4 microvisor is
designed to be portable across a wide range of processor archi-
tectures (although the present product only supports ARM proces-
sors).

The OKL4 microvisor is a third-generation (3G) microkernel of
L4 heritage (as indicated by the name). It grew out of our expe-
rience with large-scale commercial deployment of the OKL4 mi-
crokernel in mobile wireless devices and the growing demand for
low-overhead platform virtualization in embedded systems.

The microvisor is also strongly influenced by our experience
with the design, implementation and formal verification of seL4
[KEH+09]. It shares with seL4 the use of capabilities for access
control on all resources, and a design for formal verification. It uses
a more traditional approach to kernel resource management than
seL4, but in other ways departs more aggressively than seL4 from
the classical L4—by neither providing a synchronous message-
passing IPC primitive nor kernel-scheduled threads.

3.2 The microvisor model
In line with the goal of supporting virtualization with the low-

est possible overhead, the microvisor’s abstractions are designed to
model hardware as closely as possible. Specifically,

• the microvisor’s execution abstraction is that of a virtual ma-
chine with one or more virtual CPUs (vCPUs), on which the
guest OS can schedule activities;

• the memory abstraction is that of a virtual MMU (vMMU),
which the guest OS uses to map virtual to (guest) physical
memory;

• the I/O abstraction consists of memory-mapped virtual de-
vice registers and virtual interrupts (vIRQs);

• communication is abstracted as vIRQs (for synchronisation)
and channels. The latter are bi-directional FIFOs with a fixed
(configurable per channel) buffer allocated in user space (you
can run TCP/IP on a channel if you really want to).

The asynchronous communication model not only maps better
to hardware (including SMP) than the traditional L4 model. It also
reflects our experience with mapping large, real-world embedded-
systems code (such as multi-MLOC modem stacks and mobile-
device application environments) to the L4 microkernel—the asyn-
chronous model turned out to be a better match to the requirements
of such systems.

L4’s synchronous IPC model necessitated the support for kernel-
scheduled threads. With only an asynchronous IPC primitive, that
need goes away, and the microvisor provides multiple vCPUs per
VM solely for the purpose of allowing a VM to use multiple physi-
cal CPUs. Multiplexing of a single CPU between multiple activities
within a VM is left to the OS. The model does not prevent creation
of VMs with more vCPUs than physical cores, but there is no ben-
efit in doing so.

The vMMU contains a virtual TLB which, like a real TLB, is a
limited-size cache for mappings. The vTLB is typically much big-
ger than the real TLB (to make up for the higher access cost), and
is implemented as a page table which is traversed by the microvisor
on a page fault.

3.3 Implementation
The OKL4 microvisor is a clean, from-scratch design and imple-

mentation. It shares no code with the early commercially-deployed
version of the L4 microkernel (but shares code modules with the
presently shipping OKL4 microkernel). Like its predecessor, it
is designed to support a mixture of real-time and non-real-time
software running on top. The implementation comprises about
8.6 kLOC of ANSI C and about 1.2kLOC of assembler; it com-
piles to about 35 KiB of text. It is less complex (and smaller) than
our earlier microkernels, which is one indication of an improved
API.

In particular, the use of vIRQs as the communication primi-
tive lead to dramatic simplifications compared to the synchronous
IPC model traditionally used by L4 microkernels (even though that
model had been significantly simplified over the years). As a conse-
quence, it has no need for an “IPC fastpath”—there is really only a
single code path in the vIRQ implementation, and it is much shorter
than that of any synchronous IPC primitive.

The microvisor has a total of 30 hypercalls. This is more than the
typical number of system calls of L4 microkernels (between seven
and twenty, depending on L4 version). However, L4 system calls
tend to be heavily overloaded (the OKL4 microkernel version 3.0
system header files contain over 200 APIs) while the microvisor
hypercalls are all simple.

4. BUT DOES IT WORK?

4.1 Evaluation issues
A complete proof of our claim that the OKL4 microvisor repre-

sents the convergence point of microkernel and hypervisor technol-
ogy would have to consist of two parts: firstly a demonstration that
it is as good as any hypervisor in supporting virtual machines, and
secondly a demonstration that it is as good as any microkernel in
supporting microkernel applications.

