ASWEC 2009 Tutorial

Management of Service-Oriented Systems

Vladimir Tasic
Claudio Bartolini
Patrick C. K. Hung

Tutorial Goals

- Explain that management is crucial for service-oriented systems' efficiency and agility
- Point out that management issues must be considered early in the system lifecycle
- Summarize and analyze the main concepts
- Inform that there have been:
 - many academic and industrial works on QoS, but
 - only a few on business value management
- Provide a foundation for future research and/or decision-making by the participants

Presentation Outline

I. Importance of QoS and business value
II. Specification of QoS
III. Management (monitoring & control) of QoS
IV. Business-driven IT management (BDIM)
V. From QoS to business value
VI. Summary, challenges and discussion

I. Definition of Terminology and Importance of QoS and Business Value

- What is a service? (3 different definitions)
- What is quality of service (QoS)?
- IT system management = monitoring+control
- Benefits of QoS management
- What is business value?
- Why QoS management is not enough?
- The need for considering these issues early

What Is a Service?
(Service-Oriented Computing View)

- In SOC, a service is:
 - a distributed software component ...
 - with a unique ID (e.g., URI) and ...
 - accessible over a network (e.g., Internet) ...
 - in a loosely coupled manner (run-time connection)
- Example: book buying Web service (WS)
- Web services: using XML-based standards (SOAP, WSDL, WSBPEL, ...) and Internet

Presenters

- Vladimir Tasic (vladat@computer.org)
 - NICTA, Australia
 - University of New South Wales, Australia
 - University of Western Ontario, Canada
- Claudio Bartolini (claudio.bartolini@hp.com)
 - HP Laboratories, USA
 - University of Ferrara, Italy
- Patrick C. K. Hung (Patrick.Hung@uoi.ca)
 - University of Ontario Institute of Technology, Canada
 - University of Waterloo, Canada
What Is a Service? (IT Service Management View)

- In ITSM, a service is:
 - a means of delivering value to customers ...
 - by facilitating outcomes customers want to achieve ...
 - without the ownership of specific costs and risks
- Examples:
 - e-mail service provided by a specialized department or company
 - laptop repair service

What Is Quality of Service (QoS)?

- Functionality/service = “WHAT operations does the system execute?”
 - Example: Returns current price for a stock symbol
- Quality of service (QoS) = “HOW WELL does the system perform its operations?”
 - Examples: Average response time is 2 seconds, availability in the last 24 hours is 99%, ...
 - Cf.: quality of product/object (e.g., book bought)
 - Synonyms: non-functional, extra-functional, ‘ilities’
 - QoS exists even when not specified or measured

Definition of IT System Management: Monitoring

- IT system management = monitoring + control
 - Run-time (and some deployment-time) activities
- Monitoring determines state of the system:
 - Measurement or calculation of QoS metrics (measures of QoS): response time, availability, ...
 - Evaluation of conditions (requirements or guarantees): response time < 2 seconds, ...
 - Accounting of invoked operations, consumed resources, measured/calculated QoS metrics, evaluated conditions, taken control actions, billed prices/penalties, ...

Definition of IT System Management: Control

- Control tries to ensure that the managed system is always in its desired state:
 - Starting/stopping the system or its components
 - (Re-)Configuration of the system: setting thread priorities, re-composition of Web services ...
 - (Re-)Allocation of resources: assigning processing time to requests from different consumers ...
 - Billing of prices or penalties: penalty for not meeting guaranteed response time is US$1.00, ...
 - Modification of requirements or guarantees
 - Notification of human administrators: alert threshold notification, ...

Monitor-Control Loop

- Monitor → Compare → Norm → Control → Monitor

Complex Monitor-Control Loops

- Monitor → Compare → Norm → Control → Monitor
Benefits of QoS Management

- 5 functional areas of system/network management (FCAPS): Fault, Configuration, Accounting, **Performance**, and Security
- QoS (performance) management helps to:
 - ensure correct operation,
 - attain or surpass guaranteed QoS,
 - discover and fix problems,
 - accommodate change,
 - balance price/performance ratios,
 - maximize profits, ...

A Motivating Example for WS QoS Specification and Management

- Cannot be done with basic WS technologies
- One of the consequences of management: differentiation in the market of Web services

What Is Business Value?

- **Business value metric** = any measure of business worth
 - **Financial**: income, cost, profit, margin, ...
 - **Non-financial**: number of customers, customer satisfaction, market share, ..., (argument for capturing them: balanced scorecard – BSC)
- Is it QoS? Yes, but not in the traditional sense
- Business value metrics are **relative**!
 - They are not the same for consumer, provider, ...
- Related (almost synonymous) terms:
 - KPI (Key Performance Indicator),
 - business (performance) metric, ...

