
ar
X

iv
:2

00
5.

00
74

6v
1

 [
cs

.L
O

]
 2

 M
ay

 2
02

0

On Infinite Guarded Recursive Specifications

in Process Algebra

R.J. van Glabbeek1,2 and C.A. Middelburg3

1 Data61, CSIRO, Sydney, Australia
2 School of Computer Science and Engineering, University of New South Wales,

Sydney, Australia
rvg@cs.stanford.edu

3 Informatics Institute, Faculty of Science, University of Amsterdam,
Amsterdam, the Netherlands
C.A.Middelburg@uva.nl

Abstract. In most presentations of ACP with guarded recursion, recur-
sive specifications are finite or infinite sets of recursion equations of which
the right-hand sides are guarded terms. The completeness with respect
to bisimulation equivalence of the axioms of ACP with guarded recursion
has only been proved for the special case where recursive specifications
are finite sets of recursion equations of which the right-hand sides are
guarded terms of a restricted form known as linear terms. In this note,
we widen this completeness result to the general case.

Keywords: process algebra, guarded recursion, completeness, infinitary
conditional equational logic.

1998 ACM Computing Classification: F.1.2, F.4.1

1 Introduction

In ACP with guarded recursion, guarded recursive specifications, i.e. sets of
recursion equations of which the right-hand sides are guarded terms, are used
for recursive definitions of processes (see e.g. [1]). In most cases where ACP or a
variant of it is extended with guarded recursion, guarded recursive specifications
may be infinite. Moreover, countably infinite guarded recursive specifications
are used in many applications of the process algebras concerned. Nevertheless,
the completeness with respect to bisimulation equivalence of the axioms of ACP
with guarded recursion has only been proved for the special case where recursive
specifications are finite sets of recursion equations of which the right-hand sides
are guarded terms of a restricted form known as linear terms.

The second author of this note realized in March 2017 that the completeness
proof given in [2] for the above-mentioned special case could be widened to
the general case. He communicated this at the time with several colleagues and
forgot about it until it was recently mentioned in [3]. This mention motivated
him to write a note about the general completeness result. It is noteworthy that
the proof of the fact on which the widening of the existing completeness proof is

http://arxiv.org/abs/2005.00746v1

based (Theorem 1) turned out to be less straightforward than the second author
thought in March 2017 and comes from the first author.

In order to make this note self-contained, it contains short surveys of ACP
and its extension with guarded recursion. We did not attach much importance
to preventing any text overlap with surveys from earlier papers.

2 Algebra of Communicating Processes

In this section, we give a survey of ACP (Algebra of Communicating Processes).
For a comprehensive overview of ACP, the reader is referred to [1,2].

In ACP, it is assumed that a fixed but arbitrary set A of actions, with δ /∈ A,
has been given. We write Aδ for A ∪ {δ}. It is further assumed that a fixed but
arbitrary commutative and associative communication function γ :Aδ×Aδ → Aδ,
with γ(δ, a) = δ for all a ∈ Aδ, has been given. The function γ is regarded to
give the result of synchronously performing any two actions for which this is
possible, and to give δ otherwise.

The signature of ACP consists of the following constants and operators:

– for each a ∈ A, the action constant a ;
– the inaction constant δ ;
– the binary alternative composition operator + ;
– the binary sequential composition operator · ;
– the binary parallel composition operator ‖ ;
– the binary left merge operator ⌊⌊ ;
– the binary communication merge operator | ;
– for each H ⊆ A, the unary encapsulation operator ∂H .

We assume that there is an infinite set X of variables which contains x, y and z
with and without subscripts. Terms over the signature of ACP, also referred to
as ACP terms, are built as usual. We use infix notation for the binary operators.
The precedence conventions used with respect to the operators of ACP are as
follows: + binds weaker than all others, · binds stronger than all others, and the
remaining operators bind equally strong.

The constants of ACP can be explained as follows (a ∈ A):

– δ denotes the process that cannot do anything;
– a denotes the process that first performs action a and after that terminates

successfully.

