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ABSTRACT
We describe our ongoing research that aims to eliminate
microarchitectural timing channels through time protection,
which eliminates the root cause of these channels, compe-
tition for capacity-limited hardware resources. A proof-of-
concept implementation of time protection demonstrated
the approach can be effective and low overhead, but also
that present hardware fails to support the approach in some
aspects and that we need an improved hardare-software con-
tract to achieve real security. We have demonstrated that
these mechanisms are not hard to provide, and are working
on their inclusion in the RISC-V ISA. Assuming compliant
hardware, we outline how we think we can then formally
prove that timing channels are eliminated.

1 INTRODUCTION
A covert channel is an information flow that uses a mecha-
nism not intended for information transfer [Lampson 1973].
Traditionally, channels are classified as storage channels or
timing channels, depending on whether time is used to ex-
ploit them [Wray 1991].

Storage channels can be considered a solved problem: Mur-
ray et al. [2013] proved that the seL4 microkernel [Klein et al.
2009] prevents covert storage channels. In contrast, timing
channels are still an open problem, and the recent Spectre
attacks [Kocher et al. 2019] clearly demonstrated the threat
they pose to security. Spectre also demonstrated that the
threat goes beyond side channels, which exploit accidental in-
formation leakage by innocent code (and are the main focus
of the security community): The Spectre authors use gadgets
in innocent code to construct a Trojan that deliberately leaks
information.
The Spectre experience demonstrates the importance of

solving the confinement problem [Lampson 1973]: It must be
possible to encapsulate code that processes secrets so that
this code cannot leak the secrets, including through timing
channes. In other words, the operating system (OS) must
provide mandatory confinement, and as a community we
have been negligent by putting this problem into the “too
hard” or the “not interesting” baskets.
Of particular importance are microarchitectural channels,

which exploit implementation details of the hardware that
are abstracted away by the hardware-software contract,

i.e. the instruction-set architecture (ISA). Where such a re-
source has a capacity limit, competing accesses from mul-
tiple execution threads will result in a slowdown of exe-
cution, which can be exploited for signalling. The limita-
tion can be bandwidth, such as for interconnects, where
contention leads to an observable reduction of the appar-
ent bandwidth; these channels only appear where true con-
currency exists, i.e. across cores. The alternative are state-
ful resources, whose state that depends on execution his-
tory, which can be exploited by truely concurrent access or
when time-multiplexing the hardware; these are generally
caches and other accelerators such as branch predictors and
prefetchers. Ge et al. [2018b] present a survey.
Our primary focus are such microarchitectural timing

channels, as they are the hardest problem. The determinism
we need to achieve to prevent these channels will also allow
us to prevent algorithmic channels, where the length of the
execution path of a computation depends on secret data.
We recently introduced time protection as a mechanism

for the systematic prevention of timing channels, and eval-
uated a proof-of-concept implementation in an experimen-
tal version of seL4 [Ge et al. 2019]. Analogous to the well-
established concept of memory protection, which prevents
processes interfering with each other’s memory state, time
protection prevents interference that affects execution time,
and thus prevents leakage through timing channels. Like
memory protection, time protection is a mandatory OSmech-
anism. The combination of both mechanisms supports con-
finement of processes.
Our ultimate goal is a formal proof that time protec-

tion prevents timing channels, and a demonstration that it
can solve real-world confinement problems. The path there
presents a number of challenges, and this article will ex-
plain them and discuss our approach to overcoming them.
Specifically:

• We find that contemporary hardware contains ex-
ploitable microarchitectural state that the OS cannot
control, making time protection impossible to imple-
ment fully (Section 3).

• While we have demonstrated a proof-of-concept imple-
mentation of time protection and demonstrated that it
is effective to the degree allowed by hardware, it is not
yet integrated into a usable system model (Section 4).



• There are not yet suitable formalmodels of the relevant
hardware features; we need to develop such models,
prove relevant properties about them, and integrate
them into the seL4 proof framework to then prove that
confidentiality can be extended to timing (Section 5).

But first we will explain the concept of time protection
and its implementation in more detail.

2 TIME PROTECTION
Time protection is defined as a collection of OS mechanisms
which jointly prevent interference between security domains
that would make execution speed in one domain dependent
on the activities of another. It extends isolation to the time
domain.
Note that the reference to “security domains” is inten-

tional: Memory protection, as we know it, usually applies
to process boundaries. Applying time protection to security
domains instead gives the OS flexibility in applying the (pos-
sibly heavy-handed) time protection only where it is really
needed. Security domains are defined by a systems’s security
policy, and in general consist of one or more processes.