Why QoS Management Is Not Enough?

- Technical QoS is important, but it is subordinate to business value
 - Do customers/users really care whether availability is 98% or 99%? Not really...
 - They care about its impact on their business value
 - Technology is only an enabler for business
- **Mappings** between the two are complex
 - Will 1% higher availability result in higher business value? Not always... (even if yes: amounts differ)
 - Depend on domain, context, business strategy, ...

What Has to Be Developed?

1. Well-defined (hopefully, standardized) formats for specification of QoS / business value
 - You cannot control what you cannot monitor
 - You cannot monitor what you cannot define
 - Basic Web service standards do not address this
2. **Diverse algorithms & protocols**
 - Selection of WSes using QoS / business value info, negotiation of QoS and prices, control to maximize business value, adaptation to changes in QoS, ...
3. **Management infrastructures/tools**

Management Issues Must Be Considered Early in the Lifecycle

- Thinking about QoS and management issues often delayed until deployment- or run-time
- Past experience shows that this is too late
- **Design-time methods** for predicting and achieving software performance (QoS)
 - Mathematical analyses (e.g., layered queuing networks), simulations, and measurements
 - Software performance engineering (SPE)
- **Design-time support** (at least “hooks”) for management specifications, algorithms, tools
Service has (at least) 3 different definitions
QoS = “How well does the system perform?”
Business value metric = any measure of business worth (not only financial)
IT system management = monitoring+control
Specification impacts management capability
QoS and business value specification and management are crucial for SOC systems
They must be considered early in the lifecycle

I. Importance of QoS and business value
II. Specification of QoS
III. Management (monitoring & control) of QoS
IV. Business-driven IT management (BDIM)
V. From QoS to business value
VI. Summary, challenges and discussion

II. Overview of Approaches to and Languages for WS QoS Specification
Classification of QoS specification approaches
Contracts (example language: WS-Agreement)
Service level agreements – SLAs (example language: WSLA)
Classes of service
Policies (example languages: WS-Policy)
Summary of issues related to WS QoS specification

Classification of QoS Specification Approaches
QoS specification = description of what/where/when/how to monitor & control
QoS info = descriptions & monitored values
Classification of QoS specification approaches:
1. Implicit – built into the implementation (not flexible)
2. Contracts – formal agreements (for QoS, billing, ...)
 a) Service Level Agreements (SLAs)
 b) Classes of service – a special type of SLAs
3. Policies – high-level operation & management goals and/or rules (for security, QoS, billing, ...)

QoS Specification Topics Present in All Approaches
Where are QoS metrics defined?
There are no standard QoS metrics - use, names, and definitions vary! Example: ‘response time’ can have at least 2 different meanings! 4 approaches:
- Nowhere (implicit meaning) - not precise
- In the QoS language grammar - not flexible
- In QoS specification files (e.g., SLAs) - not reusable
- In external reusable ontologies (definition files)
Other ontologies can define measurement units
For practical use, QoS specification languages must be accompanied by appropriate tools!

Contract
Contract = binding and enforceable formal agreement between two or more parties
Defines requirements & guarantees of parties
Can be used in monitoring and control
Contracts enable not only QoS description, but also QoS differentiation
Different consumers can have different contracts
Apart from QoS info, a contract can contain other information (e.g., prices/penalties)
WSDL and WS-BPEL files are contracts
Specification of QoS in Extended WSDL, UDDI, or WSBPEL Files

- **Strengths:**
 - The extensions can be relatively simple
 - QoS discovery related to Web service discovery

- **Weaknesses:**
 - QoS specification language tied to WSDL (UDDI, WS-BPEL) in terms of tools, evolution, ...
 - Extension mechanisms are limited
 - Run-time change of QoS information requires updates of all affected copies of WSDL (UDDI, WS-BPEL) files, which is complicated

WS-Agreement:

from Global Grid Forum (GGF); industry support (IBM, ...)

- **General framework** for XML specification of agreements and agreement templates
 - plus a simple agreement negotiation protocol and run-time agreement monitoring interface
 - Intended for multiple domains, not only WSes

- No built-in constructs for detailed QoS specifications (QoS metrics, QoS expressions, ...) – it allows use of any language for details
 - This flexibility can produce incompatibility

WS-Agreement: Agreement Template Structure

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSDL/Policy</td>
<td>Service Description/Terms</td>
</tr>
<tr>
<td>Guarantee Terms</td>
<td></td>
</tr>
<tr>
<td>Create Date</td>
<td></td>
</tr>
</tbody>
</table>