Let t and t′ be closed ACP terms denoting processes p and p′. Then the operators
of ACP can be explained as follows:

– t+ t′ denotes the process that behaves as p or behaves as p′ (but not both);
– t · t′ denotes the process that first behaves as p and on successful termina-

tion of p next behaves as p′;
– t ‖ t′ denotes the process that behaves as p and p′ in parallel;

2

Table 1. Axioms of ACP

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

∂H(a) = a if a /∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

x ‖ y = x ⌊⌊ y + y ⌊⌊ x+ x | y CM1

a ⌊⌊ x = a · x CM2

a · x ⌊⌊ y = a · (x ‖ y) CM3

(x+ y) ⌊⌊ z = x ⌊⌊ z + y ⌊⌊ z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = γ(a, b) CF

– t ⌊⌊ t′ denotes the same process as t ‖ t′, except that it starts with performing
an action of p;

– t | t′ denotes the same process as t ‖ t′, except that it starts with performing
an action of p and an action of p′ synchronously;

– ∂H(t) denotes the process that behaves the same as p, except that actions
from H are blocked.

The operators ⌊⌊ and | are of an auxiliary nature. They are needed to axiomatize
ACP.

The axioms of ACP are the equations given in Table 1. In these equations,
a and b stand for arbitrary constants of ACP, and H stands for an arbitrary
subset of A. In D1 and D2, side conditions restrict what a and H stand for.

In the sequel, we will use the sum notation
∑

i<n ti. Let t0, t1, t2, . . . be terms
over the signature of ACP or an extension of ACP. Then

∑
i<0

ti = δ and, for
each n ∈ N with n > 0, the term

∑
i<n ti is defined by induction on n as follows:∑

i<1
ti = t0 and

∑
i<n+1

ti =
∑

i<n ti + tn.

3 ACP with Guarded Recursion

In this section, we give a survey of the extension of ACP with guarded recursion.
For a comprehensive overview of guarded recursion in the setting of ACP, the
reader is referred to [1,2].

A closed ACP term denotes a process with a finite upper bound to the
number of actions that it can perform. Guarded recursion allows the description
of processes without a finite upper bound to the number of actions that it can
perform.

3

Table 2. Axioms for guarded recursion

〈X|E〉 = 〈t|E〉 if X = t ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Let t be a term over the signature of ACP or an extension of ACP in which
a variable X occurs. Then an occurrence of X in t is guarded if t has a subterm
of the form a · t′ where a ∈ A and t′ contains this occurrence of X . An ACP term
t is a guarded ACP term if all occurrences of variables in t are guarded.

A guarded recursive specification over ACP is a set {Xi = ti | i ∈ I}, where I
is a finite or infinite set, each Xi is a variable from X , each ti is either a guarded
ACP term in which only variables from {Xi | i ∈ I} occur or an ACP term
rewritable to such a term using the axioms of ACP in either direction and/or
the equations in {Xj = tj | j ∈ I ∧ i 6= j} from left to right, and Xi 6= Xj for all
i, j ∈ I with i 6= j.

We write V(E), where E is a guarded recursive specification, for the set of
all variables that occur in E. The equations occurring in a guarded recursive
specification are called recursion equations.

A solution of a guarded recursive specification E in some model of ACP is
a set {pX | X ∈ V(E)} of elements of the carrier of that model such that each
equation in E holds if, for all X ∈ V(E), X is assigned pX . We are only inter-
ested in models of ACP in which guarded recursive specifications have unique
solutions.

We extend ACP with guarded recursion by adding constants for solutions
of guarded recursive specifications over ACP and axioms concerning these addi-
tional constants. For each guarded recursive specification E over ACP and each
X ∈ V(E), we add a constant 〈X |E〉 that stands for the unique solution of E
for X to the constants of ACP. We add the equation RDP and the conditional
equation RSP given in Table 2 to the axioms of ACP. In RDP and RSP, X
stands for an arbitrary variable from X , t stands for an arbitrary ACP term, E
stands for an arbitrary guarded recursive specification over ACP, and the nota-
tion 〈t|E〉 is used for t with, for all X ∈ V(E), all occurrences of X in t replaced
by 〈X |E〉. Side conditions restrict what X , t and E stand for. We write ACPrec

for the resulting theory. Terms over the signature of ACPrec are also referred to
as ACPrec terms.

The equations 〈X |E〉 = 〈t|E〉 and the conditional equations E ⇒ X=〈X |E〉
for a fixed E express that the constants 〈X |E〉 make up a solution of E and that
this solution is the only one.