The former is easier to do than the latter, as there is a lack of
readily-accessible microkernel-based systems that could be used
for comparison, and the lack of standardised APIs makes it diffi-
cult to build directly comparable systems. As the microvisor is a
fairly new system, we have not yet had the opportunity to perform
such an analysis.

Therefore, we can only look at the other part of the proof at
present—comparing the performance with hypervisors. Even this

is not as easy as it may seem: OKL4 is designed for embedded
systems and presently only available for ARM processors. While
there exist a number of virtualization solutions which should be di-
rectly comparable to OKL4, these are proprietary, are not readily
accessible even in binary form, and performance and even APIs
are protected by NDAs. The most we can say here is that several
prospective commercial users have performed competitive perfor-
mance evaluations, from which the OKL4 microvisor has always
emerged as the winner.

The only comparable system for which performance data is pub-
licly available is a port of Xen to the ARM architecture which was
performed by Samsung, and performance data was published for
an ARM9 CPU [HSH+08].

Benchmark Native Virtualized Overhead
null syscall 0.6 µs 0.96 µs 0.36 µs 60 %
read 1.14 µs 1.31 µs 0.17 µs 15 %
write 0.98 µs 1.22 µs 0.24 µs 24 %
stat 4.73 µs 5.05 µs 0.32 µs 7 %
fstat 1.58 µs 2.24 µs 0.66 µs 42 %
open/close 9.12 µs 8.23 µs -0.89 µs -10 %
select(10) 2.62 µs 2.98 µs 0.36 µs 14 %
select(100) 16.24 µs 16.44 µs 0.20 µs 1 %
sig. install 1.77 µs 2.05 µs 0.28 µs 16 %
sig. handler 6.81 µs 5.83 µs -0.98 µs -14 %
prot. fault 1.27 µs 2.15 µs 0.88 µs 67 %
pipe latency 41.56 µs 54.45 µs 12.89 µs 31 %
UNIX socket 52.76 µs 80.90 µs 28.14 µs 53 %
fork 1,106 µs 1,190 µs 84 µs 8 %
fork+execve 4,710 µs 4,933 µs 223 µs 5 %
system 7,583 µs 7,796 µs 213 µs 3 %

Table 1: Lmbench results for OKL4 on Beagle Board

4.2 Virtualized Linux performance
There are presently no standardised hypervisor benchmarks for

embedded systems. The most widely-used performance measure is
comparing lmbench scores of virtualized and native Linux. Table 1
shows this comparison on the Beagle Board, a popular platform
featuring a TI OMAP3530 processor based on an ARM Cortex-A8
core (ARM v7 architecture) clocked at 500MHz. The data for this
table is taken from a customer’s evaluation report, and can therefore
be considered independently validated (and agrees fully with our
own measurements).

Most of the lmbench benchmarks time a single Linux system
call, which in turn requires a single OKL4 hypercall to virtualize.
These show that the basic overhead is around 0.3 µs (150 cycles)
per hypercall. The IPC (pipes and sockets) and process-creation
(fork, exec, system) benchmarks are complex and require multiple
hypercalls, and therefore show higher absolute overheads.

The relative overheads of the process-creation benchmarks (3–
8 %) are remarkably low. For comparison, the OKL4 microkernel
on an ARM9 processor (ARM v5 architecture) showed an over-
head of 35 % for fork and 27 % for fork+execve [Hei09]. The cor-
responding figures for Xen are around 250 % [HSH+08], although
it must be noted that these are from a research project and not a
product, and the available performance data is by now 2.5 years
old.

An anomaly are the negative apparent overheads for open/close
and signal handling, and the high apparent overhead for protection
fault. These result from the changed memory layout in the virtu-

alized system changing the patterns of cache conflicts misses, and
indicate that not too much should be read into an individual result.

Type Benchmark Native Virt. O/H
TCP Xput [Mib/s] 651 630 3 %

Load [%] 99 99 0 %
Cost [µs/KiB] 12.5 12.9 3 %

UDP Xput [Mib/s] 537 516 4 %
Load [%] 99 % 99 % 0 %
Cost [µs/KiB] 15.2 15.8 4 %

Table 2: Netperf on Beagle Board

Table 2 shows the result of running netperf on a loopback de-
vice on both systems. Both systems showed a fully-loaded CPU,
and the throughput degradation (and thus increase in cost per byte
transmitted) of the virtualized system was three to four percent.