WS-Agreement: Detailed Agreement Template Structure

| Name |
| Context: Involved parties (initiator & provider); Expiration time; Template name, Related agreements |
| Terms: Term composites ExactlyOne/OneOrMore/All |
| Service description terms: Service descriptions, Service references, Service properties |
| Guarantee terms: Service scope, Qualifying condition, Service level objective (SLO), Business value list (Importance, Penalty, Reward, Preference, ...) |
| Creation constraints: item requirements and/or constraints (in some language) |

Service Level Agreement (SLA)

- A special type of contract for QoS (and often price/penalty) requirements & guarantees
- Many different formats, one of them is:
 - **Parties** (including supporting management parties)
 - **Service description**
 - Service operations – describe available operations
 - SLA parameters – define monitoring of QoS metrics
 - **Obligations**
 - Service Level Objectives (SLOs) - QoS guarantees
 - Action guarantees - specify what happens if SLOs are met or not met

A Simple Example of an SLA

- Parties: consumer C and provider P
- Service operations: P has one operation (OP1)
 - float getStockPrice(String stockName)
- SLA parameters: (RT-OP1-C) Response time of operation OP1 measured at consumer C by consumer C
- SLOs: (SLO1) For every OP1 invocation by C, RT-OP1-C will be <= 2 seconds, evaluated by consumer C
- Action guarantees: (AG1) If SLO1 was met, C pays P price of US$0.20 per invocation;
 - (AG2) If SLO1 was not met, P pays C penalty of US$0.10 per invocation
QoS Specifications Must Be Precise

- **Precision**: which QoS metric, how measured, when, where, by which party, under which circumstances, ...
- It is a common mistake to specify SLOs without limiting the number of requests
 - E.g., response time of operation X of Web Service A is max 1 second
 - What if there are 1000 (or million) requests competing for the same limited resources?
- Response time (availability) depends on the number of requests!

Service Level Agreement (SLA): Strength and Weaknesses

- **Strengths**:
 - Formal contract specification of QoS and related management aspects
 - Widely used in computing and communications systems (also for WSes)
- **Weaknesses**:
 - Negotiation of custom-made SLAs can require complex analysis of offers and generation of counter-offers (can be alleviated by using templates)
 - Management of many concurrent custom-made SLAs can be complex & with high run-time overhead
 - Cannot be used for QoS-enabled WS selection

Web Service Level Agreement (WSLA): Overview

from IBM Research: H. Ludwig, A. Keller, A. Dan, ...

- **QoS language & management infrastructure**
- Compatible with, but not restricted to WSes
- **Custom-made SLAs** (the example SLA format)
- **Strengths**: detailed and precise specification of monitoring and control;
 - several tools for SLA creation, deployment, and compliance monitoring (were distributed by IBM);
 - widely referenced; was used in practice
- **Weaknesses**: those of custom-made SLAs;
 - QoS metrics defined within SLAs

Web Service Level Agreement (WSLA): Language Details

- **SLA parameter** - monitored property; contains 1 QoS metric & extra info for exchange of values
- **QoS metric** – defines where & how to measure or calculate; can be reused across SLA parameters
- **An SLO contains**: evaluated Boolean expression (limits values of SLA parameters), obliged party, validity periods, evaluation event or schedule
- **An action guarantee** contains: precondition expression, evaluation event or schedule, action to be taken, obliged party, execution modality
- **Reusability**: SLA templates, metric macros, ...

Class of Service

- A special type of SLA that is not custom-made, but predefined & reusable (anonymous)
 - 1 provider can offer many classes of service that refer to the same functionality, but differ in QoS
 - 1 class of service can be used by many consumers
- **Simple selection** instead of complex negotiation
- Classes of service already checked for consistency
- **Strengths**: Usable for QoS-enabled WS selection, no complex negotiation, simpler management, lower run-time overhead, faster adaptation
- **Weakness**: Discrete differentiation - limited choice

Policies – High-Level Goals and/or Rules

- **A classification of policy types** [Kephart&Walsh2004]:
 - **Action**: Describe what should happen - “If-Then” rules ("If response time of operation A is greater than 2 sec, provider pays penalty of US$0.10")
 - **Goal**: Describe desired state ("Response time of operation A is less than or equal to 2 sec")
 - **Utility**: Quantify “goodness” of a particular state ("Add to the goodness measure [2 sec - response time of operation A] * 10 units") - rarely used
- **SLAs vs. policies**: SLOs can be viewed as goal policies, action guarantees as action policies
- **Policies vs. business rules**: mostly synonyms?
Web Services Policy Framework (WS-Policy)

- General, flexible and extensible, framework for specification of (security) policies for WSes
- Many good features (e.g., policies can be in or out of WSDL files, some reusability constructs)
- QoS extensions (several exist) require:
 - Precise and detailed QoS specification
 - Contracts/SLAs/classes of service and their static and dynamic relationships
 - Standardized expression mechanism