Because we have to deal with conditional equational formulas with an infinite
number of premises in ACPrec, it is understood that infinitary conditional equa-
tional logic is used in deriving equations from the axioms of ACPrec. A complete
inference system for infinitary conditional equational logic can be found in [4]. It
is noteworthy that in the case of infinitary conditional equational logic derivation
trees may be infinitely branching (but they may not have infinite branches).

4

We write T ⊢ t = t′, where T is ACP or ACPrec, to indicate that the equation
t = t′ is derivable from the axioms of T using a complete inference system for
infinitary conditional equational logic.

4 Linear Recursive Specifications

In this section, we show that each guarded recursive specification over ACP
can be reduced to one in which the right-hand sides of recursion equations are
guarded terms of a restricted form known as linear terms. This result will be
used in Section 6. In its proof, we make use of the fact that each guarded ACP
term has a head normal form.

Let T be ACP or ACPrec. The set HNF of head normal forms of T is induc-
tively defined by the following rules:

– δ ∈ HNF ;
– if a ∈ A, then a ∈ HNF ;
– if a ∈ A and t is a term over the signature of T , then a · t ∈ HNF ;
– if t, t′ ∈ HNF , then t+ t′ ∈ HNF .

Each head normal form of T is derivably equal to a head normal form of the
form

∑
i<n ai · ti +

∑
j<m bi, where n,m ∈ N, for each i < n, ai ∈ A and ti is a

term over the signature of T , and, for each j < m, bj ∈ A.
Each guarded ACPrec term is derivably equal to a head normal form of

ACPrec.

Proposition 1 (Head normal form). For each guarded ACPrec term t, there
exists a head normal form t′ of ACPrec such that ACPrec ⊢ t = t′.

Proof. First we prove the following weaker result about head normal forms:

For each guarded ACP term t, there exists a head normal form t′ of ACP
such that ACP ⊢ t = t′.

The proof is straightforward by induction on the structure of t. The case where t
is of the form δ and the case where t is of the form a (a ∈ A) are trivial. The case
where t is of the form t1+ t2 follows immediately from the induction hypothesis.
The case where t is of the form t1 · t2 follows immediately from the induction
hypothesis and the claim that, for all head normal forms t1 and t2 of ACP, there
exists a head normal form t′ of ACP such that t1 · t2 = t′ is derivable from the
axioms of ACP. This claim is easily proved by induction on the structure of t1.
The cases where t is of one of the forms t1 ⌊⌊ t2, t1 | t2 or ∂H(t1) are proved along
the same lines as the case where t is of the form t1 · t2. In the case that t is of
the form t1 | t2, each of the cases to be considered in the inductive proof of the
claim demands a proof by induction on the structure of t2. The case that t is of
the form t1 ‖ t2 follows immediately from the case that t is of the form t1 ⌊⌊ t2
and the case that t is of the form t1 | t2. Because t is a guarded ACP term, the
case where t is a variable cannot occur.

5

The proof of the proposition itself is also straightforward by induction on
the structure of t. The cases other than the case where t is of the form 〈X |E〉
is proved in the same way as in the above proof of the weaker result. The case
where t is of the form 〈X |E〉 follows immediately from the weaker result and
RDP. ⊓⊔

The set LT of linear ACP terms is inductively defined by the following rules:

– δ ∈ LT ;
– if a ∈ A, then a ∈ LT ;
– if a ∈ A and X ∈ X , then a ·X ∈ LT ;
– if t, t′ ∈ LT , then t+ t′ ∈ LT .

Clearly, each linear ACP term is also a guarded ACP term (but not vice versa).
A linear recursive specification over ACP is a guarded recursive specification

E over ACP such that, for each equation X = t ∈ E, t ∈ LT .
Each guarded recursive specification over ACP can be reduced to a linear

recursive specification over ACP.

Theorem 1 (Reduction). For each guarded recursive specification E over

ACP and each X ∈ V(E), there exists a finite or countably infinite linear recur-

sive specification E′ over ACP such that ACPrec ⊢ 〈X |E〉 = 〈X |E′〉.