As microarchitectural timing channels result from compet-
ing access to shared hardware resources, the only safe way to
prevent them is to partition these resources between security
domains. This partitioning can be spatial or temporal (a.k.a.
time sharing).

Resources that are accessed concurrently must obviously
be spatially partitioned; this applies to shared caches and
interconnects. For caches, page colouring by physical address
is a well-known technique [Kessler and Hill 1992; Liedtke
et al. 1997] that is effective and imposes low overhead [Ge
et al. 2019].
But spatial partitioning is not available for most on-core

resources, such as the L1 caches, TLBs, branch predictors
and instruction and data prefetchers. These generally lack
the hardware support needed to partition them; techniques
such as page colouring require OS control over the addresses
used to access the hardware, and for on-core resources that
is the virtual address that is outside the control of the OS.
Furthermore, L1 caches are small, and partitioning them
would have a high performance impact.

Hence a combination is needed: temporal partitioning for
on-core resources and spatial partitioning off-core. Ge et al.
[2019] explore temporal partitioning in depth, and show
that it must go beyond just partitioning user state. The OS
must be partitioned, as must interrupts. They achieve this
by furnishing each security partition with its own OS image,
consisting of code, (most) data and stack. A small amount
of shared state is needed to coordinate the images; care is
taken that accesses to this state is fully deterministic in terms
of execution latency. The core mechanisms are policy free,

and based on a kernel clone operation that allows setting
up partitions dynamically, based on the system’s security
policy.

The approach is shown to be effective (subject to hardware
limitations discussed in Section 3) and efficient, adding of
the order of 30 µs to the latency of a partition switch that
happens at time-slice granularity (i.e. milliseconds).

3 HARDWARE LIMITATIONS
Complete time protection is only possible where the hard-
ware provides sufficient support. Specifically, all shared hard-
ware resources must be spatially or temporally partitionable.
Unfortunately, present hardware does not adhere to this

requirement. There are two main issues: partitioning band-
width and scrubbing.

3.1 Interconnect Bandwidth
When two security domains share a bandwidth-limited inter-
connect, such as a memory bus, a Trojan in one domain can
trivially send information to a spy in the other by modulating
its use of the available bandwidth. The spy can then monitor
the apparent available bandwidth to receive the signal.
To prevent this channel, the bandwidth must be parti-

tioned (a form of spatial partitioning where the “space” is
the available bandwidth). Contemporary hardware does not
support this. Intel recently introduced memory bandwidth
allocation (MBA) technology, which imposes limits on the
memory bandwidth available to a core [Intel Corporation
2016]. However, this limit is only enforced approximately
and can therefore not be used for preventing timing channels.

Software-only bandwidth partitioning is possible in princi-
ple by having the OS impose a strict time-divisionmultiple ac-
cess (TDMA) discipline on the bus by enabling and disabling
memory mappings for each TDMA slot. The MemGuard
work demonstrated this approach for limiting interference
though bus cross-talk in real-time systems [Yun et al. 2013].
However, making this precise enough to prevent covert chan-
nels would impose a very large overhead, offsetting most of
the benefits from a multicore system, and we do not consider
this a feasible approach for our purpose.
However, MBA and MenGuard create hope that low-

overhead hardware support for interconnect partitioning
may be feasible, and we plan to investigate this issue in the
future.

For now, we have little choice but accept (temporary) de-
feat, and instead limit our ambitions to threat models that
do not depend on bandwidth partitioning. Specifically we
have to make one of three assumptions:
(1) the system operates single-core while sensitive code

is executing
(2) all cores belong to the same security domain



(3) intentional leakage across cores is not an issue.

The first assumption is frequently made in military sys-
tems, but is clearly too restrictive for most systems. The
second assumption can be satisfied by co-scheduling secu-
rity domains across all cores, and time-slicing the whole
multicore processor between multiple domains. This can
work in some cases, but is not too realistic either.

The third maps to real-world scenarios. One of them is a
cloud service of mutually-distrusting virtual machines (VMs),
each restricted to using a single core at any one time. If such
a VM contained a Trojan that wanted to leak information,
it would not have to rely on an inter-core covert channel,
but could leak directly to the outside work, for example by
modulating network traffic.