Approaches to (WS) QoS Specification: Summary & Discussion

- Contract = binding and enforceable formal agreement between two or more parties
- SLA is a special type of contract; many SLA formats
- Class of service is a type of a light, predefined SLA
- Which one to use depends on circumstances
 - For comprehensiveness: general contracts
 - For flexibility of QoS specification: custom SLAs
 - For low overhead: classes of service
- Contracts vs. policies: similar information, different management architectures
 - One view: external contracts and internal policies

Languages for WS QoS Specification: Summary & Discussion

- There are many different languages
 - Most are based on contracts, particularly SLAs
- WS-Agreement & WS-Policy: general frameworks that can be extended for QoS specification for service-oriented systems
 - Have industry support, but the “meat” is missing
- WSLA: example precise and detailed SLA-based QoS specification language
 - Its solutions could be re-used (along with some ideas from other languages) for the “meat”

III. Overview of Approaches to and Tools for WS QoS Management

- Approaches to QoS monitoring (example tools: WSLA Framework, Cremona)
- Some approaches to QoS control (example tool: Smartware)
- On approaches to QoS-based Web service selection (only briefly)
- Industrial products for WS QoS management
- On QoS in Web Service compositions
- Summary of issues related to WS QoS management

Presentation Progress

I. Importance of QoS and business value
II. Specification of QoS
III. Management (monitoring & control) of QoS
IV. Business-driven IT management (BDIM)
V. From QoS to business value
VI. Summary, challenges and discussion

Classification of Approaches to QoS Monitoring

- Instrumentation
 - Internal instrumentation
 - External instrumentation
- Intermediaries
- Probes
- Sniffers
- All approaches have strengths & weaknesses – which one to use depends on circumstances
Invasive vs. non-invasive instrumentation
- Invasive: within business logic code of a WS
- Non-invasive: in hosting tools (e.g., SOAP engine)
- All monitoring on the provider side
- Strengths: Realistic & consumer-specific measures; independent from network location of measurement
- Weaknesses: Provider must have capabilities and willingness; consumers must trust the provider (no way to check results given by the provider)

Exchange of monitored values
- a) in SOAP headers; b) using special push or pull operations
- Strengths: Realistic & consumer-specific measures
- Weaknesses: High run-time overhead (can be reduced with periodic/occasional monitoring); results depend on network location of measurement

Strengths
- Very low run-time overhead; measures can be realistic & consumer-specific
- Weaknesses: Unknown SOAP message's Internet route; WS security technologies can be a problem; not possible to use SOAP headers to send monitored values; results depend on network location of sniffer

Strengths
- Run-time overhead can be lower
- Weaknesses: Results not consumer-specific, provider can treat probes in a special way; not possible to re-use SOAP headers to send monitored values; results depend on network location of probes

Web Service Level Agreement (WSLA) Framework
- from IBM Research; uses the WSLA language
 - **Modules = services**: 1) Establishment; 2) Deployment; 3) Measurement; 4) Condition Evaluation; 5) Management; 6) Business Entity
- Prototype: SLA Compliance Monitor – module 1 is simple, 2 is implemented, 3 & 4 are general purpose, 5 & 6 missing
- Special management port types (e.g., for value exchange)
- **Strengths**: Comprehensive approach to QoS management; support for management third parties; was used in practice; well-known
- **Weaknesses**: Run-time overhead
WSLA Framework: Run-Time Use

from IBM Research; uses WS-Agreement

- **Architecture** for WS-Agreement middleware
 - Agreement initiator & agreement provider roles
 - Agreement Management layers
- **Java library** that: 1) implements WS-Agreement interfaces; 2) provides management functionality for agreement templates and instances; 3) defines abstractions to be implemented in domain-specific environments
- **Strengths:** Relates agreements with underlying resources; reusable for various domains
- **Weaknesses:** Needs additions to be used for WSes

Cremona: Agreement Roles

Several Control Approaches That Try to Meet QoS Guarantees

1. Manipulate which request is processed first
 - Provider has several different request queues, e.g., one for each class of service
 - Scheduler within the provider decides from which queue to process a request, depending on QoS guarantees, current load, queue lengths, ...
2. Manipulate thread priorities for different requests and/or OS scheduling discipline
3. General approach: Manipulate allocation of resources for various requests
4. Load balancing between replicas

Smartware

from Infosys: A. Sharma, H. Adarkar, S. Sengupta

- **QoS control:** Differentiated scheduling of requests based on context priorities
 - Context = info about provider application, user, and client device; sent by consumer in request SOAP header
- Based on Apache Axis SOAP engine, adds:
 - Interceptor – reads context info and determines priority
 - Scheduler – puts request into a queue for its priority; based on scheduling policy fetches a request from a queue
 - Dispatcher – forwards request to the provider
- **Strengths:** Rare work that performs QoS control
- **Weaknesses:** Scheduling uses limited information