To the best of our knowledge, these are the lowest overhead fig-
ures ever published for a virtualized Linux system, even when com-
paring results published on other architectures (but we note that the
ARM architecture features much lower trap costs than x86 and is
therefore much more virtualization-friendly, so not too much can
be read into comparisons across these architectures).

5. RELATED WORK
Closely related work is NOVA [SK10], a hypervisor designed for

minimal size. NOVA is designed solely to support pure virtualiza-
tion on hardware which is fully trap-and-emulate virtualizable, and
for performance is strongly dependent on virtualization extensions
to the x86 architecture.

NOVA minimises the kernel code (which the authors call the hy-
pervisor) by moving much of the virtualization support, such as
instruction emulation, to user level (they call this part the VMM).
The VMM is replicated for each VM, thus removing it from the
trusted computing base of “native” code (code executing without a
guest OS on virtual bare hardware).

The NOVA hypervisor does not actually provide a minimal set
of abstractions, but exhibits redundancy in its API. For example,
NOVA offers threads as well as vCPUs, tasks as well as VMs, and
synchronous IPC.

While the OKL4 microvisor is designed to make use of archi-
tectural support for virtualization, most cores for embedded use
do not presently provide such support, and therefore require para-
virtualization.

Comparing NOVA with our microvisor actually illustrates
frequently-overlooked benefits of para-virtualization: the hypervi-
sor can be much simpler. A para-virtualized guest on top of the
microvisor does not require any instruction emulation, as all privi-
leged instructions are replaced by explicit hypercalls (and typically
each hypercall replaces many lines of guest source). This com-
pletely removes the need for the NOVA-like VMM, which adds
20 kLOC to the 9 kLOC of the NOVA kernel, compared to a total
size of 10 kLOC for OKL4 (but of course, this comes at the expense
of having to para-virtualize the guest).

Obviously, comparisons of code size between the two systems
need careful interpretation, as the functionality is different (pure vs
para-virtualization) and the ARM architecture is much cleaner than
x86. If in the future ARM cores become fully virtualizable, utilis-
ing the respective hardware mechanisms will require extra code in
the microvisor.

6. CONCLUSIONS
We hope to have convinced the reader that the microkernel-vs-

hypervisor debate is pointless, that in reality the two concepts have
significant overlap, and the two models can, should and will con-
verge to this common subset. We have presented one such conver-
gence point in the form of the OKL4 microvisor, and have demon-
strated that it meets the hypervisor objective of minimal overhead
for virtualization as well as the microkernel objective of minimal
size. Proof of meeting the other core microkernel objective (gener-
ality) is in the works.

Acknowledgements
We would like to thank the OK Labs engineering team, especially
Carl van Schaik, for their contributions to designing and imple-
menting the OKL4 microvisor. NICTA is funded by the Australian
Government as represented by the Department of Broadband, Com-
munications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

7. REFERENCES
[AG09] F. Armand and M. Gien. A practical look at

micro-kernels and virtual machine monitors. In 6th
IEEE Consumer Comm. & Networking Conf., Las
Vegas, NV, USA, Jan 2009.

[BDF+03] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In 19th
SOSP, pages 164–177, Bolton Landing, NY, USA,
Oct 2003.

[BH70] P. Brinch Hansen. The nucleus of a
multiprogramming operating system. CACM,
13:238–250, 1970.

[BSR09] A. Burtsev, K. Srinivasan, and P. Radhakrishnan.
Fido: Fast inter-virtual-machine communication for
enterprise applications. In 2009 USENIX, San Diego,
CA, USA, Jun 2009.

[CB93] J. B. Chen and B. N. Bershad. The impact of
operating system structure on memory system
performance. In 14th SOSP, pages 120–133,
Asheville, NC, USA, Dec 1993.

[GHS] http://www.ghs.com/products/rtos/
integrity.html.

[Hei09] G. Heiser. Hypervisors for consumer electronics. In
6th IEEE Consumer Comm. & Networking Conf.,
pages 1–5, Las Vegas, NV, USA, Jan 2009.

[HHL+97] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg,
and J. Wolter. The performance of µ-kernel-based
systems. In 16th SOSP, pages 66–77, St. Malo,
France, Oct 1997.