Proof. We approach this algorithmically. In the construction of the linear recur-
sive specification E′, we keep a set V of recursion equations from E′ that are
already found and a sequence W of equations of the form Xk = 〈tk|E〉 that still
have to be transformed. The algorithm has a finite or countably infinite number
of stages. In each stage, V and W are finite. Initially, V is empty and W contains
only the equation X0 = 〈X |E〉.

In each stage, we remove the first equation from W . Assume that this equa-
tion is Xk = 〈tk|E〉. We bring the term 〈tk|E〉 into head normal form. If tk is
not a guarded term, then we use RDP here to turn tk into a guarded term first.
Thus, by Proposition 1, we can always bring the term 〈tk|E〉 into head normal
form. Assume that the resulting head normal form is

∑
i<n ai · t

′
i +

∑
j<m bj .

Then, we add the equation Xk =
∑

i<n ai ·Xk+i+1+
∑

j<m bj, where the Xk+i+1

are fresh variables, to the set V . Moreover, for each i < n, we add the equation
Xk+i+1 = t′i to the end of the sequence W . Notice that the terms t′i are of the
form 〈tk+i+1|E〉.

Because V grows monotonically, there exists a limit. That limit is the finite or
countably infinite linear recursive specification E′. Every equation that is added
to the finite sequence W , is also removed from it. Therefore, the right-hand side
of each equation from E′ only contains variables that also occur as the left-hand
side of an equation from E′.

Now, we want to use RSP to show that ACPrec ⊢ 〈X |E〉 = 〈X |E′〉. The
variables occurring in E′ are X0, X1, X2, For each k, the variable Xk has
been exactly once in W as the left-hand side of an equation. For each k, assume
that this equation is Xk = 〈tk|E〉. To use RSP, we have to show for each k that
the equation Xk =

∑
i<n ai · Xk+i+1 +

∑
j<m bj from E′ with, for each l, all

6

occurrences of Xl replaced by 〈tl|E〉 is derivable from the axioms of ACPrec. For
each k, this follows from the construction. ⊓⊔

An immediate corollary of Theorem 1 is the following expressiveness result:
in each model of ACPrec, the processes that can be described by a guarded
recursive specification over ACP and the processes that can be described by a
finite or countably infinite linear recursive specification over ACP are the same.

5 Semantics of ACP with Guarded Recursion

In this section, we present a structural operational semantics of ACPrec and
define a notion of bisimulation equivalence based on this semantics.

We start with presenting a structural operational semantics of ACPrec. The
following relations on closed ACPrec terms are used:

– for each a ∈ A, a unary relation
a
−→√ ;

– for each a ∈ A, a binary relation a−→ .

We write t
a
−→√ instead of

a
−→√ (t) and t

a
−→ t′ instead of

a
−→ (t, t′). The relations

a
−→√ and

a
−→ can be explained as follows:

– t a−→√: t can perform action a and then terminate successfully;
– t a−→ t′: t can perform action a and then behave as t′.

The structural operational semantics of ACPrec is described by the rules given
in Table 3. In these tables, a, b, and c stand for arbitrary actions from A,
X stands for an arbitrary variable from X , t stands for an arbitrary ACP term,
and E stands for an arbitrary guarded recursive specification over ACP.

A bisimulation is a binary relation R on closed ACPrec terms such that, for
all closed ACPrec terms t1, t2 with R(t1, t2), the following conditions hold:

– if t1
a
−→ t′1, then there exists a closed ACPrec term t′2 such that t2

a
−→ t′2

and R(t′1, t
′
2);

– if t2
a−→ t′2, then there exists a closed ACPrec term t′1 such that t1

a−→ t′1
and R(t′1, t

′
2);

– t1
a−→√ iff t2

a−→√.

Two closed ACPrec terms t1, t2 are bisimulation equivalent, written t1 ↔ t2, if
there exists a bisimulation R such that R(t1, t2).

Proposition 2 (Congruence). ↔ is a congruence with respect to the opera-

tors of ACPrec.

The axioms of ACPrec are sound with respect to bisimulation equivalence for
equations between closed terms.

Theorem 2 (Soundness). For all closed ACPrec terms t and t′, t ↔ t′ if

ACPrec ⊢ t = t′.

The proofs of Proposition 2 and Theorem 2 can, for example, be found in [1].