Re-composition of Web Services vs. Re-negotiation of Contracts

- **Run-time adaptation** of WS compositions
 - a) Re-composition of Web services – more powerful
 - Special case: Switching between WSes (only 1 change)
 - b) Re-negotiation of contracts – faster, simpler, lighter
 - Special case: Switching between classes of service (also de/re-activation, deletion, creation, (dis-)allowing use)

Legend: C – consumer; P – provider; CS – class of service

Legend: C – consumer; P – provider; CS – class of service

Slide 54/108

Slide 55/108

Slide 56/108

Slide 57/108
Using Historical QoS Information for WS Selection: Possible Approaches

- From the same consumer
 - Problem: When consumer did not previously invoke this operation of the provider Web service
- From probes
 - Problem: Easy for providers to give excellent QoS to probes, while bad QoS to real consumers
- From all consumers
 - Problem: Consumers have different characteristics (e.g., could be located on different continents)
 - Problem: Other consumers’ reports can be fake

Approaches to QoS-Driven WS Discovery and Selection

1. Provider as only source of QoS specifications
2. UDDI extensions with QoS information
3. Additional QoS information registry

- The main issues:
 - QoS publication in a registry enables QoS-based selection (selection is difficult with option 1)
 - QoS changes much more often than WSDL, so QoS updates have to be propagated to consumers (difficult with option 2)
 - Complexity (highest with option 3)

Using Historical QoS Information for WS Selection: Problems

- It is a common mistake to rely on historical QoS info without considering circumstances
- General problem: Circumstances of different invocations are different!
 - E.g., geographic location of previous requests
- General problem: Absence of targets/goals to guide control activities (including billing)
- Conclusion: Historical QoS information can be useful, but it provides no guarantees (and can even be misleading) => contracts are needed

Some Observations on Industrial Products for WS QoS Management

- They address many practical problems
 - Academic researchers should be aware of these works and their accomplishments
 - Some works contain advanced solutions that show how SLAs and/or policies can be used in practice
- Many products have significant limitations:
 - Crucial role of human administrators (i.e., not completely automated)
 - Limited/predefined choice of used QoS metrics
 - Lack of flexible formal machine-understandable QoS specification (instead, forms are used)

Large System Management Suites

- Contain many different management products
 - Some related to WSES (or “business services”)
 - Some related to performance (QoS) management of applications, computing systems, networks
 - HP: Business Technology Optimization – BTO (formerly OpenView; includes SOA Manager)
 - IBM: Tivoli (includes SOA Management Suite)
 - Computer Associates (CA): Unicenter (includes Wily Web Service Manager)
 - BMC Software: Patrol (includes Business Service Management - BSM)
 - Microsoft (includes Application Center)

Some Products for WS QoS Management from Smaller Companies

- Often products (1 or more) addressing several management areas, incl. performance (QoS)
- Actional SOA Management (includes SOAPStation Web Services Broker) – policies
- AmberPoint SOA Management System (incl. Service Level Management) – custom-made SLAs
- SOA Software (incl. Service Manager) – policies
- Software AG (incl. webMethods Business Process Management Suite and SOA Governance) – policies
- WestGlobal mScape (including Performance Management Module - PMM) – custom-made SLAs
Determining QoS in Web Service Compositions

- How to select QoS of an individual WS to satisfy overall QoS of a known composition?
 - E.g., we know max response time of WSes WS1-WS4 and want to select WS5 to meet composition’s overall response time guarantee
- Given a set of WSes with known QoS, what is the QoS of their composition?
 - E.g., if max response time of all WSes WS1-WS5 is 1 sec, is the max overall response time 4 sec?

Analyzing QoS in Compositions Is Complex & Without a General Solution

- It is a common mistake to think that response time of a sequence of services is the sum of response times of the composed services
 - Under some circumstances, this is suitable
 - But what about the number of requests & context?
 - What if there are dependencies (e.g., WS3-WS4)?
 - What is the request probability distribution?
- Advanced analytical methods are often needed
- Math is only an abstraction of reality – clarify assumptions & validity limits for all analyses

Approaches to (WS) QoS Management: Summary & Discussion

- Several different approaches to (general and Web service) QoS monitoring and control
 - None is best for all circumstances – knowing their advantages/disadvantages will help you choose
- In B2B scenarios, QoS monitoring with SOAP message intermediaries seems most flexible
- QoS control by (re-)allocating resources to meet QoS guarantees is necessary, but hard
- For QoS-aware WS selection, contracts have significant advantages over historical QoS data