While covering at least one useful scenario, these restric-
tions are unpalatable in general, and we really need to hope
for better hardware support.

3.2 On-core microarchitectural state
As explained above, time-partitioned hardware, which in-
cludes most (if not all) on-core microarchitectural state, must
be reset to a history-independent state before handing it from
one security domain to the next. This seems straightforward,
all it takes is a flush, which should be cheap, as this state is
mostly read-only state (the L1 D-cache being the one excep-
tion).

Ge et al. [2018a] show that the reality is less rosy. For one,
the Intel architecture lacks even a dedicated flush of the L1
caches, all it provides is a flush of the complete cache hierar-
chy. For the purpose of time protection, this is overkill, as
the physically-addressed lower-level caches can be spatially
partitioned, and for the shared last-level cache (LLC), the
flush adds nothing to security. Furthermore, the full flush is
prohibitively expensive, of the order of milliseconds. While
Intel has recently added an L1-D flush through a microcode
update [Intel 2018a], there is still no I-cache flush, and the
D-cache flush is not available for all processors.
Arm processors are better in this respect, they provide

instructions for flushing the L1 caches. But on all proces-
sors we investigated, there is other state that cannot be
flushed completely. A major culprit are branch predictors,
which cache recent branch targets and whether conditional
branches have been taken; these provide high-bandwidth
channels. Intel has recently mitigated this as part of their
Spectre defences with a feature called indirect branch control
(IBC) [Intel 2018b]. However, this proves insufficient for re-
moving branch-predictor channels completely. We also find
that the instruction- and data-prefetchers provide channels
that cannot be closed [Ge et al. 2019, 2018a].

This is a depressing situation: Full time protection is unim-
plementable on present hardware, irrespective of processor

architecture. However, there is an upside. Our experiments
with an open-source RISC-V processor show that implement-
ing a complete flush of on-core state is straightforward, cheap
in terms of circuitry as well as latency [Wistoff et al. 2020].

3.3 Improved hardware-software contract
The fundamental problem here is that the ISA as the
hardware-software contract is designed for enabling func-
tional correctness, but intentionally hides anything to do
with timing. It is simply insufficient for ensuring security.

The inescapable conclusion is that the hardware-software
contract must be augmented [Ge et al. 2018a]. In particularly,
the contract must ensure that hardware meets our require-
ment for time protection: all microarchitectural resources
must be (spatially or temporally) partitionable by software.
In the case of on-core state, our experience shows that this
is straightforward and mostly a matter of finding the right
abstraction. We are engaged with the RISC-V community
to ensure that appropriate mechanisms are included in the
RISC-V ISA spec.

Bandwidth-limited resources are a more difficult problem
that requires more research and reluctantly we leave them
out of scope for now.

4 TIME PROTECTION SYSTEM MODEL
Our present implementation of time protection in an ex-
perimental version of seL4 [Ge et al. 2019] is a proof of
concept that implements the basic mechanisms but leaves
many issues unresolved. In particular, it only supports single-
threaded security domains, which severely restricts its prac-
tical use. Clearly there needs to be a notion of hierarchical
scheduling, where security domains are scheduled with fixed
time slices, but internally consist of multiple multi-threaded
proceses that are scheduled within the domain time slice.

The obvious approach here is to use strict time partitioning
for domains, as in seL4’s existing domain scheduler [Murray
et al. 2013], using the standard seL4 scheduler inside domains.
This approach, which is widely used in avionics [ARINC
2012], is highly restrictive. Among others it implies that the
latency of interrupt handling is of the order of the domain
period, typically tens to hundreds of milliseconds – far too
long for most real-world systems. Strict partitioning also
implies poor resource utilisation, as idle cycles in one domain
cannot be used elsewhere.

A better approach would be to donate idle cycles to slack
domains that can run in any statically scheduled domain’s
time slice, but are trusted (ideally through formal verifica-
tion) not to leak. An interesting challenge is to integrate
time protection with the periodic budget enforcement model
which we recently added to seL4 for ensuring the temporal
integrity of mixed-criticality real-time systems [Lyons et al.



2018]. This could form the basis of a more flexible notion of
domain time slices.
A proper system model that retains the power and flexi-

bility of seL4 will also support security boundaries of con-
figurable strength. Eliminating all possible cross-partition
information flow, while needed in some cases, is overkill
in others. The system’s security policy must determine for
which boundaries covert channels matter, and whether they
matter only in one direction or all, and the kernel must allow
providing the degree of security (and associated overheads)
that is needed but not more.