7

Table 3. Rules for the operational semantics of ACPrec

a
a
−→√

x
a
−→√

x+ y
a
−→√

y
a
−→√

x+ y
a
−→√

x
a
−→ x′

x+ y
a
−→ x′

y
a
−→ y′

x+ y
a
−→ y′

x
a
−→√

x · y
a
−→ y

x
a
−→ x′

x · y
a
−→ x′ · y

x
a
−→√

x ‖ y
a
−→ y

y
a
−→√

x ‖ y
a
−→ x

x
a
−→ x′

x ‖ y
a
−→ x′ ‖ y

y
a
−→ y′

x ‖ y
a
−→ x ‖ y′

x
a
−→√, y

b
−→√

x ‖ y
c
−→√ γ(a, b) = c

x
a
−→√, y

b
−→ y′

x ‖ y
c
−→ y′

γ(a, b) = c

x
a
−→ x′, y

b
−→√

x ‖ y
c
−→ x′

γ(a, b) = c
x

a
−→ x′, y

b
−→ y′

x ‖ y
c
−→ x′ ‖ y′

γ(a, b) = c

x
a
−→√

x ⌊⌊ y
a
−→ y

x
a
−→ x′

x ⌊⌊ y
a
−→ x′ ‖ y

x a−→√, y b−→√

x | y
c
−→√ γ(a, b) = c

x a−→√, y b−→ y′

x | y
c
−→ y′

γ(a, b) = c

x
a
−→ x′, y

b
−→√

x | y
c
−→ x′

γ(a, b) = c
x

a
−→ x′, y

b
−→ y′

x | y
c
−→ x′ ‖ y′

γ(a, b) = c

x
a
−→√

∂H(x)
a
−→√ a 6∈ H

x
a
−→ x′

∂H(x)
a
−→ ∂H(x′)

a 6∈ H

〈t|E〉
a
−→√

〈X|E〉
a
−→√ X = t ∈ E

〈t|E〉
a
−→ x′

〈X|E〉
a
−→ x′

X = t ∈ E

6 Completeness of ACP with Guarded Recursion

It follows from Theorem 1 and the completeness proof given in [2] for the special
case of finite linear recursive specifications over ACP that the axioms of ACPrec

are also complete with respect to bisimulation equivalence for equations between
closed terms.

Theorem 3 (Completeness). For all closed ACPrec terms t and t′, t ↔ t′

only if ACPrec ⊢ t = t′.

8

Proof. Theorem 4.4.1 from [2] states that, for all closed ACPrec terms t and t′ in
which only constants 〈X |E〉 occur where E is a finite linear recursive specifica-
tion, t↔ t′ only if ACPrec ⊢ t = t′. We can strengthen this theorem by dropping
the finiteness condition because the proof given in [2] does not rely on it. It fol-
lows immediately from the strengthened version of Theorem 4.4.1 from [2] and
Theorem 1 from the current paper that, for all closed ACPrec terms t and t′,
t↔ t′ only if ACPrec ⊢ t = t′. ⊓⊔

To the best of our knowledge, the completeness of the axioms of ACPrec with
respect to bisimulation equivalence has as yet only been proved for the special
case of finite linear recursive specifications. Crucial for the completeness for the
general case is that infinitary conditional equational logic is used in deriving
equations from the axioms of ACPrec. The use of this logic is inescapable with
infinite guarded recursive specifications. This speaks for itself, but it is virtually
unmentioned in the literature on process algebra.

7 Concluding Remarks

We have widened the existing completeness result for ACPrec. A by-product of
this work is the following expressiveness result: in each model of ACPrec, the
processes that can be described by a guarded recursive specification over ACP
and the processes that can be described by a finite or countably infinite linear
recursive specification over ACP are the same. Notice that even uncountably
infinite guarded recursive specifications over ACP can be reduced to finite or
countably infinite linear recursive specifications over ACP.

References

1. Baeten, J.C.M., Weijland, W.P.: Process Algebra, Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

2. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series, Springer-Verlag, Berlin (2000)

3. van Glabbeek, R.J.: Failure trace semantics for a process algebra with time-outs.
arXiv:2002.10814v1 [cs.LO] (2020)

4. van Glabbeek, R.J., Vaandrager, F.W.: Modular specification of process algebras.
Theoretical Computer Science 113(2), 293–348 (1993)

9

	On Infinite Guarded Recursive Specifications in Process Algebra