Tools for WS QoS Management: Summary & Discussion

- There are many tools; very different in power
 - Most are based on SLAs, some are based on policies
- No current tool or a set of tools addresses all WS QoS monitoring and control needs!
- Industrial products address many basic issues, but have limitations (e.g., in QoS control)
 - Powerful, but expensive: system management suites
 - Cheaper, but limited: smaller companies’ products
- Research tools tackle advanced problems, but commercial use requires additional features

IV. Introduction to Business-Driven IT Management (BDIM)

- Drivers for BDIM
- Precise definition of BDIM
- The BDIM framework
- Relationships between BDIM and other areas
- Some questions BDIM should help answer
- 3 examples of the BDIM approach
- Summary of BDIM and related issues

Presentation Progress

I. Importance of QoS and business value
II. Specification of QoS
III. Management (monitoring & control) of QoS
IV. Business-driven IT management (BDIM)
V. From QoS to business value
VI. Summary, challenges and discussion
Drivers for BDIM

- Fast changing world (both business context/requirements and technologies)
- Business demands
 - agility, alignment and availability
 - business intelligence
 - mergers and acquisitions
 - regulatory compliance
- Technology demands
 - modern, flexible architecture
 - service migrations and upgrades
 - IT automation and consolidation
 - security

IT Reality

<table>
<thead>
<tr>
<th>Expectations on IT</th>
<th>Business demands</th>
<th>Technology demands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Versus</td>
<td>Time</td>
</tr>
</tbody>
</table>

A growing gap between the demands placed on IT and IT’s ability to deliver

Business-Driven IT Management (BDIM): Precise Definition

- BDIM is the application of a set of models, practices, techniques and tools ...
- to map and to quantitatively evaluate ...
- dependencies between IT solutions and business performance and ...
- using the quantified evaluation to improve the IT solutions’ quality of service and related business results

The BDIM Framework

Relationships between BDIM and Other Areas

- BDIM addresses IT (technical) decisions, not business decisions
- It is, in various ways, different from (but compatible with) the related areas:
 - business management
 - IT governance
 - business process management (BPM)
 - value-based software engineering (VBSE)
 - autonomic computing

Some Questions BDIM Should Help Answer

- Which of the hundreds of incidents should I take care of now?
- What SLO values does the business need?
- Which changes to handle now considering impact, risk and our corporate risk attitude?
- Which services should be part of my portfolio?
- Which tests should be run on a release to lower risk to a level acceptable to my business?
Example 1: BDIM
Approach to Incident Prioritization

- How do you prioritize incidents?
- Compute the likelihood of violation of an SLO in function of the time taken to close a jeopardy incident
- From this, compute the alignment with the business objectives
 - Alignment = probability of meeting objectives
- Prioritize the incidents to maximize alignment with the business objectives

Example 2: BDIM
Approach to Defining SLAs

- How do you design service infrastructure?
 - You minimize cost to yield a certain QoS expressed in the SLA
- But how do you choose the SLOs?
 - 99%? 99.5%? 99.9%? 99.99%?
 - 1 s.? 2 s.? ½ s.?
 - Finger in the air ...
- BDIM approach: Calculate business loss due to unavailability and high response time and minimize cost-loss

Example 3: BDIM
Approach to Service Testing

- Testing is a risk elimination activity
 - Risk is uncertainty
- Answer testing questions using risk models
 - Should a particular test be performed or not?
 - Which set of tests should be run?
- This is still at the research stage
 - Some related research in value-based software engineering (VBSE)

BDIM: Summary & Discussion

- BDIM is
 - A research agenda for decision support and information management that brings business goals/objectives (and value and strategies) at the core of the IT Management decision-making process
- Achieved by
 - Modeling and reasoning over the goals/objectives, the decision criteria and the dependencies that link IT management and IT operations

Presentation Progress

I. Importance of QoS and business value
II. Specification of QoS
III. Management (monitoring & control) of QoS
IV. Business-driven IT management (BDIM)
V. From QoS to business value
VI. Summary, challenges and discussion

V. Overview of Possibilities for Enriching QoS Management with BDIM

- Current frameworks for improving business-IT alignment
 - IT Infrastructure Library (ITIL) v3
 - IT governance and COBIT
- Some industrial products for BDIM
- Example research projects in BDIM:
 - Management by Business Objectives (MBO) and Aline
 - WS-Policy4MAS and MASC middleware
Information Technology Infrastructure Library (ITIL)

- A set of guidelines and best practices for IT Service Management
- Provides generic, non-prescriptive guidance
- Alignment with and guidance on:
 - Industry best practices and international standards
 - Compliance to legislative requirements
- Important evolution towards BDIM (see ITIL v3), but not enough