In the end we want to be able to provide the right flavour
of time protection for everyday use cases. A good one to
aim for is browser security: Untrusted code running in a tab
should not be able to communicate with other tabs, or use
timing side-channels to infer host data. Achieving this will
require a flexible isolation model.

5 FORMALISING HARDWARE AND
PROVING ISOLATION

Proving time protection means proving that seL4’s kernel
mechanisms, when deployed correctly, properly isolate the
timing of one security domain from another. Naturally, two
domains that share a storage channel also share a timing
channel, so timing isolation makes sense to prove (at least at
first) for domains that share no storage channels, as defined
by seL4’s existing information flow theorem. Once proved,
time protection will extend that statement of isolation to
also cover timing channels.

At first glance, one might expect that proving time protec-
tion is a hopeless exercise. After all, the precise interaction
between microarchitectural state and execution latency is
unspecified for modern hardware platforms, and the latency
of some instructions may vary by orders of magnitude de-
pending on hardware state. Formally reasoning about precise
execution latencies is therefore infeasible [Klein et al. 2011].

5.1 How to Prove Time Protection
So how can we prove time protection if we cannot hope
to build formal models of the precise timing behaviour of
modern hardware? We argue that reasoning about the exact
latency of executions is unnecessary. The key insight [Heiser
et al. 2019] is to make use of the fact that microarchitec-
tural timing channels result from sharing of capacity-limited
hardware resources. Therefore, if we can prove that these
resources are not shared (spatial partitioning), or if they are
time-shared (which only applies to stateful resources) any
history dependence in their state is removed, these channels
are eliminated.

This means that we need formal models that represent mi-
croarchitectural state in our proofs. However, these models

can be kept quite abstract, providing only enough detail to
identify resources that need to be spatially partitioned (and
how such partitioning is performed), and state that must be
reset at switch time (and how to reset it). That is, we do not
need to know how long an instruction will take to execute,
only that its execution time depends on state that must be
partitioned or flushed for achieving isolation.

The model does not have to distinguish between different
stateful resources that need flushing, such as L1 caches, TLBs,
or branch predictors. They can be represented as abstract
“blobs”, as long as there is a defined sequence of instructions
that resets all the state. Refining the model into different
components may enable some optimisation, though.
For spatially partitionable state, temporal isolation then

becomes a functional property (namely an invariant about
correct partitioning) that can be verified without any refer-
ence to time, meaning existing verification techniques apply.

For state that requires flushing, correct application of the
flush is also a functional property, provided that that the
flushing operation itself is implemented in a constant-time
manner (we will return to this assumption shortly).
Under this approach, timing-channel reasoning is trans-

muted into reasoning about storage channels, reducing it to
a solved problem, and also enabling reasoning about timing-
channels without reference to precise execution time. This
possibility may seem surprising, but it is known that the
distinction between storage and timing channels is not fun-
damental, but refers to the mechanisms used for exploita-
tion [Wray 1991]. In our case we transform the temporal
interference problem into a spatial one, by reasoning about
the shared hardware resources which the channels exploit.

Once timing-channel reasoning is reduced to the verifica-
tion of functional properties, it can then be integrated into
seL4’s existing invariants and thus extend its existing proof
of storage-channel freedom [Murray et al. 2013] to also cover
timing channels.
Returning now to our assumption that the flush instruc-

tions themselves are constant time – this is obviously a
dangerous assumption, at least for flushing the L1-D cache;
this latency will depend on the number of dirty lines. This
means that we will have to pad the flush to its worst-case
latency. This latency must also be provided by the enhanced
hardware-software contract. Assuming it is known, correct
padding can be verified with a relatively simple formalisation
of hardware clocks, which allows verifying padding time by
simply comparing time stamps, reducing this to a functional
property as well.
A final complication is that not all OS-level state can be

partitioned (as we observed in Section 2): the per-domain OS
images need some data structure to coordinate. We will need
to prove that accesses to those data structure are not history



dependent (where the latency variance cannot be lumped
into the padding).

We can remove the history dependence of the access laten-
cies by pre-fetching all such data into the L1 cache inside the
time-padded code, thus ensuring determinism of the kernel
exit latency. Proving this correct will require a degree of
reasoning outside the standard verification framework, and
some deeper reasoning about the data cache. This part likely
presents the biggest challenge in verifying time protection.