[HPHS04] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro.
Reducing TCB size by using untrusted components
— small kernels versus virtual-machine monitors. In
11th SIGOPS Eur. WS, Leuven, Belgium, Sep 2004.

[HSH+08] J.-Y. Hwang, S.-b. Suh, S.-K. Heo, C.-J. Park, J.-M.
Ryu, S.-Y. Park, and C.-R. Kim. Xen on ARM:
System virtualization using Xen hypervisor for
ARM-based secure mobile phones. In 5th IEEE
Consumer Comm. & Networking Conf., pages
257–261, Las Vegas, NV, USA, Jan 2008.

[HUL06] G. Heiser, V. Uhlig, and J. LeVasseur. Are

virtual-machine monitors microkernels done right?
ACM Operat. Syst. Rev., 40(1):95–99, Jan 2006.

[HWF+05] S. Hand, A. Warfield, K. Fraser, E. Kottsovinos, and
D. Magenheimer. Are virtual machine monitors
microkernels done right? In 10th HotOS, pages 1–6,
Sante Fe, NM, USA, Jun 2005. USENIX.

[KAR+06] O. Krieger, M. Auslander, B. Rosenburg, R. W.
Wisniewski, J. Xenidis, D. Da Silva, M. Ostrowski,
J. Appavoo, M. Butrico, M. Mergen, A. Waterland,
and V. Uhlig. K42: Building a complete operating
system. In 1st EuroSys Conf., pages 133–145,
Leuven, Belgium, Apr 2006.

[KEH+09] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS
kernel. In 22nd SOSP, pages 207–220, Big Sky, MT,
USA, Oct 2009. ACM.

[LCC+75] R. Levin, E. Cohen, W. Corwin, F. Pollack, and
W. Wulf. Policy/mechanism separation in HYDRA.
In 5th SOSP, pages 132–140, 1975.

[LCFD+05] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz,
C. Gray, L. Macpherson, D. Potts, Y. R. Shen,
K. Elphinstone, and G. Heiser. User-level device
drivers: Achieved performance. Journal of Computer
Science and Technology, 20(5):654–664, Sep 2005.

[LG09] P. Laroux and B. Graham. Secure by design: Using a
microkernel rtos to build secure, fault-tolerant
systems. White paper, QNX,
http://www.qnx.com/download/
feature.html?programid=19358, Apr
2009.

[Lie93] J. Liedtke. Improving IPC by kernel design. In 14th
SOSP, pages 175–188, Asheville, NC, USA, Dec
1993.

[Lie95] J. Liedtke. On µ-kernel construction. In 15th SOSP,
pages 237–250, Copper Mountain, CO, USA, Dec
1995.

[LUSG04] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz.
Unmodified device driver reuse and improved system
dependability via virtual machines. In 6th OSDI,
pages 17–30, San Francisco, CA, USA, Dec 2004.

[OKL4] Open Kernel Labs. OKL4 community site.
http://okl4.org.

[PG74] G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures.
CACM, 17(7):413–421, 1974.

[Rut08] J. Rutkowska. Security challenges in virtualized
environments.
http://www.invisiblethingslab.com,
Apr 2008.

[SK10] U. Steinberg and B. Kauer. NOVA: A
microhypervisor-based secure virtualization
architecture. In 5th EuroSys Conf., Paris, France, Apr
2010.

[WWG08] J. Wang, K.-L. Wright, and K. Gopalan. XenLoop: A
transparent high performance inter-VM network
loopback. In 17thHPDC, pages 109–118, Boston,
MA, USA, Jun 2008.

[ZMRG07] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin.
XenSocket: A high-throughput interdomain transport

http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
http://www.qnx.com/download/feature.html?programid=19358
http://www.qnx.com/download/feature.html?programid=19358
http://okl4.org
http://www.invisiblethingslab.com

for virtual machines. In 8thMiddleware, pages
184–203, Newport Beach, CA, USA, Nov 2007.

	Introduction
	Microkernels and Hypervisors
	Microkernels
	Hypervisors
	Comparison
	Trends

	Enter the Microvisor
	Combining the models
	The microvisor model
	Implementation

	But Does it Work?
	Evaluation issues
	Virtualized Linux performance

	Related Work
	Conclusions
	References