ITIL Version 3

- Centered on business value
 - Creating a way to integrate IT processes, people, tools with business strategy and desired outcomes
- Structured according to the ITSM service lifecycle (instead of processes)
- Functionality and manageability are two sides of the same coin

ITIL v3 Service Lifecycle

IT Governance

- A set of organization’s policies, plans, and processes that govern how the organization uses its IT resources
 - Difference from management: longer-term vs. shorter-term; strategy vs. tactics
- Aligning IT investments with overall business goals and strategies
- Determine who makes IT-related decisions and who is responsible for the outcomes

Control Objectives for Information and related Technology (COBIT)

- An IT governance framework that helps:
 - Align IT with the business, so that IT enables the business and maximizes business benefits (value)
 - IT resources are used responsibly
 - IT risks are managed appropriately
- Based on industry best practices
 - Links IT activities with business requirements
 - Organizes IT activities into a generally accepted process model
 - Identifies major IT resources to be leveraged
 - Defines control objectives to be considered

Specification of Goals for Services and Business Processes

- Services and processes they implement need to have clearly defined goals/objectives
 - to guide both design-time & run-time decisions
- Several academic works enable specification and processing of goals for SOC systems or business processes
 - e.g., using the OMG Business Motivation Model (BMM), Tropos, i*, ...
- Much related work in requirements engineering
- Few works relate goals to run-time management
ITIL v3 and COBIT in Relation to BDIM

- **Business-IT alignment** has been identified as a problem several decades ago.
- ITIL v3 does **not** provide concrete “how-to” models/techniques to use in automatic tools.
- COBIT does **not** provide ways of propagating objectives throughout the IT organization (cmp. IT business scorecard).
- Both ITIL v3 and COBIT are important in the evolution towards BDIM, but are **not** enough.

Some Current Industrial Products for BDIM

- HP Business Technology Optimization (BTO)
- Datawarehouse and CIO Scorecard
- IBM Cognos Business Intelligence
- BMC Dashboard for Business Service Management
- CA Cleverpath AION BPM, BRE (Business rules expert)

Management by Business Objectives (MBO)

- A **methodology** for **quantitative** evaluation of alignment of business objectives of alternative IT options.
- Aimed at supporting **decisions making** at the IT level.
- Information model derived by COBIT objectives and balanced scorecard.
- **Quantitative** definition of alignment with business objectives as the **likelihood** that the objectives will be met.

MBO Aline: Calculating Alignment

- The **alignment engine** of the MBO framework.

Management of Non-Financial Business Value Metrics

- **Financial business value metrics** modeled and monitored in the past relatively successfully:
 - E.g., prices and penalties in SLAs
 - Accounting sub-systems
- Non-financial business metrics are **difficult** to model (incl. monetize), monitor, and control:
 - Modeling challenge: diversity of characteristics
 - Monitoring: business intelligence systems?
- **Control** is still a challenge for both:
 - **Business strategy** determines which business value metrics to maximize (it is not always profit).

Motivation for Business Process Adaptation Maximizing Business Value

- **Alternatives:**
 - A: 99% availability
 - B: mid price
 - C: 95% cheap
 - D: 99.99% expensive

- Overload

- **Alternatives:**
 - A: 99% availability
 - B: mid price
 - C: 95% cheap
 - D: 99.99% expensive
WS-Policy4MASC Overview

- Extends WS-Policy with policy assertions and details necessary for run-time management
- Support for management of Web service compositions (e.g., built-in actions, events)

WS-Policy4MASC: UtilityPolicyAssertion (1/2)

- Main distinctive features of WS-Policy4MASC:
 - Specification of both financial and (monetized) non-financial business value metrics
 - Policy conflict resolution: maximize business value
- A utility policy assertion:
 - situations to which it applies (When construct)
 - management party and beneficiary party, ...
 - 1 or more business values
- A business value has a monetary amount and a business value metric type

WS-Policy4MASC: UtilityPolicyAssertion (2/2)

- 8 business value metric types: combination of characteristics along 3 dimensions
 - Tangible (financial) vs. intangible (non-financial)
 - Agreed vs. possible
 - Benefits vs. costs
- Example: AU$10 intangible possible benefits (models aspects of customer satisfaction)
- Business values can be not only absolute, but also relative (e.g., PriceB=0.7*PriceA)

WS-Policy4MASC: MetaPolicyAssertion (1/2)

- Policy conflict: several action policy assertions can be applied, but only 1 should
 - E.g., "skip activity X" vs. "replace activity X with Y"
- Policy conflict resolution with meta-policies
 - A meta-policy assertion:
 - list of 2 or more conflicting (alternative) action policy assertions
 - specification of business strategies maximizing specified business value metric types
- Strategies classified along dimensions based on business value metric types