5.2 Required hardware formalisation
Carrying out these proofs requires a model of the shared
hardware resources (the microarchitectural model) that in-
fluence execution latencies, as well as a simple model of a
hardware clock (the time model) to allow reasoning about
elapsed time intervals. Naturally these models are interre-
lated: how much an execution step advances the hardware
clock naturally depends on the microarchitectural state that
influences execution time.
Crucially, a precise description of this interaction is not

necessary. Instead, the time model, which captures how far
time advances on each execution step, is defined as a deter-
ministic yet unspecified function of the microarchitectural
state.
This construction neatly reflects the basic assumptions

that underpin the augmented hardware-software contract
(Section 3.3): (i) the hardware provides sufficient mecha-
nisms to spatially partition or flush microarchitectural state
between security domains, that (ii) such mechanisms work
correctly, and that (iii) these account for all microarchitec-
tural state that influences execution time.

5.3 Achieving Verified Time Protection
With these models in hand, we can then prove that there is
no way in which the execution of one domain can affect the
execution timing of another domain.
Specifically the proofs must show that all resource parti-

tioning and flushing is applied at all times and not bypassable,
and that domain-switches (including flushing) are correctly
implemented to take a constant amount of time (e.g. via
padding). These proofs can then be integrated with existing
storage-channel freedom proofs to derive the absence of tim-
ing channels, effectively extending the existing arguments
about storage channels to also cover the microarchitectural
state on which timing channels depend.

6 RELATEDWORK
Page colouring is a well established technique for partition-
ing physically-addressed caches [Liedtke et al. 1997; Lynch
et al. 1992] and Ge et al. [2019] demonstrated that its per-
formance impact is low. Liu et al. [2016] used Intel’s cache

allocation technology (CAT), which partitions by cache ways,
to provide side-channel-protected “safe” memory, but this
is a discretionary mechanism that does not protect against
Trojans.

Flushing of stateful hardware is also well established [God-
frey and Zulkernine 2013; Guanciale et al. 2016; Osvik et al.
2006; Zhang and Reiter 2013]. Proposals to extend parti-
tioning to on-core state [Domnister et al. 2012; Wang and
Lee 2007] have not gained traction, presumably because the
cost in terms of hardware utilisation is too high. Tiwari
et al. [2009] suggested a leasing approach to share hard-
ware resources between threads, which guarantees bounds
on resource usage and side effects. Tiwari et al. [2011] later
proposed a solution for top-to-bottom information flow guar-
antees, including a Star-CPU, a microkernel, and an I/O pro-
tocol. This is a fairly radical departure from mainstream
computing architectures and manufacturers of commodity
hardware will be hard to convince to go down this route.
We expect to extend formalisations of the ISA such as

the L3 model of the Arm architecture by Fox and Myreen
[2010]. Recently, the Sail formalisation of Armstrong et al.
[2019] was adopted as the primary specification of the RISC-
V architecture. These ISA models by definition omit any
microarchitectural details. Syeda and Klein [2018] developed
a formal model of the Arm TLB which is more detailled than
what our approach requires, and thus indicates the feasibility
of the formalisations we need. While prior work has proved
notions of information flow control for operating system
designs whose formal models include a notion of execution
time [Verbeek et al. 2015], such reasoning has so far been
performed only in the abstract, in the absence of formal
models of the microarchitectural state on which execution
time depends and without application to a verified kernel
implementation.

7 CONCLUSIONS
We assert that it should be possible to eliminate microarchi-
tectural timing channels completely, and prove it. Getting
there requires overcoming a number of challenges. Firstly,
our proof-of-concept implementation of time protection
has shown that the approach is effective where hardware
supports (spatially) partitioning or scrubbing such state;
but it has also shown that present hardware contains on-
partitionable state that cannot be flushed. This calls for an
improved hardware-software contract that supports timing
security, and we are working with the RISC-V community
to develop such a contract and conforming hardware.

Secondly, a bunch of mechanisms do not yet make a usable
operating system, and further work is required on developing
a model that supports time security for real-world use.



Thirdly, more work is required for formalising suitable
abstractions of the microarchitecture, and feed those into
a verification framework such as the one that was used to
prove storage-freedom of seL4. The key here is to transform
timing channels into storage channels by linking them to
the underlying microarchitectural state.

We are confident that this is all achievable and are actively
working on it.
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