WS-Policy4MASC: MetaPolicyAssertion (2/2)

- E.g. ‘tangible-only’ vs. ‘intangible-only’ vs. ‘tangible+intangible’
- Tiebreaking in case of close alternatives
 - E.g., ‘tangible+intangible’ instead of ‘tangible-only’
- Time limit and cost limit
- Example strategy: ‘intangible-only agreed+possible benefits+costs with tiebreaking tangible+intangible’ (models maximization of customer satisfaction)
- Policy conflict resolution algorithm

Manageable & Adaptable Service Compositions (MASC) Middleware

- Platform independent components
- Net 3.0 Platform specific components

- WS-Policy4MASC: Model-based Service Composition Process
- MetaPolicyAssertion
- PolicyAssertion
- Strategy
- Action
- MetaStrategy
- PolicyAction

- PolicyDrivenService
- MASCMiddleware
- Service
- WS-Policy
- WS-Policy4MASC
- MASCCompositions
- WS-Policy4MASCComposition
- ORchestrationManager
- MASCCompositions
- MASCMiddleware
The transition from management of QoS to management of business value is not simple
Could/should be done in several directions
ITIL v3 and COBIT available now, but do not provide concrete “how-to” for use in automatic tools => only one step towards BDIM
Several industrial products with some BDIM capabilities, but many improvements possible
Compared to QoS management, not as many research projects, but the number is increasing

The Main “Take Home” Points

- Web service QoS and business value specification & management is crucial
- Market differentiation, efficiency, agility, ...
- Technical QoS is important, but business value is even more important for customers
- Many things you can do today on WS QoS
- Some things you can do today towards BDIM of SOC systems and business processes
- But a growing research area ...

Summary of Past Results on WS QoS Management

- Several QoS specification approaches
 - Contracts, SLAs, classes of service, policies
 - Know strengths and weaknesses, circumstances
- Many languages for WS QoS specification
 - General standardized frameworks such as WS-Agreement and WS-Policy are not enough
- Several approaches to QoS monitoring/control
 - None is “perfect”; control is difficult
- There are many industrial and research tools for WS QoS management, but with limitations
Some Research Topics for WS QoS Management

- Control of Web Services to meet guarantees
 - The main area for near-future research
 - Ideally, with minimal human involvement
 - Resource capacity planning and management
 - Building complex control plans
 - Solutions for adaptation to various changes
- Integrated management of business operations, Web services, and underlying computing/communication infrastructure
 - Standard models of operation & issues at different levels and mappings between them are needed

Summary of Past Results on BDIM for Service-Oriented Systems

- Recognition that business value matters!
- Industry acceptance of ITIL v3 and COBIT
- Definition of BDIM as a research area
 - Leveraging several other areas; multi-disciplinary
- Some approaches to and information models (languages) for specification of business value
- Some research projects and (to some extent) industrial products
- Not all BDIM work has the “BDIM” label!

Some Research Challenges for BDIM

- How to (help) bridge the business-IT chasm?
 - Modeling of business value metrics, strategies, (long-term) goals/objectives
 - Modeling their links with technical (IT) metrics
 - Predicting consequences of actions on IT/business, having in mind (long-term) uncertainties and risks
 - Making decisions maximizing business value metrics
 - The right level of abstraction for models
 - Diversity of business-IT links impacts model reusability
 - Appropriate/accurate values for model parameters

Some Research Topics on Modeling of Business Value Metrics & Strategies

- Modeling of business value metrics
 - Explicit description of various characteristics of business value metrics (e.g., financial or not)
 - Monetization (or not) of non-financial metrics
 - Uncertainty of business values (for risk, trust, ...)
 - Time value of money (for the long term analyses)
- Modeling of business strategies
 - Various characteristics of business strategies
 - Predicting/processing a chain of future events
 - Calculating the overall business value metric (not 1 number, but a set of values)
- Comparing overall business value metrics

Non-technical Challenges for BDIM

- The technical mindset of the community
 - Business? What business?
- Selling the vision to business
 - Sell on business terms, not on technical terms
 - Do we know the real business value of our approach?
- Validation is not simple
 - Complex socio-technical systems

Resources

- Publications are scattered between many different conferences, journals, and books
 - A list (last updated in late 2006) of many resources related to QoS management of WsEs is under: http://nicta.com.au/people/tosicv/tutorials
 - E-mail NICTA QoS/e-Government people in Canberra
 - BDIM workshops (2006-2009) at IEEE NOMS/IM
 - http://www.businessdrivenITmanagement.org
- Past specialized tutorials by the presenters (on QoS management of WsEs, ITSM & BDIM, ...)
- Ask the tutorial presenters (e-mail on Slide 2)